ADAMTM SmartBASICTM

COMPENDIUM OF USEFUL PROGRAMMING INFORMATION

(APPENDIX C)

TABLE OF CONTENTS

- ERROR MESSAGES and ONERR...GOTO CODE

FOR USERS WITH TWO DIGITAL DATA PACK
DRIVES

. SEQUENTIAL TEXT FILES

RANDOM ACCESS TEXT FILES
TURNKEY SYSTEM

ASCII CHARACTER CODES
BASIC MEMORY MAP

SHAPE TABLE

READ ONLY MEMORY

RANDOM ACCESS MEMORY

GLOSSARY OF TERMS

Sraart 58 V37,2 s128

Cl-C4

C5-C6
C7-C8
C9-C10
Cll
Cl12=C1l>
Clé
Cl7-C23
C22

C22

C24 -C30

<=3

ERROR MESSAGES

Run Time Error Messages ONERR GOTO Codes

BAD SUBSCRIPT (107)
You've tried to reference an array element
that's outside the array's dimensions.

BREAK (255)

This message appears when you use CONTROL-C to
interrupt a program, or you have a STOP in your
program,

CAN'T CONTINUE

You tried to continue a program that doesn't
exist, after an error occurred, or after you
removed or inserted a line in a program.

DIVIDE BY ZERO (133)
Division by zero is not acceptable.

FATAL SYSTEM ERROR
Your program is corrupted. Type NEW or reboot
SmartBASIC.

ILLEGAL FUNCTION ASSIGNMENT (16)
You tried to use a function in an INPUT or
READ statement.

ILLEGAL MODE
You can't use DATA, GET, DEF FN, or INPUT in
immediate execution mode.

ILLEGAL QUANTITY (53)

This error can be caused by: using LOG with a
negative or zero argument; using SQR with a
negative arqument; or using LEFT$, RIGHTS$, MIDS,
WAIT, POKE, PEEK, TAB, SPC, ON/GOTO, or any
graphics function with an inappropriate argument.

NEXT WITHOUT FOR (0)

You typed in NEXT on your program and have
omitted the corresponding FOR. Always pair FOR
with NEXT.

(-1

OUT OF DATA (42)
ADAM is trying to execute a READ statement
when all the data has been read. You haven't

provided enough data, or your program tried to
read too much data. '

OUT OF MEMORY (77)

This may be caused by: a program that is too
large; excessive variables; more than 14 nested
FOR loops; more than 30 nested GOSUB levels; too
complicated an expression; setting LOMEM: too high
or too low; or setting HIMEM: too high,

OVERFLOW (69)
This results when a calculation answer is too _
large for ADAM to handle. An underflow will I

result if the calculation answer is too small for
ADAM to handle. 1In this case, a zero will be
substituted for the correct result, and no error
message will appear.

REDIMENSIONED ARRAY (120)

After you dimensioned an array, ADAM
encountered another dimension statement for the
same array.

REENTER (254)

You made an inappropriate response to an
INPUT.

RETURN WITHOUT GOSUB (22)
ADAM encountered a RETURN without a
corresponding GOSUB statement.

STACK OVERFLOW (77)

You've taken up too much room in your stack by
using too many FOR/NEXT statements or GOSUB
statements. Too many subroutines will fill your
stack to the extent that you need to POP
information from the top before you can push any
more in from the bottom.

STRING TOO LONG (176)
You've put together a string that has more
than 255 characters.

SYNTAX (16)

Check to see if you are missing parentheses,
have an illegal character in a line, or incorrect
punctuation, etc.

TYPE MISMATCH (163)
You've given a function or variable which

expected a numeric argument, a string argument, Or
vice versa.

UNDEFINED FUNCTION (224)
You tried to use FN for a function that you
have not yet defined. See DEF FN.

UNDEFINED STATEMENT (90)
You tried to send a GOTO, GOSUB, or THEN to a
)ine number which doesn't exist.

File Error Messages

CONTRCOL BUFFER OVERFLOW (12)
You have exceeded the fixed size limit of your

input buffer. You have probably used too many
characters following a CONTRCL~D.

END OF DATA (5)
You've tried to read or write past the end of

your data file.

