— =

ADAM SmartBASIC”

PROGRAMMING MANUAL
REVISED EDITION

. - RS T ———— -—--_Hu...--_-—“ s

WARNING ON CLASS B PRODUCTS

This equipment generates and uses radio frequency
energy and if not installed and used properly,
that is, in strict accordance with the
manufacturer's instructions, may cause
interference to radio and television reception.
It has been type tested and found to comply with
the limits for a Class B computing device in
accordance with the specifications in Subpart J of
Part 15 of FCC Rules, which are designed to
provide reasonable protection against such
interference in a residential installation.
However, there is no guarantee that interference
will not occur in a particular installation. If
this equipment does cause interference to radio or
television reception, which can be determined by
turning the equipment off and on, the user is
encouraged to try to correct the interference by
one or more of the following measures:

Reorient the receiving antenna;

Relocate the computer with respect to

the receiver;

Move the computer away from the

receiver;

Plug the computer into a different

outlet so that computer and receiver are

on different branch circuits.

If necessary, the user should consult the dealer
or an experienced radio/television technician for
additional suggestions. The user may find the
following booklet prepared by the Federal
Communications Commission helpful:
"How to Identify and Resolve Radio/TV
Interference Problems".

This booklet is available from the U.S. Government
Printing Office, Washington, DC 20402. Stock No.
004-000-00345-4

Warning: This equipment has been certified to
comply with the limits for a Class B computing |
device, pursuant to Subpart J of Part 15 of FCC
Rules. Only peripherals (computer input/output
devices, terminals, printers, etc.) certified to
comply with the Class B limits may be attached to
this computer. Operation with non-certified
peripherals is likely to result in interference to|
radio and TV reception.

Use of cables other than the Coleco cables (or |
equivalent) specified in this manual to connect
peripheral equipment like printers, modems or
video monitors will invalidate the Federal |
Communications Commission Certification of your
computer and may cause interference levels
exceeding the limits established by the FCC for |
this equipment,

When using any expansion ports for accessory |
equipment, shielded connecting cable may be
required. Contact the accessory manufacturer for

further details., !

LIMITED NINETY DAY WARRANTY

Coleco warrants to the original consumer purchaser
of its ADAM Family Computer System in the United
States of America and Canada that the product will
be free of defects in material or workmanship for
90 days from the date of purchase under normal
in-house use.

Coleco's sole and exclusive liability for defects
in material and workmanship shall be limited to
repair or replacement at its authorized Coleco
Service Station. This warranty does not obligate
Coleco to bear the cost of transportation charges
in connection with the repair or replacement of
defective parts.

This warranty is invalid if the damage or defect
is caused by accident, act of God, consumer abuse,
unauthorized alteration or repair, vandalism, or
misuse,

Any implied warranties arising out of the sale of
the ADAM Family Computer System including the
implied warranties of merchantability and fitness
for a particular purpose are limited to the above
90 day period. Coleco shall in no event be liable
for incidental, consequential, contingent, or
other damages.

This warranty gives you specific legal rights and
you may have other rights which vary from State to
State. Some states do not allow the exclusion or
limitation of incidental or consequential damages
or limitations on how long an implied warranty
lasts, so the above limitations or exclusions may
not apply to you.

SERVICE POLICY

Please read the Set-Up Manual carefully before
using the product. If your ADAM Family Computer
Systen fails to operate properly, please refer to
the troubleshooting checklist in the Set-Up
Manual, If you cannot correct the malfunction
after consulting the troubleshooting checklist,
please call Customer Service on Coleco's toll-free
hotline: 1-800-842-1225 nationwide. In Canada,
1-800-361-2122. This service is in operation from
8:00 a,m, to 5:00 p.m, Eastern Standard Time,
Monday through Friday. ;

If Customer Service advises you to return your ‘
ADAM Family Computer System, please carry it in or
return the entire system postage prepaid and
insured, in the original box (if possible), with i
your name, address, proof of the date of purchase,
and a brief description of the problem to the
Service Station you have been directed to return l
it to by the toll-free service information. If
your unit is found to be factory defective during
the Limited Warranty period, it will be repaired ‘
or replaced at no cost to you. If the unit is
found to have been consumer damaged or abused and
therefore not covered by the warranty, then you |
will be advised, in advance, of repair costs.

If your computer requires service after expiration
of the Limited Warranty period, please call

Coleco's toll-free service hotline for
instructions on how to proceed: 1-800-842-1225
nationwide. In Canada, 1-800-361-2122.

IMPORTANT: SAVE YOUR RECEIPTS SHOWING DATE OF
PURCHASE

We wish to thank the following Coleco employees
who were instrumental in assembling this manual :

EDITOR:
Barbara Spear
TECHNICAL CONSULTANTS:

Mark Callahan
Michael DeManche

Portions of this manual are an adaptation of The
Secret Guide To Computers written by Russ Walter.

Portions of this manual were written by
Barbara Spear and Michael DeManche.

Table of Contents

LESSON 1: CHATTING WITH ADAM Page 7-30

Your first steps: be bold, how to use the keys,
Errors: cancel a character, correct a mistake,
gripes, bloopers.

Fun: spaces, semicolons, rearranging, GOTO,
conveniences, leaving.

Math: arithmetic, E, range, order, parentheses.

LESSON 2: ADAM THINKS Page 31-53

Variables: numeric variables, when to use
variables, string variables.

Input: string input, numeric input.
Digital Data Packs: SAVE, CATALOG, LOAD
Logic: STOP, colons, IF.

LESSON 3: MASTER YOUR COMPUTER Page 55-88

Helpful hints: reminders, debugging, editing,
pause.

Paired statements: DATA. . .READ, FOR. . . NEXT.
Popular features: random numbers, zones.

LESSON 4: TACKLE THE TOUGH STUFF Page 89-116
Loop techniques: incrementing, decrementing,
counting, summing.

Subscripts: single subscripts, double subscripts,
string arrays, graphics.

APPENDIX A: REFERENCE SECTION
APPENDIX B: ADVANCED REFERENCE SECTION

- APPENDIX C: COMPENDIUM OF USEFUL PROGRAMMING
INFORMATION

THE FOUR LESSONS

This book has been divided into four lessons.

Fach lesson is about 20 pages long, and can easily
be finished in a brief sitting. Reference
information for those who already know BASIC can
be found in appendices A,B, and C.

LESSON 1: CHATTING WITH ADAM

This first lesson explains which buttons to press,
how to make it "go", and trains you to write many
kinds of programs. When you finish this lesson,
you'll know how to make ADAM replace your
typewriter, your photocopier , and your
calculator. How can one computer replace all
those three other machines? You'll know. And
you'll be programming the computer with
confidence.

LESSON 2: ADAM THINKS

This lesson explains how ADAM can think like a
human. The lesson climaxes when you learn how to
make the computer imitate your own personality.
You'll also learn how to make the computer write
clever stories, and print letters admitting you to
Harvard.

Some programmers believe that every concept in the
universe (such as love, hate, politicians, Santa
Claus, and non-dairy coffee creamer) can be
explained by using just five words. The words
are: PRINT, INPUT, GO, END, and IF. When you
finish this lesson, you'll understand those five
magic words.

LESSON 3: MASTER YOUR COMPUTER ‘

After the mind-blowing stuff in Lesson 2, Lesson 3
comes back down to earth. You learn how to make
the computer solve practical problems about debts,
diets, translating French, and other real-world
hang-ups. You get helpful inside hints on how to l
remove errors from programs, so that the programs
work perfectly. You even learn how to make the
computer print boring tables (in case you have a i
boss you'd like to bore).

But don't think Lesson 3 remains totally on l
earth. No way! 1In fact, this lesson contains the
biggest mind-blower of all: ADAM can make its own
decisions, This lesson explains how to tell the
computer to make its own decisions. . . by using
"random numbers”.

You'll learn how to make ADAM play games with you,
so that neither you nor the computer can predict
who'll win!

LESSON 4: TACKLE THE TOUGH STUFF

This lesson will challenge you, s0O you can give
your own brain a whirl. It digs into the toughest
parts of programming: "Loop techniques”,
"subscripts", and graphics. It also shows you how
incredibly powerful your ADAM computer really 1is.
Have fun!

|
|

MODEL PROGRAMS

Each lesson contains six model programs. Here they
are., You don't have to look at them yet. Later,
when you're writing your own programs, you may want
to refer back to these pages for help.

LESSON 1l: CHATTING WITH ADAM

Pripting_ Semicolon
1 PRINT "I LOVE YoU" 1 PRINT "FAT";
2 PRINT "YOU TURN ME ON" 2 PRINT "HER"
The computer prints: The computer
prints FAT and
I LOVE YOU HER on the same
YOU TURN ME ON line:
FATHER
Embedded semicolon Goto
1 PRINT "THIN"; "KING" 10 PRINT "CAT"
20 PRINT "DOG"
The computer prints 30 GOTO 10
THIN and KING on the same
line: The computer
prints CAT and
THINKING DOG repeatedly.
Aritbmetic Order of operations
10 PRINT 1+2 10 PRINT 2+43%*4
The computer The computer starts
computes 1+2 and with 2, then adds three
prints the answer: fours. It prints:

3 14

LESSON 2: ADAM THINKS

Variable
10 X=47

20 PRINT X+2

Since X is 47, line
20 says to print
47+2. The

computer prints:

49

4Dput

10 INPUT "WHAT IS YOUR NAME?";NS$

20 PRINT "YOU HAVE A NICE
NAME, ":NS

Line 10 makes ADAM ask--
WHAT IS YOUR NAME?

then wait for you to
answer; your answer is
called N§. If you answer
ALBERT, line 20 prints:

YOU HAVE A NICE NAME, ALBERT

Colon
10 A=5: B=7: PRINT A+B

The computer prints:

12

Stripg variable
10 G$="DOWN"

20 PRINT GS

Since GS is "DOWN", line
20 prints:

DOWN

Stop l
10 PRINT "BUBBLE"

20 END
30 PRINT "FOX"

The computer
prints just:

BUBBLE

IF !
10 INPUT "ARE YOU

MALE OR

FEMALE? ";AS$S i
20 IF A$="MALE"
THEN PRINT

"SO IS i
FRANKENSTEIN":
END

30 IF A$="FEHALE"‘
THEN PRINT

"SO IS MARY
POPPINS": END

40 PRINT "PLEASE
SAY 'MALE' OR
'FEMALE;": GOTO 1
10

Line 10 asks |
if you're

male or female,
After you answer,]
the computer
prints an
appropriate]
retort.

ILESSOH 3: MASTER YOUR COMPUTER

Data Restore
10 DATA MEAT,POTATOES, 10 DATA MEAT, LETTUCE
POTATOES, LETTUCE , DONE
20 READ AS 20 READ AS$: IF AS="DONE"
30 PRINT AS THEN PRINT "THOSE ARE
40 GOTO 20 MY FAVORITE FOODS":
| RESTORE: GOTO 20
The computer 30 PRINT AS
prints: 40 GOTO 20
|MEAT The computer prints MEAT,
POTATOES POTATOES,LETTUCE and
' LETTUCE THOSE ARE MY FAVORITE
- OUT OF DATA FOODS repeatedly.
For Step
10 FOR I = 1 TO 100 10 FOR I = 10 TO 1 STEP -1
20 PRINT I 20 PRINT I;", ";
I30 NEXT I 30 NEXT I

40 PRINT "BLAST OFF!"
The computer
prints every number The computer prints a
from 1 to 100. rocket countdown:

| 10, 9, 8, 7, 6, 5, 4, 3,

2. 19 BLAST OFF!
Def Fn Comma
10 DEF FN D(N)=INT(1+N*RND(1)) 10 PRINT
20 PRINT FN D(5) "THIN", "KING"
The computer prints The computer
1 or 2 or 3 or 4 or 5. prints THIN in the

first zone, and
KING 1n the
second:

THIN KING

(h] |

LESSON 4: TACKLE THE TOUGH STUFF

Ipcrementing
10 A=5

20 A=3+A

30 PRINT A

Line 20 means: the
new A is 3 plus

the old A. So the
new A 1s 3+5. Line
30 prints:

g
Summing
10 S=0

20 PRINT "NOW THE SUM IS";S
30 INPUT "WHAT NUMBER DO YOU
WANT ADDED INTO THE

40 S=S+X
5G GOTO 20

The computer imitates

an adding machine

B&iﬂ
DIM x(3)

30 FOR I = 1 TO 3
40 READ X(I)

50 PRINT X(I)

60 NEXT I

Line 10 says X is a
list of 3 numbers.

57.2
-8 +3
476

Counting
10 C=3

20 PRINT C
30 C=C+1
40 GOTO 20

The computer counts,
starting at 3. It prints:

3-'" 4[5; 6’ Etcl

()

SUM? ";X

Line
30 reads them from the
data. Line 50 prints

5&h§szzp§ﬂ_
DIM X(3)
20 X(1)=57.2
30 X(2)=-8.3
40 X(3)=476
50 PRINT X(1)
60 PRINT X(2)
70 PRINT X(3)

Line 10 says X
is a list of.
3 numbers.

Lines 20-40

define them,

LLines 50-70

prints them:

BV ok

-8.3

476

Dﬂﬂhlﬂuﬂﬂhﬂﬁliﬂlﬂ

DIM X(3,2)

20 X(1,1)=57

30 X(1,2)=8.4

40 X(2,1)=-6

50 X(2,2)=1000
60 X(3,1)=0

70 X(3,2)=7.77
80 PRINT X(1,1)
90 PRINT X(1,2)
etc.

Line 10 says X
is a table with
3 rows and 2
columns. Lines
20-70 tell which
numbers are in
the table. Line
80 etc. prints
the table,

LESSON 1
CHATTING WITH ADAM

Be Bold

In science fiction, computers blow up. In real
life, they never do. No matter what buttons you
press, no matter what commands you give, you won't
hurt the computer. ADAM is invincible! So go ahead
and experiment. If it doesn't like what you say, it
will gripe at you, but so what? You wanted a
computer that talks to you, right?

Furthermore, anyone is bound to make a mistake when
they first use their computer. Fortunately, ADAM
tells you before you've gone too far, and often
tells you exactly what you've done wrong. So,
whenever you have trouble, laugh about it, and say,
"Oh boy! Here we go againl!" Then get some help.

If you have friends that work with computers or know
of a user group, ask them for help. They'll gladly
answer your questions, because they like to show
off, and because the way they got to know the
answers was by asking. Computer folks like to
explain computers, so play along with the computer
people, boost their egos, and they'll help you,

too. Above all, assert yourself, and ask

questions. "Shy quys finish last."

Wwhen dealing with the computer and the people who
surround it, be friendly but also aggressive. 1If
you're taking a computer course, be sure you get
your money's worth and ask your teacher and
coworkers questions, questions, questions!

If you're using ADAM on a personal basis and find
you need help, you can always call us at the number
listed in and the SERVICE POLICY SECTION.

Your town probably has a "computer club". (To find
out, ask the local schools and computer stores.)
Join the club, and make an announcement that you'd
like help with your computer. Probably some
computer hobbyist will help you.

How To Use The Keyboard

This section outlines the uses of the keys.

Numbers

The top row of keys contains the numbers. Don't -
confuse the number one with the letter 1l; the number
l is in the top row. Don't confuse zero with the
letter O0; the number zero is in the top row, and
will appear on your Keyboard and screen with a slash
through it. E

The SHIFT Kkey

One of your keys has the number four with a dollar
sign above it. If you press this key, you'll type a
4, But, if you hold down the SHIFT key, and then
press the key with the 4 and the dellar sign, you'll
find that you're typing the dollar sign this time.

Here's the general rule: if a key has two symbols
on it, and you want to type the top symbol, hold
down the SHIFT key. On a single symbol key, hold
the shift key down to get a capital letter.

About the SHIFT key. . . beginners often make two ‘
boo-boos. The first boo-boo is to forget to press
it when you want an upper character on a key. The
other boo-boo is to try to hit the SHIFT key and l
another key at exactly the same time, You can't do
it; it's impossible; you'll wind up hitting one key
before the other. The trick is to hold down the I
SHIFT key first; and while you keep holding it down,
give the other key a light tap. ADAM also has a
LOCK key. Each time the LOCK key is pressed, it |

switches between upper and lower case characters.

"The RETURN key

The most important key is the RETURN key. Press the
RETURN key at the end of every line you type. The
RETURN key makes the computer read what you typed.
The computer ignores what you type until you press
the RETURN key. If you forget to press the RETURN
key at the end of the line, the computer doesn't
read what you typed, and so the computer doesn't do

anything, and you wonder why the computer seems
broken.

Loading SmartBASIC

After you've stared at the keyboard, you really
should get into SmartBASIC, Here's how:

® Turn the computer on,

¢ Place SmartBASIC digital data pack
into Drive.

® Hit the reset key.
* wait for several seconds.

The computer will print a bracket on
the screen "]", as well as "Coleco
SmartBASIC VI.0 at the top of the
screen. You are now ready to begin
talking to your computer.

NOTE: Do not turn the computer on or off with a
digital data pack in the drive.

Programming

Now that you've gotten into SmartBASIC, you're
ready to program the computer!

The bracket on the left side of your screen means
that ADAM is waiting for a command. Don't type a
command until you see the bracket and the blinking

cursor. Programming the computer consists of
three steps.

9

Step l: _type the word NEW, That tells the .
computer you're going to invent a new program and

to forget your old program. After you type the
word NEW, press the RETURN key. The computer will‘
print a bracket on the screen.

Step 2: _type your program_ A program is a list 1.'
of numbered commands. You can program ADAM in all

upper case, upper and lower, or all lower case;
it's your choice. For example, suppose you want :
the computer to say:

I love you

You turn me on
Let's get married |

Type this program:

1 PRINT "I love you" ‘
2 PRINT "You turn me on"
3 PRINT "Let's get married" |

Every line of the program must be numbered; you
must type those numbers. Every line of the above ‘
program must say PRINT; you must type the word
PRINT. Every line of the above program must have
guotation marks; you must type the quotation 1
marks., At the end of each line, press the RETURN
KEY.

Step 3: _type the word LIST. That tells the

computer to print your program on the screen so
you can check to see if you've typed the program
the way you wanted to.

If you type your program out in lower case, and
LIST it, you'll find that ADAM converted it to
upper case automatically. The only time ADAM will
not convert to upper case automatically is if your
lower case material is the name of a variable or
within quotes in a PRINT statement. Upper case
and lower case variable names many look different
to you, but ADAM sees them as the same,

Step 4: _type the word RUN. That tells the
computer to look at the program you've written,

and run through it. After you type the word RUN,
10

|press the RETURN key. The computer will print
everything you said. It will print:

\ I LOVE YOU
YOU TURN ME ON
LET'S GET MARRIED

Then the computer will print a bracket on the
screen.

Afterwards, you can feed the computer another
program, by going through the three steps again:
type the word NEW, type the program, and type the
word RUN. Remember to press the RETURN key at the
end of each line.

Those three steps are all you have to know about
programming! Go ahead, and write some programs!
Try it; you'll have lots of fun! A person who
writes programs is called a programmer.
Congratulations: you're a programmer!

Please note that, as they stand, the sample
programs in this book, will not print out on your
printer. Unless you type in the instruction to do
80, they will appear on your screen only. To
print them out, use the command PR#l. When you
are all through printing, use the command PR#0 to
send your output back to the screen. For more
information on PR#, see the Reference Section at
the back of this book (Appendix Aa).

Multiple Copies

Suppose you want to make multiple copies of this
poem :

SPRING HAS SPRUNG.
THE GRASS HAS RIZ.
I WONDER WHERE
THE FLOWERS 1IS.

L]

First, turn the poem into a program, by typing:

NEW

1 PRINT "SPRING HAS SPRUNG."
2 PRINT "THE GRASS HAS RIZ."
3 PRINT "I WONDER WHERE"

4 PRINT "THE FLOWERS IS."

Then type the word RUN (and press the RETURN
key). The computer will print the poem., If you
type the word RUN again, the computer will print
the poem again. Each time you type the word RUN,
the computer will print the poem. So to print
many copies of the poem, first, turn on the
printer with PR#l. Then type the word RUN many
times, like this:

You type: RUN

The computer types: SPRING HAS
SPRUNG.
THE GRASS HAS
RIZ,.

I WONDER WHERE
THE FLOWERS 1I8S.

You type: RUN

The computer types: SPRING HAS
SPRUNG.
THE GRASS HAS
RIZ.

I WONDER WHERE
THE FLOWERS 1IS.

You type: RUN

The computer types: SPRING HAS
SPRUNG.
etc.

If you despise poetry and all other forms of art,
don't despair; by using the same technique, you
can make the computer type many copies of your
favorite flubbed-up business letter.

12

EDITING
How To Correct a Mistake

If you make a mistake, you can correct it in many
ways:

If_vou_potice the migtake before you pIeSS the
RETURN _key, use the BACKSPACE key or left arrow to

move the cursor under your mistake. Retype the
line from that point.

1f_vou mess_up_the whole program, rewrite it, by
typing the word NEW and then starting from the

beginning again.

If you mess up_a line, retype it underneath. For
example, suppose you type--—

1 PRIMT "I LOVE YOU"

and after you hit the RETURN key, you notice that
you misspelled the word PRINT. Just retype the
line, so your screen or paper looks like this:

1 PRINT "I LOVE YOU"

ADAM will tell you about the error by saying
ILLEGAL COMMAND. Here's another example. . .
Suppose you type:

1 PRINT "I LIKE COFFEE"

2 PRINT "I LIKE TEE"

3 PRINT "I LIKE THE GIRLS"

4 PRINT "AND THE GIRLS LIKE ME"

and then you notice you misspelled the word TEA in
line 2. Underneath the program, retype that line,
so your screen or paper looks like this:

PRINT "I LIKE COFFEE"

PRINT "I LIKE TEE"

PRINT "I LIKE THE GIRLS"
PRINT "AND THE GIRLS LIKE ME"
PRINT "I LIKE TEA"

B B L DO

13

| | ‘i a4]
onscreen editing capabilities. (Note: the
SnartWRITER editing commands do not work 1in
SnartBASIC.) To use onscreen editing, type "LIST"
followed by the number of the line you want to
change, then press RETURN. Use the arrow keys to
move to the beginning of the line., Use the right
arrow key to move the cursor to your mistake.

Type your correction. When the line is the way
you want it, use the right arrow key to move past
the last character. Press RETURN, then check to

see if the computer accepted the changes.