FILE LOCKED (10)

The file to which you are trying to write is
locked., Use CATALOG to see which files are
locked. Look for filenames with asterisks in
front of them. To release a file, see UNLOCK and
RECOVER.

(-

FILE NOT FOUND (7)

ADAM can't find the file using the name you've
input. Check your spelling (especially the way
you used upper and lower case letters). Type
CATALOG to be sure the file is on your digital
data pack.

FILE TYPE MISMATCH (13)
You tried to run a binary file.

I/0 ERROR (8)
This is an input/output error. Be sure your
digital data pack is firmly in place.

NO BUFFERS AVAILABLE (12)
You've run out of buffers because you have too

many data files open.

NO MORE ROOM (9)
There is no more file space left on your

digital data pack. The directory will only hold
35 files. You may have an unclosed data file.
See CLOSE.

RANGE ERROR (2)
You've exceeded your available range by making
a command parameter too large for ADAM to deal

with,

SYNTAX ERROR (11)
You've used a bad file name, wrong parameter,

or wrong punctuation in an OS command.

IFOR USERS WITH TWO DIGITAL DATA PACK DRIVES

?

You can use either drive for SmartBASIC. When you
reset ADAM, the computer first looks for a digital
data pack in the left drive (Dl). If one 1is
found, ADAM expects it to contain SmartBASIC. If
there is no tape in the first drive, or the door
is open, ADAM tries to boot the drive on the right
(D2) . The left drive becomes the default drive,
If a drive isn't specified, every OS command
automatically goes to the default drive. Every
time you use an 0OS command with the drive
specified, that drive becomes the default drive.

DIGITAL DATA PACKS

1. Don't store your programs or data files on the
SmartBASIC digital data pack. Take it out and put
it away as soon as SmartBASIC is loaded. Use a
blank pre-formatted digital data pack to store

your programs and files.

2. Do yourself a favor. If you're working on a
long program, SAVE it every 15 or 20 minutes. Use
a new version number each time. This way, if your
power goes off unexpectedly, you won't lose
everything you've input. You'll only lose what's
been entered since the last time you SAVEd. If
your digital data pack starts to get full, then
DELETE the earliest SAVEd versions,

3. Make extra copies of important programs and
data files on a separate digital data pack. Keep
one "working" copy, then store the other in a safe
place -- away from your "working" copy so you
won't get confused.

4. Digital Data Packs are specially designed for
your ADAM computer. Although they may look like
audio cassette tapes, digital data packs are very
different., Audio cassette tapes cannot be used in
place of digital data packs. If the tape in a
digital data pack breaks, do not splice the ends

together and try to re-use the data pack. To
erase information on a digital data pack, delete
unwanted files, Never use a bulk tape eraser--if
you do, you'll erase the special format that makes
the data pack unique for ADAM. Digital data packs .
cannot be write-protected.

Keep your digital data packs away from magnets.
Don't put them on top of the printer; there's a
magnet inside. Store your digital data pack in a
safe place, away from dust, temperature extremes,
electrical currents, and water. Don't open the
drive door while the tape is in motion. Never
press the RESET button while ADAM is storing a
file. Do not store a digital data pack on or near
a television or monitor. Keep your data packs
away from heat and sunlight. Keep spare digital
data packs in their original plastic cases when
they are not in use,

(.-6

F
|

|

SEQUENTIAL TEXT FILES

Sequential text files are information storage
files where data records follow one right after
another, in seguence.

To create a sequential text file, always begin
with OPEN, then follow it with WRITE. All PRINTs
will now go to the file until the WRITE is
cancelled. To cancel a WRITE command, PRINT

~ CONTROL~D (PRINT CHRS(4)).

The sample program which follows will create a
sequential text file called SESAME. The first 13
records contain three strings and the numbers
1-1.0-

10 DS$=CHRS (4)
20 PRINT D$; "OPEN SESAME"

50 PRINT DS$; "WRITE SESAME"

60 PRINT “HEY CHIP": PRINT "LET'S STEP ouT"
70 PRINT "FOR A BYIE"

80 FOR J=1 TO 10

90 PRINT J: NEXT J

100 PRINT DS; "CLLOSE SESAME"

BEWARE:: If you OPEN a file already existing and
WRITE to it, you'll overwrite part of your
original file. Use APPEND to add to files.