To make you life easier, there are control

characters that can help you make changes and
corrections to your program. While holding the
CONTROL key down, press the appropriate Kkey.

CONTROL: X "Forgets" the line of
characters being typed

CONTROL L Clears the screen

QONTROL: O Deletes the character directly
above the cursor

CONTROL H Backspaces over characters
without deleting them

CONTROL N Inserts spaces to the left of
the cursor

QONTRCOL P Sends all printable characters
from the screen to the printer
and prints them

QONTROL =—Passes over letters without
“forgetting" them

CONTR(L,—=Passes over letters without
“remembering” them

Using the QONTR(OL key in combination with the

arrow keys can make inserting easier when the line
is full.

14

How_to _Delete a Line:

To delete a single line, type the line number
followed by RETURN,

To delete more than one line, see the DEL command
in the Reference Section,

GRIPES

If the computer gripes, don't worry: just correct
your mistake. For example, suppose you type:

1 PRIMT "ROSES ARE RED"
ADAM will gripe at you:

ILLEGAL COMMAND
and a caret (") will appear to point out where in
the line your error lies.

Your next job is to correct your error. To do
that, just retype line 1 correctly.

You type this (error): 1 PRIMT "ROSES
ARE RED"

The computer gripes at you: ILLEGAL COMMAND

You type this correction 1 PRINT "ROSES
ARE RED"

along with the rest of the poem: 2 PRINT "CABBAGE
IS GREEN"
3 PRINT "MY FACE
IS FUNNY"
4 PRINT "BUT
YOURS IS A
SCREAM"
RUN

The computer recites: ROSES ARE RED
CABBAGE IS GREEN
MY FACE IS FUNNY
BUT YOURS IS A
SCREAM

Common Bloopers

If you're like most beginners, you'll make these
mistakes:

You type the letter O instead of zero, or tvpe

zero_ipstead of the letter O. Your typing looks
correct to you, but the computer gripes.

You type the letter 1 instead of thbe number one,

You type something (such as RUN), but you forget
to press the RETURN key afterwards. So the
computer keeps waiting for you to press it. Since
the computer isn't replying, and since you don't
realize the computer is waiting for you, you think
the computer is broken.

You start typing a new program, but forget to type

the word NEW. So when you type RUN, the computer
runs a mish-mash of the new program with the

previous program, and reprints some messages from
the previous program,

Quotation marks

You must put quotation marks around a data string,
if the string contains a comma or a colon.

As a general rule of thumb--when in doubt, or
whenever a data statement doesn't seem to be
working, insert quotation marks. They can't hurt.

Spaces

1 PRINT "Joy"

2 PRINT

3 PRINT "SORROW"
Line 1 makes the computer print JOY. Line 2 makes;
the computer print a blank line, underneath JOY.
Altogether, the computer will print:

JOY

SORROW

| 3

You have the ability to compose and print out
letters in both SmartWRITER and SmartBASIC modes.
Here's how to do it in SmartBASIC:

DEAR JOAN,

THANK YOU FOR THE BEAUTIFUL
NECKTIE. JUST ONE PROBLEM--
I HATE NECKTIES!
LOVE,
TURTLENECE-FRED

This program prints it:

1 PRINT "DEAR JOAN, "

2 PRINT

3 PRINT "THANK YOU FOR THE BEAUTIFUL"
4 PRINT. "NECKTIE. JUST ONE PROBLEM--"
5 PRINT "I HATE NECKTIES!"

6 PRINT " LOVE, "

7 PRINT " TURTLENECK-FRED"

In the program, each line (except line 2) must
contain two guotation marks. To make the computer
indent a line, put blank spaces after the first
quotation mark,

Semicolons

1 PRINT "FAT";
2 PRINT "HER"

Line 1 makes the computer print FAT; and line 1
ends with a semicolon. The semicolon makes the
computer print the next item on the same line with
no spaces between the items; so the computer will
print HER next to FAT, like this:

FATHER

This program shows how an underweight
philosophical king spends his time:

1 PRINT "THIN"; "KING"

The computer will print THIN, and will print KING
on the same line, like this:

THINKING

Rearranging Your Program

You don't have to type your program in order. For
example, suppose you type:

2 PRINT "LOOKING"
1 PRINT "HERE'S"
4 PRINT "YOU,"

3 PRINT "AT"

5 PRINT "KID"

In its mind, the computer automatically rearranges
the program, so the numbers are in increasing
order, like this:

1 PRINT "HERE'S"
2 PRINT "LOOKING"
3 PRINT "AT"

4 PRINT "YOU, "

5 PRINT "KID"

To find out what's in the computer's mind, type
the word LIST. Example:

PRINT "LOOKING"
PRINT "HERE'S"
PRINT "YOU,"
PRINT "AT"
PRINT "KID"

You type this program:

c U L s =

You type this command: IST

16

The computer types the
program in increasing order: PRINT "HERE'S"
PRINT "LOOKING"
PRINT "AT"
PRINT "YOU,"

PRINT "KID"

s W=

If you type RUN, the computer will print:

'HERE'S
LOOKING
AT
YOU,
KID

'Whenever you're confused, type the word LIST.
Then the computer will tell you what's in its
mind; and what's in its mind might surprise you!

‘Sore Feet
Type this, and see what happens:

 NEW

' 10 PRINT "MY"

90 PRINT "TRUCK"

.32 PRINT "SNEEZE"

| 50 PRINT "TOE"

32 PRINT "NEED A"

70

80 PRINT "HAT"

80
20 PRINT "SORE FEET"
l

Since you typed two versions of line 32, the
, computer assumes the second is a correction. So
| the computer assumes that line 32 says PRINT "NEED

A“-

|
| Since you typed nothing in line 70, the computer
ignores line 70,

=Since you typed two versions of line 80, the
computer assumes the second is a correction.
Since the second says nothing, the computer
Iassumes you want line 80 erased.

In its mind, the computer rearranges the program, !
so the numbers are in increasing order. If you
type LIST, the computer will type:

10 PRINT "MY"

20 PRINT "SORE FEET" ;
32 PRINT "NEED A" §
50 PRINT "TOE"
90 PRINT "TRUCK"

-

L
If you type RUN, the computer will print:

-
MY I
SORE FEET
NEED A -
TOE I
TRUCK

-
If you think about that example, you'll notice two §
things:

To revise a line, just retype it.

1
To erase line 80, just type-- i
80

with nothing else on the line,

The word NEW erases your program from the
computer's mind, to make way for a new one. But I
the word RUN does not erase the program; after the
run, you can continue inserting, deleting, and
revising lines. i

Use tens i
If your first line is numbered 1, and your second
line is numbered 2, you can't squeeze a line
between them, since decimals aren't allowed. §So i

expert programmers number their lines 10, 20, 30,
40, . . . instead of 1, 2, 3,... i

§

20 .

GOTO

This program makes the computer go crazy:

10 PRINT "CAT"
20 PRINT "DOG"
30 GOTO 10

Line 10 makes the computer print CAT. Line 20
makes it print DOG. Line 30 makes it go back to
line 10 again, so it prints DOG again, and comes
back to line 30 again, which makes it go back to
line 10 again, print CAT and DOG again, then jump
back again. . . the computer will print the words
CAT and DOG again and again, like this:

CAT
DOG
CAT
DOG
CAT
DOG
CAT
DOG
etc.

If you use the PR#1 command, the computer will try
to print on your printer the words CAT and DOG
again and again, forever, Try running that
program; you'll have fun watching the computer go
crazy. On your screen, you'll see that the
computer is printing the words CAT and DOG at the
same time the printer is.

To stop this madness, you must give the computer
some sort of a jolt that will put it out of its
misery. This is called aborting your program.
Here's how:

Hold down the CONTROL key; and tap the C key.

or, if ADAM is waiting for input from you when you
decide to abort, hold down the CONTROL key, tap
the C, and press RETURN.

Here's a picture of that program: -

30 GOTO 10

| i

10 PRINT "CAT"
20 PRINT "DOG" |

The computer follows the arrows, which make it go
round and round in a loop. Since the computer]
will try to go round and round the loop forever,
the loop is called infinite. The only way to stop
an infinite loop is to abort the program. i

In that program, you typed just three lines; but
since the third line said to GOTO the beginning, I
the computer does an infinite loop. By saying
GOTO, you can make the computer do an infinite
amount of work. Moral: the computer can turn a i
finite amount of human energy into an infinite
amount of good. Putting it another way: the 1
computer can multiply your abilities by infinity. |

For example, suppose you want to send this poem to
all your friends: |

I'M HAVING TROUBLE

WITH MY NOSE. |
THE ONLY THING IT DOES IS:

BLOWS !

Just run this program:

10 PRINT "I'M HAVING TROUBLE" |
20 PRINT "WITH MY NOSE."

30 PRINT "THE ONLY THING IT DOES IS:"

40 PRINT "BLOWS!" |
50 PRINT

60 GOTO 10

Lines 10-40 print the poem. Line 50 prints a
blank line at the end of the poem. Line 60 makes
the computer do all that repeatedly; the computer |
will print:

e

| I'M HAVING TROUBLE

WITH MY NOSE.

THE ONLY THING IT DOES IS:
| BLOWS |

I'M HAVING TROUBLE

| WITH MY NOSE.
THE ONLY THING IT DOES IS:
BLOWS !

I'M HAVING TROUBLE

WITH MY NOSE.
| THE ONLY THING IT DOES IS:
BLOWS !

ietc.

The computer will print infinitely many
copies--unless you abort your program.

Love

This program's for lovers:

| 10 PRINT "LOVE"
20 GOTO 10

lThe computer will print LOVE repeatedly, like
this:

| LOVE
LOVE
LOVE
| LOVE
LOVE
LOVE
| LOVE
LOVE
LOVE
letc.

To have more lovely fun, put a semicolon at the
) end of line 10, like this:

10 PRINT "LOVE";
| 20 GOTO 10

The semicolon makes the computer print LOVE next
to LOVE:

LOVELOVELOVELOVELOVELOVELOV ELOVELOVELOVELOV ELOVEL
ELOVELOVELOVELOV ELOVELOV ELOVELOV ELOV ELOV ELOVELOVEL
VELOVELOVELOVELOVELOVELOV ELOVELOV ELOV ELOV ELOV ELOV
OVELOVELOVELOVELOVEetc,

Instead of making the computer print LOVE, try
making it print an advertisement (such as BUY
JOE'S VEGETABLES), or a political slogan (such as
STOP POLLUTION), or your name, or something else
that makes you feel emotional. ADAM, like a dog,
imitates the personality of its master,

Computer torture

This program tortures the computer:

10 GOTO 10

Line 10 tells the computer to go to line 10, whichi
tells the computer to go to line 10, which tells
the computer to go to line 10. . . The computer @
will do line 10 again and again, forever. 1In
other words, the computer will spend its entire
life just mumbling to itself. That program has §
turned your beautiful computer into a bumbling
idiot, If you're mean enough to type that progra
into your computer, please have the mercy to abnrti
it after awhile. Otherwise, a member of the
Association for Prevention of Cruelty to ADAM

-
Family Computers will come and repossess your -
fingers,
Human torture :
A program that makes the computer do the same -

thing again and again forever is an infinite

loop. Some humans act just like computers. These
humans do the same thing again and again, every
day. Their lives are sheer drudgery. They are i
caught in an infinite loop.