To retrieve the file, SESAME, one record at a
time, here's what to do:
(and to see what's going on, type MON I)

10 D$=CHRS(4)
20 PRINT D$;"OPEN SESAME"
30 PRINT D$;“READ SESAME"

40 INPUT AS$,BS,CS

50 FOR I=1 TO 10

60 INPUT W(I)

70 NEXT I

80 PRINT D$; "CLOSE SESAME"

OPEN must come before READ. After the READ, all

INPUT comes from the file. You can cancel a READ
command by PRINT CHRS(4). Don't forget to CLOSE

your file when you're done.

To add data to a sequential text file, try this
type of program:

10
20
40
50
60

D$S=CHRS (4)

PRINT D$; "APPEND SESAME"

PRINT "NO, THANKS"

PRINT "I'VE A BIT OF A HEADACHE."
PRINT D$; "CLOSE SESAME"

Each string is an additional record of the file.

o

-8

RANDOM ACCESS (Fixed Length) TEXT FILES

Think of random access text files as a series of
equal-sized pigeon holes in a desk. Each pigeon
hole is called a "record".

Random access text files differ from sequential
text files in the fact that random access text
records must be of a fixed length, where
sequential text records may be of any length. The
drawback is that when you WRITE to a random access
text file, enough space is set aside for a
complete record, whether you fill that entire
space or not. From this, you see that, while
random access text files may not represent the
best usage of available space, the files are
arranged in such an orderly fashion that it's a
quick and easy procedure to recall and edit
information from any part of your file!

Use random access text files when you want:
l.fast access to different parts of your files
2.to change pieces of information in your files

fairly frequently (mailing lists, name, address,
phone number files, etc.).

The procedure to create or retrieve random access
text files is similar to that used for sequential
text files. Here are the slight differences you
should know about:

OPEN needs a length parameter
specified. (maximum length is 255).

READ needs a record parameter specified.

WRITE needs a record parameter specified.

Here's a sample program for you:

10 DS=CHRS(4)

20 INPUT "NAME: ":NS

30 INPUT "PHONE: ":PS

40 PRINT DS$; "OPEN PHONEIND,L200"
50 PRINT D$; "WRITE PHONEIND,R1"
60 PRINT N$: PRINT P$

70 PRINT D$;"CLOSE PHONEIND"

MON C,I,0

You'll see this onscreen: (You type the
underlined words.

NAME: EARLE_W._MUNSON

PHONE: (203)_263-3292
OPEN PHONEIND,L200

WRITE PHONEIND, Rl
EARLE W. MUNSON
(203) 263-3292
CLOSE PHONEIND

Now, if you want to get the first record of
PHONEIND, use this:

10 D$=CHRS(4)

20 PRINT D$; "OPEN PHONEIND,L200"
30 PRINT D$; "READ PHONEIND,R1"
40 INPUT N1S,P1lS

50 PRINT D$;"CLOSE PHONEIND"
]MON C,I,0

You'll see this onscreen:

OPEN PHONEIND,L200
READ PHONEIND, R1
EARLE W. MUNSON
(203) 263-3292
CLOSE PHONEIND

C-10

TURNKEY SYSTEM

You can create a turnkey system on ADAM. This is
a system that runs the same initial program every
time a digital data pack is booted for

SmartBASIC. You may use any sort of program that
does any task; but most people use what's called a
"greeting program". A greeting program will make
ADAM seem more human by doing pretty much what the
program category implies. . . by greeting you. A
greeting program may be as long or as short as you
choose to make it; from "HELLO" to an involved
conversation which requires input from you to
answer gquestions ADAM poses. Save your program
using the name HELLO,

10 PRINT, "HELLO, HUMAN"
20 GOTO 20
SAVE HELLO

Hit RESET to put you back into SmartBASIC and
rewind your tape. HELLO is in your directory on
your SmartBASIC tape. SmartBASIC READs your
directory and looks for the HELLO file. When it
is found, it is LOADed and executed every time you
boot SmartBASIC. Only the program named "HELLO"
is run when the SmartBASIC tape is booted. If no
"HELLO" file is found, ADAM turns control over to
you.

C-11

ASCII CHARACTER CODES

I¥ GET A%

1y TF ASC{Ad/ = > THEN ENL
g Lrent B Yoo W
DEC HEX CHARACTER TYPED MEANING
0 00 CONTROL-@
1 01 CONTROL-A
2 02 CONTROL~-B
3 03 CONTROL-C
4 04 CONTROL-D
5 05 CONTROL-E
6 06 CONTROL~-F
7 07 CONTROL-G bell
8 08 CONTROL-H backspace
9 09 CONTROL~-T 14s horiz. tab
10 0A CONTROL-J line feed
11 OB CONTROL-K
12 0C CONTROL-L clear screen
13 0D CONTROL~=M #=+ 7 1]
14 OE CONTROL~-N
15 OF CONTROL~-0
16 10 CONTROL-P dumps screen to
printer
17 11 CONTROL-0Q
18 12 CONTROL-R
19 13 CONTROL-S pause
20 14 CONTROL-T
21 15 CONTROL-U
22 16 CONTROL-V
23 17 CONTROL~-W
24 18 CONTROL~-X
25 19 CONTRCL~-Y
26 1A CONTROL~Z ﬁ
27 1B CONTROL~= [£5¢472/ wF
28 1C CONTROL-\
29 1D CONTROL-]
30 1E CONTROL-"
34 1F CONTROL~-_
32 20 SPACE

C-12

DEC HEX CHARACTER TYPED MEANING

73 49 I
74 4A J
15 4B K
76 4C L
77 4D M
78 4E N
79 4F #)
80 50 P
81 51 0
82 52 R
83 53 S
84 54 T
85 55 U
86 56 Vv
87 57 W
88 58 X
89 59 Y
90 5A Z
91 5B |
92 5C X
93 5D]
94 5E ”
95 5F 6
96 60 :
97 61 a
98 62 b
99 63 C
100 64 d
101 65 =
102 66
103 67 g
104 68 h
105 69 i
106 6A i
107 6B Kk
108 6C 1
109 6D m
110 6E n
111 6F (o]
112 70 P

(.-14

b DEC HEX CHARACTER TYPED MEANING

l 33 21 !
34 22 3
35 23 7
36 24 $
37 25 %
38 26 &
39 27 !
40 28 (
41 29)
42 2A *
43 2B +
44 2C ’
45 2D -
46 2E ’
47 2F /
48 30 0
49 31 -
50 32 2
5l 33 3
52 34 4
53 35 5
54 36 6
55 37 7
56 38 8
57 39 9
58 3A -
59 3B 2
60 3C <
61 3D E
62 3E >
63 3F ?
64 40 @
65 41 A
66 42 B
67 43 C
68 44 D
69 45 E
70 46 F
71 47 G
12 48 H

(-13

H'DEC HEX CHARACTER TYPED MEANING

' 113 71 q (£
114 712 r %
- 115 73 s Tf
116 74 t [2 Nty i
T N 0 PRI 6
118 76 v il
119 I, w £
120 78 X e
121 79 v
122 7A Z
123 7B bracket (left)
124 7C broken vertical line
125 7D bracket (right)
126 1E tilde
127 7F DELETE
| ¢ KO E -
! 24 b T sl a s d
'f 20 A~ et &7 gyl __?"I
I[J)Il_ ELncr7gsl 194
J7 R £VaE i |
13 Func 1104 2%
I"' F o+ I
I vl 2FT \ -‘h*; r’_; ' " Kevy
3 S
I 41,) o A R
I f L/ l:!"_.}
144 cory
/71 GET
,il iy .'- ks -:'_,.j_*lg-
} 5 {F | B
/50, WL LOCARO(sHEFT)
{53 _,ﬂﬁ. ~~'ﬂl
F3% ' /& -"'I
) Lo STUX (1 ""}“,-;
| ::_} i 2 o g)
12 Prné (sHLFTF
'5 ¢ & LT HDi=+ |

BASIC MEMORY MAP

GBUFH _____________________________ 27407
v (LOMEM:)
* SYMBOL TABLE
. NUMERIC VARIABLES
b ARRAY DESCRIPTIONS
*user RAM
*
9 STRING VARIABLES
o T P o el ol i i e i
. TOKENIZED USER
W PROGRAM (HIMEM:)
*
*
*
D]-BOH _____________________________ 53632
STACK
D390H _____________________________ 54160

OPERATING SYSTEM

PLEASE NOTE THAT POKE DOES NOT ALLOW POKING ABOVE
D390H (IN DECIMAL VALUES D390L=54160).