Kiss and tell
Here's a poor, innocent program:

10 PRINT "YOUR SISTER"
20 PRINT "DISLIKES ANYONE WHO"
30 PRINT "KISSES AND TELLS"

It makes the computer print:

YOUR SISTER
DISLIKES ANYONE WHO
KISSES AND TELLS

To make the program more diabolical, insert line
15, by typing it at the bottom of your program and
LISTing the program out to see your line
re-shuffled into the correct position.

10 PRINT "YOUR SISTER"

15 GOTO 30

20 PRINT "DISLIKES ANYONE WHO"
30 PRINT "KISSES AND TELLS"

The computer does line 10, which prints YOUR
SISTER. Then it does line 15, which makes it skip
ahead to line 30, which prints KISSES AND TELLS.
So altogether, the computer prints:

YOUR SISTER
KISSES AND TELLS

In that program, line 15 made the computer skip
ahead to line 30; in other words, it made the
computer skip over line 20,

Conveniences

Here's a short-cut you should know about, You can
get your computer to PRINT without placing a line
number in front of the words:

PRINT "I LOVE YOU"
When you press the RETURN key at the end of that
line, the computer will immediately print I LOVE

YOU. You don't have to type the word RUN. This
short-cut is called immediate mode,

Leaving the Computer
When you're finished using your computer and want
to walk away, here's what to do. . .OPEN THE DOOR

TO YOUR DITIGAL DATA PACK DRIVE AND TURN
EVERYTHING OFF. Now wasn't that easy?

Arithmetic

Let's try to make the computer print the answer to
2+2. (and let's hope that the computer says 4.)
Run this program:

10 PRINT 2+2

The computer prints:

4

If you want to subtract 2 from 9, run this
program:

10 PRINT 9-2
The computer will print:

7

20

You can use decimal points and negative numbers.
For example, if you run this program:

10 PRINT -26.3+1
the computer will print:
=25.3

To multiply, use an asterisk, To multiply 2 by 6,
run this program:

10 PRINT 2%*6
The computer will print:

12

Jo_divide, use _the slash beneath the guestion
mark, So to divide 8 by 4, run this program:

10 PRINT 8/4
The computer will print:

2

o_not put commas in large numbers, To write four
million, do not write 4,000,000; instead write

4000000.

E Notation

If the computer types a number with an E, the E
means: move the decimal point. For example,
suppose the computer says the answer to a problem
153

8.51673E9

The E means: move the decimal point. 1In fact,
the E9 means: move the decimal point 9 places to
the right. So look at 8.51673, and move the
decimal point 9 places to the right. You get
8516730000, So when the computer says the answer
is 8.51673E9, the computer really means the answer

—_

27

is 8516730000 approximately. (The exact answer
might be 8516730000.2, or 8516730001.79, or some
similar number; what the computer tells you is
just an approximation.)

Suppose your computer says the answer to a problem.
is:

9.26E-4

After the E, the minus sign means: move the
decimal point to the left. So, the E-4 means:
move the decimal point 4 places to the left. So
look at 9.26, and move the decimal point 4 places
to the left. You'll get:

.000926

You won't have to worry much about E notation; the.
computer uses it only if an answer is very, very
large or very small. (ADAM uses E notation only

if the answer is bigger than 999999999 or tinier
than .01.) But when the computer does use E
notation, remember to move the decimal point!

Range

{
The highest number ADAM can handle is 1E38 (which
is 1 followed by 38 zeros, which is .
100000000000000000000000000000000000000. If you =
try to go much higher, the computer will say
OVERFLOW ERROR. :

l
The tiniest decimal the computer can handle is
2E-39, which is a decimal point followed by 39 '
digits, 38 of which are zeros, like this: |
.000000000000000000000000000000000000002. If you
try to go much tinier, the computer will "fake"
the answer: it will give zero instead of the I
correct answer.

i

i

I Order of Operations

. What does "2 plus 3 times 4" mean? The answer
l depends on who you ask.

To a businessman, it might mean "start with 2 plus

3, then multiply by 4"; that makes 5 times 4,

which is 20. But to ADAM, "2 plus 3 times 4"

means something different: it means "2 plus three
I fours", which is 2+4+4+4, which is 14.

’ If you run this program:
10 PRINT 2+3%*4

F the computer will think you mean "2 plus three
fours", so it will do 2+4+4+4, and will print this
answer:

14

The computer will not print the businessman's
answer, which is 20.

ADAM follows this rule: do multiplication and
division before addition and subtraction. So when
your computer sees 2+3*4, it begins by hunting for
multiplication and division. It finds the
multiplication sign between the 3 and the 4, so it
multiplies the 3 by the 4 and gets 12, like this:

2+3%4
12

So the problem becomes 2+12, which is 14, which is
the answer the computer prints.

For another example, suppose you run this program:
10 PRINT 10-2%*3+72/9%*5

The computer begins by doing all the
multiplications and divisions. So it does 2%*3

(which is 6), and does 72/9*5 (which is 8*5, which
is 40), like this:

10-2%3472/9*5
6 40 s

So the problem becomes 10-6+40, which is 44, which
1s the answer the computer prints.

Parentheses

You can use parentheses to change the order by
which ADAM does arithmetic. For example, 5*%(1+1)
means 5*2, which is 10. You can put parentheses

inside parentheses: 10-(5*(1+1)) means 10-(5*2),
which is 10-10, which is 0.

J
|

30

LESSON 2

ADAM THINKS

Numeric Variables

A letter can stand for a number, For example, X
can stand for the number 47, as in this program:

10 X=47
20 PRINT X+2

Line 10 says X stands for the number 47. In other
words, X is a name for the number 47. Line 20
says to print X+42; since X is 47, X+2 1is 49; so
the computer will print 49. That's the only
number the computer will print; it will not print
47.

A letter that stands for a number is called a
numeric variable. A variable name can be up to
121 letters or numbers, but ADAM only pays
attention to the first two. Therefore, APPLE and
APE would be understood by ADAM to be the same
variable, A variable name must begin with a
letter, not a number, Commands and statements
cannot be used as variable names. In that
program, X is a numeric variable; it stands for
the number 47. The value of X is 47. Line 10 is
called an assignment statement, because it assigns
47 to X,

You may use the statement LET if you like, or just
leave it off. Wwith ADAM, the use of LET is
optional.

LET X=47

or

X=47

Further examples:

10 Y=38
20 PRINT Y-2

Line 10 says Y is a numeric variable that stands
31

for the number 38. Line 20 says to print Y-2;
since Y is 38, Y-2 is 36; so the computer will
print 36.

10 B=8
20 PRINT B*3

Line 10 says B is B. Line 20 says to print B*3,
which is
8*%3, which is 24; so the computer will print 24,

One variable can define another:

10 M=6
20 P=M+1
30 PRINT M*P

Line 10 says M is 6. Line 20 says P is M+l, which
is 6+1, which is 7; so P is 7. Line 30 says to
print M*P, which is 42; so the computer will print
42,

A value can change:

10 F=4
20 F=9
30 PRINT F*2

Line 10 says F's value is 4. Line 20 changes F's
value to 9, so line 30 prints 18.

On the left side of the equal sign, you are only
allowed to have one variable:

P=M+2 (CORRECT) P-M=2 (WRONG) 2=P-M (WRONG)

The variable on the left side of the equation is
the only one that changes. For example: the
statement P=M+1l changes the value of P but not of

M. The statement A=B changes the value of A but
not B:

10 A=1
20 B=7
30 A=B
40 PRINT A+B

32

Line 30 changes A, to make it equal to B; so A
becomes 7. Since both A and B are now 7, line 40
prints 14,

"A=B" has a different effect than "B=A"., That's
because "A=B changes the value of A but not of B;
"B=A" changes the value of B but not of A.
Compare these programs:

10 A=1 10 A=1
20 B=7 20 B=7
30 A=B 30 B=A
40 PRINT A+B 40 PRINT A+B

In the left program (which you saw before), line
30 changes A to 7, so both A and B are 7; line 40
prints 14. 1In the right program, line 30 changes
B.to 1, so both A and B are 1; line 40 prints 2.

If you don't asign a value to a numeric variable,
the computer assumes it's zero:

10 PRINT R

Since R hasn't had a value assigned, the computer
prints zero.

The computer doesn't look ahead:

10 PRINT J
20 J=5

When the computer encounters line 10, it doesn't
look ahead to find out what J is. As of line 10,
J is still unassigned, so the computer prints
Zero,

33

When To Use Variables ‘
When should you use variables? Here's a practical
example....

Suppose you're selling something that costs :
$1297.43, and you want to do these calculations: |

multiply $1297.43 by 2
multiply $1297.43 by .05 |
add $1297 .43 to $483.19

divide $1297.43 by 37

subtract $1297.43 from $8598.61 |
multiply $1297.43 by 28.7

To do these six calculations, you could run this I
program:

10 PRINT 1297.43*2, 1297.43%.05, 1297.43+483,19,
20 PRINT 1297.43/37, 8598.61-1297.43, 1297.43*28.7

But that program's silly, since it contains the
number 1297.43 six times. This program's briefer,
because it uses a variable:

10 C=1297.43
20 PRINT C*2, C*.05, C+483.19, C/37, 8598.61-C,

So whenever you need to use a number several
times, turn the number into a variable; it will
make your program briefer.

String Variables

A string is any collection of characters, such as
"I LOVE YOU"™ or "76 TROMBONES" or "GO AWAY" or
"XYPW EXR ///746".

Each string must be in quotation marks.

A letter can stand for a string--if you put a
dollar sign after the letter. Example:

10 GS="DOWN"
15 PRINT

20 PRINT GS
34

Line 10 says G$ stands for the string "DOWN".
Line 20 prints:

DOWN

In that program, G$ is a variable. Since it
stands for a string, it's called a string
variable. Every string variable must end with a
dollar sign; the dollar sign is supposed to remind
you of a fancy S which stands for String.

If you're paranoid, you'll love this program:

10 LS="THEY'RE LAUGHING AT YOU"
20 PRINT LS
30 PRINT LS
40 PRINT LS

Line 10 says L$ stands for the string THEY'RE
LAUGHING AT YOU. Lines 20, 30, and 40 make the
computer print:

THEY'RE LAUGHING AT YOU
THEY'RE LAUGHING AT YOU
THEY'RE LAUGHING AT YOU

The computer can recite nursery rhymes:

10 HS="HICKORY, DICKORY, DOCK!"
20 MS="THE MOUSE"

30 C$="THE CLOCK"

40 PRINT HS

50 PRINT MS$;"™ RAN UP ";CS$

60 PRINT C$;" STRUCK ONE"

70 PRINT MS;" RAN DOWN"

80 PRINT HS

Lines 10-30 assign characters to H$,M$, and CS.
Lines 40-80 make the computer print:

HICKORY, DICKORY, DOCK!
THE MOUSE RAN UP THE CLOCK
THE CLOCK STRUCK ONE

THE MOUSE RAN DOWN
HICKORY, DICKORY, DOCK!

30

If you don't assign characters to a string
variable, the computer assumes it's blank.

10 PRINT FS$

Since nothing has been assigned to F$, line 10
makes the computer print a line that says nothing;
the line printed will be blank.