C-16

SHAPE TABLE

A shape table is used to input and file shapes for
use later in high resolution graphics.

Now we're getting complicated. Now you're going
to need a little extra help in the form of a
hexadecimal calculator, or "hex" calculator; or
you can program ADAM to do the calculation. You
will not be able, for all practical purposes, to
figure out hex values for various shapes without
one. Hex values are an easier way to interpret
and represent binary numbers.

Plotting Vectors

It is necessary to plot vectors in order to define
your shape. Each byte (composed of 8 bits) in a
shape definition, is divided into 3 sections.

Each section designates a plotting
vector...whether to move up, down, left, or right,
or whether to plot a point at all. ADAM knows
your shape is finished when it reaches a vector of
eight zeros.

Sec. C Sec. B Sec. A
Bit # 7 6 5 4 3 2 1 0
D D P D D P D D
DD=direction
P=point

IF DD=00 then move up

IF DD=01 then move right
IF DD=11 then move left
IF DD=10 then move down

C-17

IF P=0 then don't plot a point
IF P=1 then plot a point

Note that Section C has no P in it; therefore P=0
is assumed. Section C can only specify a
direction.

00 00 0
Here's a sample shape: 0 0

C @ O

o) @ Q

00 00O

Draw it on a piece of graph paper. Keep one dot
per square. Decide on where to begin your shape.
We chose the center. Draw a path around your
shape with arrows. These arrows are called

plotting vectors.
| §

Y

Next, unwrap the vectors from your shape, and
write them out in a straight line. Be sure to
include the points on the backs of the arrows
which have them,

qDﬂQl‘llGranbﬂpGDDch} - O

vy 0000 Yyvy

Next, transfer these vectors into a table 1like

this one:
vector code

A 000

= 001 or O1 imuve

Y 010or 10 only

- 011 or 11

A 100

o 101 s
Y 110
- 111

:sactiun C B A C B A

byte
0 e 00 010 | | 010 0001 | | 0010 12

TR o o 00 111 111 0011 | | 1111 3F

2 g g 00 100 | | 100 0010 | | 0100 24
3 00 100 | | 100 0010 | | 0100 24

[4 o || O ’ 00 101 101 ’ 0010 | | 1101 . 2D
5 G- || W= 00 101 101 0010 | | 1101 2D
6 Y|l ¥ 00 110 | | 110 0011 | | 0110 | 36

7 Y || Y 00 | | 110| [110 | |oo11| [o110| |36
8 < || =© 00 111 111 0011 | | 1111 l 3F
9

I

i A
this vector cannot
plot or move up;

’ fill with 00 if unused

~Now, another table. Now you need to recode your
 vector information into hexadecimal bytes. Use
the hexadecimal codes listed here:

| CODES

Binary Hexadecimal Decimal

1111 F 15
1110 E 14

1101 D 13
1100 C 12
1011 B 11
1010 A 10
1001 9 9
1000 8 8
0111 7 7
0110 6 6
0101 5 5
0100 4 4
0011 3 3
0010 2 2
0001 1 1
0000 0 0

You're almost done. Convert your data into this
form:

BYTE 0 01 (number of shapes)

C-19

00 (unused)

04 (index to shape def)
00 (index to shape def)
12 (first byte)

3F

24

24

2D

2D

36

36

3F

00 (last byte)

when you input a shape table, it is vital that you
designate a certain memory area for it. (see

HIMEM: and LOMEM:) For example: 10 HIMEM: 51455.

And now, your shape tablel

DOW PO~ U S WNH

c900,01 20 POKE 51456,01
C901,00 30 POKE 51457 ,00
c902,04 40 POKE 51458,04
Cc903,00 50 POKE 51459,00
c904,12 60 POKE 51460,18
C905,3F 70 POKE 51461,63
C906,24 80 POKE 51462,36
C907 ,24 90 POKE 51463,36
C908,2D 100 POKE 51464 ,45
C909,2D 110 POKE 51465,45
C90A,36 120 POKE 51466,54
C90B,36 130 POKE 51467 ,54
C906,3F 140 POKE 51468,63
C90D,00 150 POKE 51469,00

The second column is the one you'll actually be
typing in. The first column 1s the hex values of
the second.

Now, we must tell SmartBASIC where the shape table
is located in memory. This is done using two .
POKES:

160 POKE 16766 ,0

170 POKE 16767 ,201
175 HGR:HCQOLOR=3

180 SCALE=10

190 FOR i=1 to 64
200 ROT=1

210 DRAW 1 AT 125,85
220 XDRAW 1 AT 125,85
230 NEXT

Using BSAVE and BLOAD, you can save memory image
of the shape table. See BSAVE and BLOAD in the
Reference sections for further information.

Here's another way to input the Shape Table:
How to Use a Shape Table

5 HIMEN :51455
10 DATA 01,00,04,00
20 DATA 18,63,36,36
30 DATA 45,45 ,54,54
40 DATA 63,00
50 FOR i = 0 TO 13
60 READ a
70 POKE 51456+i, a
80 NEXT
90 POKE 16766, 0
100 POKE 16767, 201
110 HGR
120 FOR ¢ = 1 TO 15
130 HCOLOR = C
140 FOR i = 0 TO 32
150 ROT = i: SCALE = (i+2)*.9
160 DRAW 1 AT 125, 95
170 NEXT: NEXT
180 GOTO 120

Gorgeous!!
To interrupt this floor show, use CONTROL-C.

Lines 90 and 100 contain the location of the shape
table in memory in a converted form. The table
starts at 51456 decimal. This is C900 hex. The
hex value is separated into two bytes. The least
significant byte is 0 hex or 0 decimal. The most
significant byte is C9 hex or 201 decimal. The
decimal bytes are stored least first, most second.

READ ONLY MEMORY (ROM)

ROM contains the programs which enable ADAM to
understand and act on commands you type in at the
keyboard. Unlike RAM, ROM's contents never change
-- even if the power is turned off. 1It's sort of
like a sleeping person's personality...though it
1s not in evidence while asleep, it still exists,
unchanged.

RANDOM ACCESS MEMORY (RAM)

RAM is a read/write memory. Its contents change
constantly, depending upon which tasks you're
currently using ADAM to perform. RAM works only
as long as the power is on., When you turn ADAM
off, read/write memory data disappears. The
programs in RAM are classified as application
programs,

ADAM comes with 80K RAM. After SmartBASIC
is loaded, approximately 25950 bytes are available
for programs and variables.

If you have the 64K memory expander, see the
owner's manual that comes with it.

FOR EXPERTS ONLX

This program will give you the address
locations where many useful settings and pointers
are stored. Most locations are two byte addresses
with the least significant byte first. This
information requires advanced knowledge not
covered in this manual. Make sure you know what
you are doing before you try to use it,

10 PRINT ¥ Put paper in printer"“: PRINT
20 PRINT * Hit any key when ready.": GET g%
30 PR#1

100 IF PEEK (259) = 205 GOTO 140

120 address = (PEEK(257)+PEEK(258)*256)+54
130 GOTO 150

140 address = PEEK(260)+PEEK(261) *256

150 FOR i = 1 TO 13

160 READ desc$, offset

170 PRINT desc$; " 1s at "; addresst+offset
180 NEXT

190 PR#0: END

200 DATA “Himem setting",0,"Lomem setting",6

210 DATA wpointer to start of numeric values",
10

220 DATA vpointer to end of numeric values“,20

230 DATA “pointer to start of string space",22

240 DATA “pointer to end of string space",26

250 DATA “I,ine number where ONERR will GOTO,37

260 DATA "Speed setting",40

270 DATA “USR function address",41

280 DATA "Floating point accumulator",73

290 DATA “Floating point operand",82

300 DATA “ampersand routine address",43

310 DATA vNumber of significant digits on

output",89

GLOSSARY OF TERMS

ADDRESS - a number used to identify memory
location.

ARGUMENT - the value a function operates on.

ARRAY - a variable collection distinguished
through use of numerical subscripts and referred
to by the same name,

ASCII - acronym for American Standard Code for
Information Interchange. Comprised of numbers
ranging from 0 to 127 which stand for various
keyboard characters or operations.