String Input

Humans ask questions. So if you want to make the
computer work like a human, you must make it ask
questions, too. To make the computer ask a
question, use the word INPUT. This program makes
the computer ask for your name:

10 INPUT "WHAT IS YOUR NAME? ";NS$
15 PRINT
20 PRINT "YOU HAVE A NICE NAME, ";N$

Line 10 makes the computer ask WHAT IS YOUR NAME?
and then wait for you to answer. Your answer will
be called N$. For example, if you answer ALBERT,
then N$ is ALBERT. Line 20 makes the computer
print: (Be sure to hit the RETURN key to let ADAM
know you have finished your input.)

YOU HAVE A NICE NAME, ALBERT
Here's the whole conversation:

(In these lessons, words to be typed in by you
will be in bold print.)

You tell ADAM to run: RUN

ADAM asks for your name: WHAT IS YOUR
NAME? ALBERT

ADAM comments: YOU HAVE A NICE

NAME, ALBERT

If you try that example, be careful! When you
type in line 10, which says INPUT, make sure you
type the two quotation marks and the semicolon and
the question mark. If you have a string of
variables following INPUT, then the question mark

36

| will automatically be inserted for you. But if
you have a string within quotes, it will not.

LIf you wish, run that program again and pretend
you're somebody else:

| You tell ADAM to run: RUN
ADAM asks for your name: WHAT IS YOUR
NAME? MARK
' ADAM comments: YOU HAVE A NICE
NAME, MARK

College admissions

' This program prints a letter admitting you to the
college of your choice,

10 INPUT "WHICH COLLEGE WOULD YOU LIKE TO ATTEND?
"3C$

16 PRINT

17 PRINT

18 PRINT

20 PRINT "CONGRATULATIONS!"

25 PRINT

30 PRINT "YOU HAVE JUST BEEN ADMITTED TO ";C$
40 PRINT "IT FITS YOUR PERSONALITY"

50 PRINT "I HOPE YOU ATTEND ";CS$

55 PRINT

56 PRINT

60 PRINT " RESPECTFULLY YOQURS"

61 PRINT

62 PRINT

63 PRINT

70 PRINT " THE DEAN OF ADMISSIONS"

Line 10 makes the computer ask WHICH COLLEGE WOULD
YOU LIKE TO ATTEND?" and then wait for you to
answer; your answer will be called C$. If you'd
like to be admitted to HARVARD, you'll be pleased:

WHICH COLLEGE WOULD YOU LIKE TO ATTEND? HARVARD

CONGRATULATIONS!

YOU HAVE JUST BEEN ADMITTED TO HARVARD
IT FITS YOUR PERSONALITY
I HOPE YOU ATTEND HARVARD

RESPECTFULLY YOURS

THE DEAN OF ADMISSIONS

This program consists of three parts:

l. The computer begins by asking you a question
(WHICH COLLEGE WOULD YOU LIKE TO ATTEND?) The
computer's question is called the prompt, because
it prompts you to answer,

2 Your answer (the college's name) is called your
input, because it's data that you're putting into
the computer,

3. The computer's reply (the admission letter) is
called the computer's output, because it's the
final answer that the computer puts out.

Opposites

The word INPUT is the opposite of the word PRINT,
The word PRINT makes the computer print
information out; the word INPUT makes the computer
take information in., The word PRINT makes the
computer output; the word INPUT makes the computer
accept your input. Input and Output are
collectively called I/0, so the INPUT and PRINT
statements are called I/0 statements.

S

Stories

Let's make the computer write a story, by filling
in the blanks:

ONCE UPON A TIME, THERE WAS A PERSON NAMED

T ———— — ——— i —

your name

—I———__——'--—r--—l---l--i

- WHO HAD A FRIEND NAMED
friend's name

— S — S — — — —

your name

D e e 4 —
verb friend's name
BRI S, DIDN'T WANT
friend's name
153 I S S e =
verb your name
WILL o e ——— e —————
your name verb friend's name
M o e e e—— R
friend's name verb your name

TO FIND OUT, COME BACK AND SEE THE NEXT EXCITING
EPISODE

--.—--—l—l'—_r—l---—--—'—l--l—'l—-— —l_-—l—l-ll_—ll-l--—-—l--l--—i-—-—-—

your name friend's name

To write the story, the computer must ask for your
name, your friend's name, and a verb. To make the
computer ask, your program must say INPUT. Here's
the program:

39

10 INPUT "WHAT'S YOUR NAME? ";YS$

15 PRINT

20 INPUT "WHAT'S YOUR FRIEND'S NAME? ";FS$

25 PRINT

30 INPUT "IN 1 WORD, SAY SOMETHING YOU CAN DO TO
YOUR FRIEND ";VS$

35 PRINT

40 PRINT "HERE'S MY STORY..s."

45 PRINT

50 PRINT "ONCE UPON A TIME, THERE WAS A PERSON
NAMED ";YS

55 PRINT

60 PRINT "WHO HAD A FRIEND NAMED ";F$

65 PRINT

70 PRINT ¥Y$;" WANTED TO ";VS$;"™ ";FS$S

75 PRINT

80 PRINT "BUT ";FS$;" DIDN'T WANT TO ";VS$;"™ ";Y$
85 PRINT

90 PRINT "WILL ";YS$;" ";VS$;" ";FS

95 PRINT

100 PRINT "WILL ";FS;" ":VS$;" ";YS

105 PRINT

110 PRINT "TO FIND OUT, COME BACK AND SEE THE NEXT
EXCITING EPISODE "

115 PRINT

120 PRINT "OF ";Y$;"™ AND ";FS$S

Here's a sample run:

WHAT'S YOUR NAME? DRACULA

WHAT'S YOUR FRIEND'S NAME? MARILYN MONROE

IN 1 WORD, SAY SOMETHING YOU CAN DO TO YOUR
FRIEND? BITE

HERE'S MY STORY....

ONCE UPON A TIME, THERE WAS A PERSON NAMED DRACULA
WHO HAD A FRIEND NAMED MARILYN MONROE

DRACULA WANTED TO BITE MARILYN MONROE

BUT MARILYN MONROE DIDN'T WANT TO BITE DRACULA
WILL DRACULA BITE MARILYN MONROE

WILL MARILYN MONROE BITE DRACULA

TO FIND OUT, COME BACK AND SEE THE NEXT EXCITING
EPISODE

OF DRACULA AND MARILYN MONROE

Here's another run:

A0

i
|
|
1

|

WHAT'S YOUR NAME? SNOW WHITE

WHAT'S YOUR FRIEND'S NAME? GRUMPY

IN 1 WORD, SAY SOMETHING YOU CAN DO TO YOUR
FRIEND? TICKLE

HERE'S MY STORY....

ONCE UPON A TIME, THERE WAS A PERSON NAMED SNOW

WHITE
WHO HAD A FRIEND NAMED GRUMPY
SNOW WHITE WANTED TO TICKLE GRUMPY
BUT GRUMPY DIDN'T WANT TO TICKLE SNOW WHITE
WILL SNOW WHITE TICKLE GRUMPY
 WILL GRUMPY TICKLE SNOW WHITE
TO FIND OUT, COME BACK AND SEE THE NEXT EXCITING
EPISODE
OF SNOW WHITE AND GRUMPY

Try it: put in your own name, the name of a
friend, and an appropriate verb.

This program creates a story that's fancier:

l 10 INPUT "WHAT'S YOUR NAME? ";¥Y$
20 INPUT "WHAT'S YOUR FRIEND'S NAME? ".FS
10 INPUT "WHAT'S THE NAME OF ANOTHER FRIEND? ";AS$
I 40 INPUT "NAME A COLOR ";CS$
50 INPUT "NAME A CITY ";P$
60 INPUT "NAME A FOOD ";DS$
' 70 INPUT "NAME AN OBJECT ";J%
80 INPUT "NAME A PART OF THE BODY ":BS
90 INPUT "NAME A STYLE OF COOKING
I (BAKED, FRIED,ETC) ";S$
100 PRINT
- 110 PRINT "CONGRATULATIONS, ";¥$
I 115 PRINT
120 PRINT "YOU'VE WON THE BEAUTY CONTEST, BECAUSE
I OF YOUR EXTREMELY ATTRACTIVE ";BS

125 PRINT
130 PRINT "YOUR PRIZE IS A ".CS:" ";JS

135 PRINT

140 PRINT "PLUS A TRIP TO ";P$;" WITH YOUR FRIEND
":FS

145 PRINT

150 PRINT "PLUS...AND THIS IS THE BEST PART OF

. T A

155 PRINT

160 PRINT "DINNER FOR THE TWO OF YOU AT ";AS$;"'S
RESTAURANT"

165 PRINT

170 PRINT "WHERE ";AS;" WILL GIVE YOU ALL THE
";S$;" ";DS$;"™ YOU CAN EAT"

175 PRINT

180 PRINT "CONGRATULATIONS ";Y¥$:"...TODAY'S YOUR
LUCKY DAY..."

185 PRINT

190 PRINT "NOW EVERYBODY WANTS TO KISS YOUR
AWARD-WINNING ":BS

Want to see a sample run? OK:

WHAT'S YOUR NAME? ARLO

WHAT'S YOUR FRIEND'S NAME? OBIE

WHAT'S THE NAME OF ANOTHER FRIEND? ALICE

NAME A COLOR? RED J

NAME A CITY? WEST STOCKBRIDGE

NAME A FOOD? TURKEY

NAME AN OBJECT? GARBAGE BAG

NAME A PART OF THE BODY? TOENAIL

NAME A STYLE OF COOKING (BAKED,FRIED,ETC)? ROAST

CONGRATULATIONS, ARLO

YOU'VE WON THE BEAUTY CONTEST, BECAUSE OF YOUR
EXTREMELY ATTRACTIVE TOENAIL

YOUR PRIZE IS A RED GARBAGE BAG

PLUS A TRIP TO WEST STOCKBRIDGE WITH YOUR FRIEND
OBIE

PLUS...AND THIS IS THE BEST PART OF ALL...
DINNER FOR THE TWO OF YOU AT ALICE'S RESTAURANT

WHERE ALICE WILL GIVE YOU ALL THE ROAST TURKEY YOU

CAN EAT

CONGRATULATIONS ARLO...TODAY'S YOUR LUCKY DAY...
NOW EVERYBODY WANTS TO KISS YOUR AWARD-WINNING
TOENAIL

42

Bills

If you're a nasty bill collector, you'll love this
program:

10 INPUT "WHAT IS THE CUSTOMER'S FIRST NAME? ";FS$
20 INPUT "LAST NAME? ";L$

30 INPUT "STREET ADDRESS? ";AS

40 INPUT "CITY? ";CS$

50 INPUT "STATE? ";SS$

60 INPUT "ZIP CODE? ";Z$

70 PRINT

80 PRINT FS$;" ";L$

90 PRINT AS

100 PRINT CS$;", ":S8;" ":Z%

110 PRINT

120 PRINT "DEAR ";FS$;","

125 PRINT

130 PRINT " YOU STILL HAVEN'T PAID THE BILL."
140 PRINT "IF YOU DON'T PAY IT SOON, ";FS$:;","
150 PRINT "I'LL COME AND VISIT YOU IN ";CS$

160 PRINT "AND PERSONALLY PITCH A TENT "

170 PRINT "ON YOUR DOORSTEP UNTIL YOU DO."

175 PRINT

180 PRINT " YOURS TRULY, "
185 PRINT
190 PRINT " YOUR CREDITOR"

Can you figure out what this program does?

Numeric Input

This program makes the computer predict your
future:

10 PRINT "I WILL PREDICT WHAT WILL HAPPEN TO YOU
IN THE YEAR 20001!"

20 INPUT "IN WHAT YEAR WERE YOU BORN? ";Y

30 PRINT "IN THE YEAR 2000, YOU WILL BE
":2000-Y;"."

Here's a sample run:

I WILL PREDICT WHAT WILL HAPPEN TO YOU IN THE YEAR
2000!

IN WHAT YEAR WERE YOU BORN? 1954
IN THE YEAR 2000, YOU WILL BE 46.

13

Suppose you're selling tickets to a play. Each |
ticket costs $2.79. (You decided $2.79 would be a-
nifty price, because the cast has 279 people.)

This program finds the price of multiple tickets:

10 INPUT "HOW MANY TICKETS? ";T
15 PRINT
20 PRINT "THE TOTAL PRICE IS $";T*2.79

This program tells you how much the "energy
crisis" costs you, when you drive your car:

10 INPUT "HOW MANY MILES DO YOU WANT TO DRIVE? ";M
20 INPUT "HOW MANY PENNIES DOES A GALLON OF GAS
COST? ";:P

30 INPUT "HOW MANY MILES-PER-GALLON DOES YOUR CAR
GET? ":R

35 PRINT

40 PRINT "THE GAS FOR YOUR TRIP WILL COST YOU S":
M*P/ (R*100)

Here's a sample run:

HOW MANY MILES DO YOU WANT TO DRIVE? 300
HOW MANY PENNIES DOES A GALLON OF GAS COST? 97.9
HOW MANY MILES-PER-GALLON DOES YOUR CAR GET? 27

THE GAS FOR YOUR TRIP WILL COST YOU $10.8778
This program converts feet to inches:

10 INPUT "HOW MANY FEET? ";F
20 PRINT F;" FEET = ";F*12;" INCHES"

Here's a sample run:

HOW MANY FEET? 3
3 FEET = 36 INCHES

Trying to convert to the metric system? This
program converts inches to centimeters.

10 INPUT "HOW MANY INCHES? ";I
20 PRINT I;" INCHES = ";I*2.54;" CENTIMETERS"

Nice day today, isn't it? This program converts
the temperature from Celsius to Fahrenheit:

10 INPUT "HOW MANY DEGREES CELSIUS? ";C
20 PRINT C:" DEGREES CELSIUS = ";C¥*1.8+32;"
DEGREES FAHRENHEIT"

Here's a sample run:

HOW MANY DEGREES CELSIUS? 20
20 DEGREES CELSIUS = 68 DEGREES FAHRENHEIT

Digital Data Packs

While you're working on a program, the computer
keeps it in the main RAM memory. It is erased
from main memory when you type NEW (to begin a new
program) or when somebody turns off the computer's
power.

To store the program longer, copy it onto the
computer's digital data pack. Once you've copied
the program onto a digital data pack, it will
remain on the digital data pack, even 1if you type
NEW or turn off the power. It will stay on the
digital data pack permanently, unless you rename,
delete, save over it, or initialize the data
packs.

To copy a program onto the digital data pack, type
the program and then type the word SAVE. You must
also invent a name for the program,

For example, suppose you want to copy this program
onto a digital data pack:

10 PRINT "MY DAD"
20 PRINT "IS SAD"

To name that program "JOE", and copy it onto the
digital data pack, type this:

NEW

10 PRINT "MY DAD"
20 PRINT "IS SAD"
SAVE JOE

=
Instead of JOE, you can invent a different name, #
as long as it doesn't exceed 10 characters. In
file names, ADAM knows the difference between 3
capital and small letters. For example, -
"joe","JOE",and "Joe" would be treated as three
different files,

-
To prove that your saved program 1s on the diqitall
data pack, type this: -
CATALOG l

That makes the computer print a catalog of
everything you've stored on your digital data

pack. The catalog will list the names of all the ,
programs you've stored. And one of the names -
you'll see will be JOE. See the Reference Section
at the back of this book for a full explanation of ,
CATALOG. ,

Suppose you come back to the computer sometime in
the future, and want to use JOE, which is on the
digital data pack. Type this:

1

LOAD JOE |

That makes the computer copy JOE from the digital
data pack to the main memory. Then you can type
LIST or RUN, and the computer will list or run

JOE.

If you ever want to erase JOE from the digital
data pack, type this:

DELETE JOE

If you ever want to revise the version of JOE
that's on the digital data pack, copy JOE from the
digital data pack to the main memory (by typing
LOAD JOE). Then type your revisions, by retyping
some of the old program's lines, or by adding new
ones, Finally, type this:

SAVE JOE

That makes the computer replace JOE with your new
version.

46

Be aware that SmartBASIC files and ADAM Word
Processing files are compatible, In other words,
you can take a SmartBASIC file that you've SAVEd
and READ it into the SmartWRITER word processor as
a regular document for editing; but all your
PRINTs will show up as "?". You can use either
PRINT or ?. Because your work is not checked for
syntax errors when vou code or edit using word
processing this option is not recommended. When
you LOAD a program that was created or edited
using SmartWRITER, any lines having syntax errors
will be rejected.

To keep your files from being deleted
accidentally, here's what to do:

LOCK JOE

Stop
The computer understands the word STOP:

10 PRINT "BUBBLE GUM"
20 STOP
30 PRINT "FOX"

The computer will print BUBBLE GUM and then stop,
without printing FOX. After the computer stops,
press RETURN and it'll print a bracket. Then you
can type any command, such as LIST (to see the
program again) or RUN (to make the computer print
BUBBLE GUM again) or NEW (to create a new
program) .

Colons

Colons are useful for putting several statements
on the same line, like this:

10 A=5: B=7: PRINT A+B

That line says A is 5, and B is 7, and to print
A+B., So the computer will print 12,

1f/Then

Let's make ADAM interrogate a human. Let's make
it begin the interrogation by asking whether the
human is male or female. If the human answers
MALE, let's make the computer say:

SO IS FRANKENSTEIN

If the human answers FEMALE, let's make the
computer say:

SO IS MARY POPPINS

If the human gives a different answer (such as
SUPER-MALE or NOT SURE or BOTH or YES, let's make
the computer say:

PLEASE SAY 'MALE' OR 'FEMALE'
ARE YOU MALE OR FEMALE?

This will force the human to answer the question
correctly. This program does 1it:

10 INPUT "ARE YOU MALE OR FEMALE? ";AS

20 IF AS="MALE" THEN PRINT "SO 1S FRANKENSTEIN":
END

30 IF AS="FEMALE THEN PRINT "SO IS MARY POPPINS":
END

40 PRINT "PLEASE SAY 'MALE' OR 'FEMALE'": GOTO 10 I

Line 10 makes the computer ask ARE YOU MALE OR
FEMALE? and wait for the human's answer, which is
called AS. If the human's answer is MALE, line 20
makes the computer print SO IS FRANKENSTEIN and
then stop. If the human's answer is FEMALE, line
30 makes the computer print SO IS MARY POPPINS andj
then stop. If the human's answer is neither MALE
nor FEMALE, the computer skips over lines 20 and
30, so it comes to line 40, which makes it print |
PLEASE SAY 'MALE' OR 'FEMALE' and then go back to
line 10, which forces the human to answer the ,
gquestion again. This is one instance where the |
difference between upper and lower case letters
matters. :

Here's a sample run:

RUN
ARE YOU MALE OR FEMALE? MALE
SO IS FRANKENSTEIN

Here's another:

RUN
ARE YOU MALE OR FEMALE? FEMALE
SO IS MARY POPPINS

Here's another:

RUN

ARE YOU MALE OR FEMALE? SUPER-MALE
PLEASE SAY '"MALE' OR 'FEMALE'

ARE YOU MALE OR FEMALE? MALE

SO IS FRANKENSTEIN

Let's extend the conversation. If the human says
FEMALE, let's make the computer say SO IS MARY
POPPINS and then ask DO YOU LIKE HER? If the
human says YES, let's make the computer say:

I LIKE HER, TOO--SHE IS MY MOTHER
If the human says NO, let's make the computer say:
NEITHER DO I--SHE STILL OWES ME A DIME

If the human says neither YES nor NO, let's make
the computer say:

PLEASE SAY 'YES' OR 'NO'
DO YOU LIKE HER?Y

19

Here's the program:

10 INPUT "ARE YOU MALE OR FEMALE";AS

-
20 IF AS$S="MALE" THEN PRINT "SO IS .
FRANKENSTEIN": END
30 IF AS$="FEMALE"™ THEN PRINT "SO IS MARY POPPINS": 4
GOTO 100 -

40 PRINT "PLEASE SAY 'MALE' OR 'FEMALE'": GOTO 10
100 INPUT "DO YOU LIKE HER? ";BS$

110 IF BS="YES" THEN PRINT "I LIKE HER TOO--SHE ISI
MY MOTHER": END

120 IF BS="NO" THEN PRINT "NEITHER DO I--SHE STILL
OWES ME A DIME": END

130 PRINT "PLEASE SAY 'YES' OR 'NO'": GOTO 100

-
Line 30 says: if the human's answer is FEMALE, -
print SO IS MARY POPPINS and then go to line 100,
which asks, DO YOU LIKE HER? =

.
Strange programs

-
The computer is like a human; it would like to -
make new friends. This program makes the computer
show its true feelings: .

.
10 INPUT "ARE YOU MY FRIEND? ";AS
20 IF AS="YES" THEN PRINT "THAT'S SWELL": END
30 IF A$="NO" THEN PRINT "GO JUMP IN A LAKE": END
40 PRINT "PLEASE SAY 'YES' OR 'NO'": GOTO 10

-
When you type RUN, the computer asks ARE YOU MY E
FRIEND? 1If you say YES, the computer says THAT'S
SWELL. If you say NO, the computer says GO JUMP .,
IN A LAKE. .
Here's a program that was written by a girl in the,
sixth grade: |
10 INPUT "CAN I COME OVER TO YOUR HOUSE TO WATCH .
T.V.? "3AS ;
20 IF AS="YES" THEN PRINT "THANKS. I'LL BE THERE
AT 5 P.M.": END "

30 IF AS="NO" THEN PRINT "HUMPH! I HAVE BETTER »
THINGS TO DO, ANYWAY.": END
40 PRINT "PLEASE SAY 'YES' OR 'NO'": GOTO 10 1

5l) |

iWhen you type RUN, the computer asks to watch your
television., If you say YES, the computer promises
to come to your house at 5. I1f you refuse, the

icnmputer insults you.

Another sixth grade girl wrote a program to test
lynur honesty:

, 10 PRINT "KDJFUEDEE*“&“%“KLO*E@!@)]_“

20 PRINT "LLLL] __)) *&(~“++2:LJSF,,"
30 PRINT " JSUEU2JFWO98B< , « ./ [222==["
A0 INPUT "DO YOU UNDERSTAND WHAT I SAID? ":;AS

50 IF AS="NO" THEN PRINT "NEITHER DO I": END

60 IF AS$="YES" THEN GOTO 80

70 PRINT "PLEASE SAY tYES' OR 'NO' ": GOTO 10
:BU PRINT "IT DOESN'T MEAN ANYTHING!! I'M A

COMPUTER, YOU KNOW! YOU CAN'T FOOL MEL®

=When you type RUN, lines 10-30 print nonsense.
Then the computer asks whether you understand that

stuff. If you're honest and answer NO, the
=cumputer will confess that it was beyond
understanding. But if you pretend that you
_understand the nonsense, and answer YES, the
g computer will scold you for trying to put one oOver

on 1it.