ASSEMBLY LANGUAGE - a low-level programming
language which is so close to the actual machine

language that ADAM uses internally, that programs
can be executed almost directly because the
computer understands it so well.

BINARY - representing numbers in powers of 2,
using digits 0 and 1.

BINARY FILE - file whose information is still in
"raw" form - not expressed as text.

BIT - a binary digit (0 or 1). The smallest
possible unit of information.

BOOT - starting up ADAM by loading a program into
memory from a digital data pack.

BRANCH - to send program execution to a line out
of program seguence.

BUFFER - a reserved area of memory for special
information manipulation., In a way, it's a
"holding area" for information in transit.

BUG - a programming error.

BYTE - a unit of information composed of 8 bits.
Its value range may be from 0 to 255.

C-24

CHARACTER - any symbol used in displaying or
printing information in a form readable by a human
being (e.g a letter, digit, punctuation mark,
etc.)

CHARACTER CODE - a number used in place of a
character to facilitate processing by ADAM.

COMMAND - a word you type in which directs ADAM to
perform an immediate action.

CONCATENATE - to chain together strings.

CONDITIONAL BRANCH - a branch which depends on the
truth or value of a condition or expression.

DEFAULT - a pre-programmed value, setting, or
action which the computer automatically switches
to when no other specific information has been
given.

DEFERRED EXECUTION - using line numbers when you
type out your program. This postpones program
execution until you type RUN.

DIMENSION - the maximum size allowed to one of the
array subscripts.

DIRECTORY - a listing of all files on your digital
data pack.

DIGITAL DATA PACK DRIVE - the device where you put
your digital data pack 1in order to use ADAM. The
Drive reads the magnetic tape and writes
information onto it, if instructed to do so.

DISPLAY - information exhibited on the screen of a
display device.

DISPLAY DEVICE - anything which exhibits
information visually (e.g. television screen,
monitor, etc.).

EDIT - changes or modifications made to a document
(e.g. insert, delete, replace, move, etc.).

ELEMENT - an individual variable in an array.
C-25

EMBEDDED - something contained within. (e.q.
CELLAR DOOR has an embedded space between the R
and the D).

ERROR CODE - a symbol or number representing a
specific error.

ERROR MESSAGE - a message from ADAM telling you
about a programming error or an execution error.

EXECUTE - to carry out a specified action.

EXPRESSION - a mathematical formula for use in a
program calculation,

FILE - a collection of information sorted under a 1
certain name on your digital data pack.

FUNCTION - a calculation that is pre-programmed tnl
be autﬂmatlcally executed, if requested, at any

point in the program. hll functions consist of a
name followed by parentheses enclosing a number.

For some functions, the actual number you chose is
not important.

GRAPHICS - information presented as pictures or
images.

HARD COPY - computer printout on paper.

HARDWARE - the actual physical components which]
make up ADAM,..circuits, transistors, microchips,
etc,

HEXADECIMAL - number representation in powers of
16, Use digits 0 to 9 and letters A-F.

IMMEDIATE EXECUTION - the execution of a program
line (typed without a line number) as soon as it
is typed and RETURN is pressed. |

INDEX - a number used to identify a member of a
sequential list or table, [

INTEGER - a whole number with no fractional part.

Sy X |

C-26

K or KILOBYTE - 2 to the 10th power, or 1024,
32K=32%*1024=32768,

KEYWORD - a particular word that defines a certain
statement or command (e.g. PRINT, RUN, etc.).

LOGICAL OPERATOR - operators such as AND, OR, and
NOT that combine logical values to produce logical
results.

LOW-LEVEL LANGUAGE - a language that's very close
to the machine language that ADAM's processor can
execute directly.

MACHINE LANGUAGE - the internal language that ADAM
speaks and translates everything into before
executing programs or storing in memory.

MAIN MEMORY - a component in your computer which
stores information for recall later on., See RAM
and ROM.

MICROCOMPUTER - ADAM is a microcomputer, along
with any other computer whose processor is a
microprocessor.

MODE - the state of a computer system which
determines its behavior.

OPERATOR - a symbol which directs that an action
be performed on one or more values to yield a
result.