=A Daddy wrote a program for his five-year-old son,
John. When John types RUN, the computer asks
WHAT'S 2 AND 2? If John answers 4, the computer

=says NO, 2 AND 2 IS 22. 1f he runs the program
again and answers 22, the computer says NO, 2 AND
2 IS 4. No matter how many times he runs the

Hprngram and how he answers the question, the
computer says he's wrong. But when Daddy runs the
program, the computer replies, YES, DADDY IS
ALWAYS RIGHT. Here's how Daddy programmed the

computer:

Ilﬂ INPUT "WHAT'S YOUR NAME? ":NS

20 INPUT "WHAT'S 2 AND 27 ":A
=I3U IF NS="DADDY" THEN PRINT "YES, DADDY IS ALWAYS

RIGHT": END
40 IF A=4 THEN PRINT "NO, 2 AND 2 IS 22": END

50 IF A=22 THEN PRINT "NO, 2 AND 2 IS 4"

Your personality
This program makes the computer act human:

10 PRINT "HELLO"

20 INPUT "WHAT'S YOUR NAME? ";NS$

30 PRINT "GLAD TO MEET YOU, ";N$

40 INPUT "HOW ARE YOU FEELING TODAY? ";F$

50 IF FS="FINE" THEN PRINT "THAT'S GOOD": END
60 IF FS="AWFUL" THEN PRINT "TOO BAD": END

70 PRINT "I FEEL THE SAME WAY"

Tl 21 %L 9

When you type RUN, the computer begins the
conversation by saying HELLO and asking for your
name. Then it says GLAD TO MEET YOU, followed by s
your name; for example, if you said your name was e
JOEY, the computer will say:

Nl

GLAD TO MEET YOU, JOEY

Then the computer asks how you're feeling, If yOUmm
say FINE, line 50 makes the computer say THAT'S
GOOD, If you say AWFUL, line 60 makes the
computer say TOO BAD. If you say neither FINE noOrms
AWFUL, the computer skips lines 50 and 60 and 1;
arrives at line 70, so it says I FEEL THE SAME WAY
(which i1s a safe, general response). Ei

That program makes the computer imitate an
"average American". But you're not average! HahTE
the computer imitate your personality!

The first line of the program could say: E
10 PRINT "HELLO"

—
or-- -

10 PRINT "HI"

or, if you're from Texas--
10 PRINT "HOWDY, PARDNER!"
or, if you're cool--

10 PRINT "HEY, BABY! WHAT'S HAPPENING?"

2l

P Bl Bl Nl

or, if you're a nurse working in a private
practice--

10 PRINT "GOOD MORNING. THE DOCTOR WILL BE WITH
YOU SHORTLY"

or, if you're nasty--
10 PRINT "GO AWAY! CAN'T YOU SEE I'M SLEEPING?!"

After your opening line, you'll need an INPUT
statement, that makes the computer ask the human a
question. After the INPUT statement, you'll need
a series of IF...THEN statements that make the
computer react to the various responses the human
might give,

Try to make your program long, so the conversation
between the computer and human lasts several
minutes. Your program will be a mass of PRINT,
INPUT, IF...THEN and GOTO statements.

See how human you can make your ADAM computer!
See how well you can make the computer imitate

'you! And remember to SAVE your program, so the
computer will adopt your personality permanently.

Fancy clauses

You can make the IF clause very fancy:

IF_clause Meaning

IF AS="MALE" If AS is "MALE"

IF A=4 If A is 4

IF A<4 If A is less than 4

IF A<=4 If A 1s less than or
equal to 4

IF A>4 If A 1s greater than 4

IF A>=4 If A is greater than or
equal to 4

IF A<>4 If A 1s not 4

IF AS<"MALE" If AS is a word that

comes before "MALE" in
the dictionary

IF AS>"MALE" If AS is a word that
comes after "MALE" in the
dictionary =2

e W J

LESSON 3

MASTER YOUR COMPUTER

- Reminders

® 1f you get lost in your program, type this

rcnmmand:

lLIST

'® You must put quotation marks around each string,
and a dollar sign after each string variable:

{A$="JERK“ AS=JERK A="JERK"
(CORRECT) (WRONG) (WRONG)

® 7o make your computer execute your program again

and again, automatically, add an extra line at the

bottom of your program. That extra line should
ltell the computer to GOTO the top line.

® To say "not equal to", say "less than or greater
|than“, like this: <.

" Remember that IF is always paired with THEN or
GOTO.

The only way to become a computer expert is to try
Iwriting your own programs, so go to it!

| Debugging

An error in a program is called a "bug".

Chances are quite good that, when you run your
program after typing it out, it will be
error-free. Because of the SmartBASIC specific
error message/prompt feature, you will have
debugged your program as you went along., Most of

lynur programs will be gold-star programs...that
is, they will work on the first run. But the
proper way to debug a program is a good thing to

| know if your interest in computers should grow, so
we've inserted a brief section on efficient

ldebugging here, 55

To find the bug, use three techniques:
1. Inspect the program.
2. Trace the computer's thinking
3. Shorten the program
Here are the details....

Inspect the program

Take a good, hard look at the program. If you
stare hard enough, maybe you'll see the bug.

Ask the computer to help you. Make the comy ter
print the entire program. To do that, type:

LIST

Usually, the bug will turn out to be a typing
error. Maybe you:

® typed the letter O instead of zero? or
® typed zero instead of the letter 07

® typed the letter "1" instead of the

aed YA 0 R

im

number "1" or the number "1" instead of

the letter "1"?

® pressed the SHIFT key when you weren't
supposed to? or forgot to press 1it?
or had the SHIFT LOCK on?

® typed an extra letter? or omitted a
letterxr?

®typed a line you thought you hadn't? or
omitted a line? or wrote over a line?

Trace the computer's thinking
If you've inspected the program thoroughly, and

still haven't found the bug, the next step is to
trace the computer's thinking. Pretend you are

the computer. Do what your program says. DO you
find yourself printing the same wrong answers the

computer printed? If so, why?
Hh

To help your analysis, make the computer print
everything it's thinking, while it's running your
program. For example, suppose your program
contains lines 10, 20, 30 and 40, and uses the
variables B, C, and X$. Insert these lines into
your program:

15 PRINT "I'M AT LINE 15. THE VALUES ARE "
PeCs® ®3X$
25 PRINT "I'M AT LINE 25. THE VALUES ARE "
";C;“ H=x$

35 PRINT "I'M AT LINE 35, THE VALUES ARE
“;C:“ ";xs

45 PRINT "I'M AT LINE 45. THE VALUES ARE "
it (0F BB §

-
it

-
L1

bl]

~e

3
w W W W
3

Then type the word RUN. The computer will run the
program again; but lines 15, 25, 35, and 45 make
the computer print everything it's thinking.

Check what the computer prints. If the computer
prints what you expect in lines 15 and 25, but
prints strange values in line 35 (or doesn't even
get to line 35), you know the bug occurs before
iine 35 but after line 25; so the bug must be in
line 30.

If your program contains hundreds of lines, you
might not have the patience to insert lines
15,25,35,45,55,65,75,¢etc. Here's a short-cut....

Halfway down your program, lnsert a line that says
to print all the values. Then run your program.
If the line you inserted prints the correct
values, you know the bug lies underneath that
line; but if the line prints wrong values (or if
the computer never reaches that line), you know
the bug lies above that line. 1In either case, you
know which half of your program contains the bug.
In that half of the program, insert more lines
until you finally zero in on the line that
contains the bug.

Another way to trace program execution is with
TRACE and NOTRACE. You can read more about this
in the Reference Section at the back of this
manual,

Shorten the program
When all else fails, shorten the program.

Hint: Before you shorten your program (or write
tiny experimental ones), SAVE the original
version, even though it contains a bug., After
you've played with the shorter versions, retrieve
the original and fix it.

Finding a bug in a program is like finding a
needle in a haystack: the job is easier if the
haystack is smaller., So make your program
shorter: delete the last half of your program.
Then run the shortened version. That way, you'll
find out whether the first half of your program is?
working the way it's supposed to. When you've
perfected the first half of your program, tack thed
second half back on. b

Does your program contain a statement whose -
meaning you're not completely sure of? Check the §
meaning. Use a reference guide, ask a friend, or
write a tiny experimental program that contains

F
the statement, and see what happens when you type }§
RUN-

'
The easiest way to write a long, correct program J

is to write a short program first, debug it, then
add a few more lines, debug them, add a few more
lines, debug them, etc. In other words, start ‘
with a small program, perfect it, and then add
perfected extras, so you gradually build a
perfected masterpiece. This is the idea on which
ADAM SmartBASIC is based. If you try to compose a
long program all at once--instead of building it
from perfected pieces--you could end up with i
nothing more than a mastermess—--full of bugs.

Moral: to build a large masterpiece, start with ai
small masterpiece. Putting it another way: ¢to
build a skyscraper, begin by laying a good
foundation; and by double-checking the foundation
before you start adding the walls and the roof.

Editing

To list your entire program, just type:
LIST

Here's how to list just line 20:

LIST 20

Here's how to list from line 20 to line 50:

LIST 20-50
or
LIST 20,50

Here's how to list from line 20 to the end:

LIST 20-

or

LIST 20,

HBere's how to list from the beginning to line 20:
LIST ,20

To delete line 20, just type:

20 (and press RETURN)

To delete lines 20-50, type this:

DEL 20-50
or
DEL 20,50

To delete (scratch out) all the lines in the
program, type
this:

NEW

Pause

To freeze your computer screen while your program
is listing, hold down the CONTROL key. While you
are holding this key down, lightly tap the S key.

39

|

After you've frozen the screen, read what's on |
it. Then you have two choices: either abort your
program with a CONTROL-C or make the computer 1
resume printing. Here's how to make the computer |
resume printing (onscreen only): hold down the

CONTROL key and lightly tap the S key. Right, ‘
It's the same way you stopped it! |

Data...Read |

To make the computer handle a list, begin your |
program with the word DATA, For example, suppose
you want the computer to print this list of fooad:

MEAT 1
POTATOES

LETTUCE

TOMATOES

BUTTER

CHEESE

ONIONS

PEAS

Begin your program by saying:

10 DATA MEAT, POTATOES,LETTUCE, TOMATOES,
BUTTER, CHEESE, ONIONS, PEAS

You must tell the computer to READ the DATA:

20 READ AS

Line 20 makes the computer read the first datum
(which is MEAT), and call it A$S. So AS$ is MEAT.
This line makes the computer print MEAT:

30 PRINT AS

This line makes the computer handle the rest of
the data:

40 GOTO 20

Line 40 makes the computer go back to line 20,
which reads the next datum (POTATOES).
Altogether, the program looks like this:

)

10 DATA MEAT,POTATOES,LETTUCE, TOMATOES,
BUTTER, CHEESE, ONIONS, PEAS

20 READ AS

30 PRINT AS$

40 GOTO 20

Lines 20-40 form a loop. (Like most loops, the
loop's bottom line says GOTO. Since the loop's
top line says READ, the loop is called a READ
loop.) The computer goes round and round the
loop. Each time the computer comes to line 20, it
reads another datum: the first time it comes to
line 20, it reads MEAT; the next time, it reads
POTATOES; the next time, it reads LETTUCE; etc.
Line 30 makes the computer PRINT what it's read.
Altogether, the computer will print:

MEAT
POTATOES
LETTUCE
TOMATOES
BUTTER
CHEESE
 ONIONS

' PEAS

,After the computer prints PEAS, it comes to line

40 again, which makes it go back to line 20 again,
so the computer tries to read more data again; but
no more data remains! So the computer says:

OUT OF DATA ERROR IN 20

| Then the computer stops.