OS COMMAND - a command which tells ADAM to operate
the digital data pack or other peripheral device,
Cannot be used directly in a program; must be
printed using PRINT and CONTROL-D.

PEEK - allows you to read oply from a location in
ADAM's memory.

PERIPHERAL - at or outside ADAM's boundaries.

PERIPHERAL DEVICE - a device such as a television
screen monitor, printer, or disk drive,

PLOTTING VECTOR - used in shape definition, !
plotting vectors each represent single steps 1n
plotting the points of a shape and deciding on !
which direction to move on the screen,

POKE - used to store information in a specified "
location in ADAM's memory. !

POP - wipes out the top entry from a stack. ‘

PROCESSOR - this is where all computations are
performed. |

PROMPT - a message from ADAM which appears on your
screen to remind you that some action on your part|
is expected before your program can continue.

RADIAN - a measure of angle. There are 2pi
radians in a circle of 360 degrees. One radian
equals approximately 57.2957795 degrees.

RAM MEMORY - Memory whose contents can be accessed
in an arbitrary order.

REAL NUMBER - a number which may include a
fractional part.

RELATIONAL OPERATOR - a symbol which compares two
entities to arrive at a logical result (e.g. < >
(= = = &),

RESERVED WORD - a special word which has a single
purpose in programming, and therefore cannot be
used as a program name, See KEYWORD,

ROM MEMORY - memory whose information can only be
read.

ROUTINE - a piece of your program which performs
some task directly related to accomplishing the
overall task of the main program.

SCROLL - the onscreen shifting of information up

or down in order to make room for other
information appearing at the other end.

-28

SEED - a value used to start a flow of a
repeatable sequence of random numbers.

SHAPE DEFINITION - a coded description of a shape
to be drawn. Used in high resolution graphics.

SHAPE TABLE - a group of shape definitions and
their index numbers.

SHAPE TABLE INDEX - a table of contents of your
shape table which gives you the addresses of where
in memory your shapes are located.

SOFTWARE - programs which determine ADAM's
behavior.

SPACE CHARACTER - press the space bar, and you'll
see one.

STACK - a list where entries are periodically
added and removed at one end only (usually the

top) .

STATEMENT - an instruction in a line of your
program which tells ADAM what to do.

STRING - a sequence of text characters which
conveys information,

SUBROUTINE - a section of your program which can
be executed in an area out of sequence. Control
is returned to the program's regular sequence once
the branch execution is completed.

SYNTAX - the set of rules governing the structure
of programming statements and commands.

SYSTEM - a collection of interrelated parts
assembled to perform some function.

TEXT - information presented in an understandable
form to human beings.

TEXT FILE - a file with information expressed in

text form. Indentified as a file type H or h 1in
the catalog.

C-29

UNCONDITIONAL BRANCH - a branch whose execution
doesn't depend on the truth of a given condition.

USER - what you are when you operate ADAM.

VALUE - information which can be stored as a
variable, string, or number.

(=30

SmartBASIC Variables

smart BASIC has three kinds of variables:
Integer, Floating Point, and String. Integer and
floating point are both numeric. A variable name
can be one or more letters or numbers long, but
the first character must be a letter. Upper and
lower case letters are all converted to lower
case. The variable name can not be exactly the
same as a statement or command word (i.e. plot is
not legal) but the names can contain letters that
are the same as a statement or command word (i.e.

plotter is letgal).

Integer variables are indicated by putting %
after the variable name (LET b%=2). Integer
variables can be as small as -32767 and as large
as 32767. Each integer variable takes up 5 bytes
of memory. Since they take up less room than
floating point variables, they are often used for
arrays. But they have limitations. They can only
be whole numbers. If a decimal number is assigned
to an integer variable, the decimal part is lost
(not rounded).

Floating point variables are the normal
numeric variables. They can be very large or very
small and keep the decimal parts of numbers. Each
floating point variable takes 10 bytes of memory.

String variables are used to store ASCII
characters, including letters, numbers,
punctuation marks, and control characters. String
variables are indicated by putting a $ after the
variable name. Each string variable takes up 8
bytes + 1 byte per character.

Any of these variables can be used as array
variables, and each is recognized separately.
That means that the variables x, x%, xS, x(0),
x3(0), and x$(0) are all different and can stand
for different things.