So the last three lines the computer prints are:

ONIONS
PEAS
| ouT OF DATA ERROR IN 20

Instead of saying OUT OF DATA/ERROR IN 20, let's
| nake the computer say THOSE ARE MY FAVORITE FOODS,
so that the last three lines look like this:

| ONIONS
PEAS
THOSE ARE MY FAVORITE FOODS

Here's how....At the end of the data, say DONE:

10 DATA MEAT, POTATOES, LETTUCE, TOMATOES,
BUTTER, CHEESE, ONIONS, PEAS, DONE

When the computer reads the DONE, make the
computer say THOSE ARE MY FAVORITE FOODS and then
stop: |
20 READ A$: IF AS="DONE" THEN PRINT "THOSE ARE HYI
FAVORITE FOODS": END

The DONE at the end of the data is called the end I
mark, because it marks the end of the data. The
routine that says: -

=

IF AS="DONE" THEN PRINT "THOSE ARE MY FAVORITE
FOODS": END :

is called the end routine, because the computer
does that routine at the end. .

That program prints one copy of the computer's
favorite foods. 1If you want the computer to print,
many copies, change line 20 to this: -
20 READ AS: IF AS="DONE" THEN PRINT "THOSE ARE MY,
FAVORITE FOODS": RESTORE: GOTO 10 .
The word RESTORE tells the computer to go back to
the beginning of the data. The computer will E
print:

MEAT !
POTATOES
LETTUCE
TOMATOES
BUTTER
CHEESE
ONIONS L
PEAS

THOSE ARE MY FAVORITE FOODS .
MEAT |
POTATOES

LETTUCE i
TOMATOES |
BUTTER

CHEESE

etc. .

H2

The computer will print copies of its list of
foods again and again, forever, unless you abort
your program.

Most practical computer programs involve a list of
data. Your job, as a programmer, is to find out
what the data is, and to begin your program by
saying DATA. After typing the data, the next
statement in your program should say READ.

Farther down in your program, you should say GOTO,
so that you create a READ loop. Your program
consists of two parts: the DATA, and the READ
loop.

Debts
Suppose these people owe you things:

Persop What person owes

Bob $537 .29

Mike a dime

Frank 2 golf balls

Harry a steak dinner at Mario's

Moy a kiss

Let's remind those people of their debts, by
writing them letters, in this form:

DEAR r
person's name
I JUST WANT TO REMIND YOU...
THAT YOU STILL OWE ME = S—

debt

Begin with the DATA:

10 DATA BOB,$537.29,MIKE,A DIME,FRANK,2 GOLF BALLS,
HARRY,A STEAK DINNER AT MARIO'S,MOMMY,A KISS

If you decide to split a long DATA statement up

into two or more smaller DATA statements, remember b,
| M

to leave the comma off the ends of the DATA

lines. To be safe, you can insert quotation
marks, like this:

10 DATA "BOB","$537.29","MIKE","A DIME", "FRANK", "2
GOLF BALLS", "HARRY","A STEAK DINNER AT
MARIO'S", "MOMMY","A KISS"

On ADAM, the quotation marks are unnecessary as
long as your data string itself doesn't contain a
comma or a colon.

In this program, the data comes in pairs: the
first pair consists of BOB and $537.29. Tell the
computer to READ each pair of DATA:

20 READ PS,DS

Line 30 makes the computer read the first pair of
data; so P§$ is the first person (BOB) and DS is
his debt ($537.29). These lines print the letter:

30 PRINT "DEAR ";PS;","
35 PRINT

40 PRINT " I JUST WANT TO REMIND YOU,.."
50 PRINT "THAT YOU STILL OWE ME ";DS$;"."

At the end of the letter, leave two blank lines,
to make room for your signature:

60 PRINT
70 PRINT

Then complete the READ loop, by making the

computer go back to the beginning of the loop to
read the next pair:

80 GOTO 20

The computer will print a letter to each person,
like this:

DEAR BOB,

I JUST WANT TO REMIND YOU...
THAT YOU STILL OWE ME $537.29.

(¥l

DEAR MIKE,

I JUST WANT TO REMIND YOU...
THAT YOU STILL OWE ME A DIME.

etc,

After printing all the letters, the computer will
say :

OUT OF DATA ERROR IN 20

Instead of saying OUT OF DATA, let's make the
computer say:

I'VE FINISHED WRITING THE LETTERS

Tnida that, put a DONE at the end of the data,
twice:

"HARRY","A STEAK DINNER AT MARIO'S", "MOMMY",
"A KISS","DONE", "DONE"

and say what to do when the computer reaches the
DONEs:

30 READ P5,D$: IF P$="DONE" THEN PRINT "I'VE
FINISHED WRITING THE LETTERS": END

You need two DONE's at the end of the data,
because the READ statement says to read two
strings (P$ and DS).

Diets

Suppose you're running a diet clinic, and get
these results:

Person Weight before Weight after
Joe 273 pounds 219 pounds
Mary 412 pounds 371 pounds
Bill 241 pounds 173 pounds

Sam 309 pounds 198 pounds

6o

Here's how to make the computer print a nice
report....Begin by feeding it the Data:

10 DATA JOE,273,219,MARY,412,371,BILL,
241,173,5AM,309,198

You can place your DATA information within quotes,
if you prefer. Use of gquotes on ADAM is optional
and up to the user's discretion. Here is what

your DATA statement would look like within quotes:

10 DATA "JOE",273,219,"MARY",412,371,
"BILL",241,173
20 DATA "SAM",309,198

The data comes in triplets: the first triplet
consists of JOE, 273, and 219, Tell the computer
to READ each triplet of DATA:

20 READ N§,B,A

That line makes the computer read the first
triplet of data; so N$ is the first person's name
(JOE), B is his weight before (273), and A is his
weight after (219). These lines print the report
about him:

30 PRINT N$;" WEIGHED ";B;" POUNDS BEFORE
ATTENDING THE DIET CLINIC"

40 PRINT "BUT WEIGHED ONLY ";A;" POUNDS
AFTERWARDS"

50 PRINT "THAT'S A LOSS OF ";B-A;" POUNDS"

At the end of the report about him, leave a blank
line:

60 PRINT

Then complete the READ loop, by making the
computer go back to the loop's beginning:

70 GOTO 20

6

The computer will print:

JOE WEIGHED 273 POUNDS BEFORE ATTENDING THE DIET

CLINIC
BUT WEIGHED ONLY 219 POUNDS AFTERWARDS

THAT'S A LOSS OF 54 POUNDS

MARY WEIGHED 412 POUNDS BEFORE ATTENDING THE DIET

CLINIC
BUT WEIGHED ONLY 371 POUNDS AFTERWARDS

THAT'S A LOSS OF 41 POUNDS
etc.

At the end, the computer will say OUT OF DATA
ERROR IN 20. Instead, let's make it say:

COME TO OUR DIET CLINIC!

To do that, put a DONE and two zeros at the end of
the data:

10 DATA
"JOE",273,219,"MARY",412,371,"BILL",241,173,
20 DATA "SAM",309,198, "DONE",0,0

and say what to do when the computer reaches the
DONE :

30 READ N$,B,A: IF N$="DONE" THEN PRINT "COME TO
OUR DIET CLINIC!": END

vYou need the two zeros after the DONE, because the
READ statement says to read two numbers (B and A)
after the string N$. If you omit the zeros, the
computer will say OUT OF DATA ERROR IN 20. If you
hate zeros, you can use other numbers instead; but
most programmers prefer zeros.

French colors

Let's make the computer translate colors into
French. For example, if the human says RED, we'll
make the computer say the French equivalent, which
1s:

ROUGE

Altogether, a run will look like this:

RUN
WHICH COLOR INTERESTS YOU? RED
IN FRENCH, IT'S ROUGE

The program begins simply:
10 INPUT "WHICH COLOR INTERESTS YOU? ";CS$
Next, we must make the computer translate the

color into French. To do that, feed the computer
this English-French dictionary:

English French

white blanc
yellow jaune
orange orange
red rouge
green vert
blue bleu
brown brun
black noir

That dictionary becomes the data:

20 DATA WHITE, BLANC, YELLOW, JAUNE,
ORANGE, ORANGE, RED, ROUGE
30 DATA GREEH,VERT,BLUE,BLEU,BRUWN,BRUH,BLACK,HOIR

The data comes in pairs: the first palr consists
of WHITE and BLANC. Tell the computer to READ
each pair of DATA:

40 READ ES$,FS$

That line makes the computer read the first pair
of data; so ES$ is the first English color (WHITE),
and F$ is its French equivalent (BLANC).

But that pair of data might be the wrong pair; for
example, if the human requested RED, the human
does not want the pair of WHITE and BLANC;
instead, the human wants the pair of RED and
ROUGE. So you must tell the computer: if the

Ot

human's input doesn't match the English in the

pair, go read another pair.

that:

Here's how to to say

50 IF E$<>C$ THEN GOTO 40

That line says:
the data) is not C$

if ES (which is the English in
(the color the human

requested) , go to 40 (which reads another pair).

L.ines 40 and 50 form a loop;
round the loop, until it finds the pair

round and

of data that matches the human's request.

the computer goes

since

the purpose of the loop is to search for data that

matches,

After the computer
English-French pair,
| French:

it's called a search loop.

has found the correct
make the computer print the

60 PRINT "IN FRENCH, IT'S ":FS

Altogether, the program looks like this:

I Ask the human:

| Use this dictionary:

Look at the dictionary:

1f not found, look

Print the French:

10 INPUT "WHICH COLOR
INTERESTS YOU? ";C$

20 DATA WHITE,BLANC,
YELLOW, JAUNE, ORANGE
ORANGE, RED, ROUGE

30 DATA GREEN,VERT,
BLUE,BLEU,BROWN,BRUN,
BLACK, NOIR

40 READ ES,FS$

50 IF ES<>C$ again:
THEN GOTO 40

60 PRINT "IN
FRENCH,

IT'S ";F$

6o

Here's a sample run:

RUN
WHICH COLOR INTERESTS YOU? RED
IN FRENCH, IT'S ROUGE

Here's another:

RUN
WHICH COLOR INTERESTS YOU? BROWN
IN FRENCH, IT'S BRUN

Here's another:

RUN
WHICH COLOR INTERESTS YOU? PINK |
OUT OF DATA ERRCR IN 30

The computer says OUT OF DATA ERROR IN 30 because i;
can't find PINK in the data. Instead of saying OUT
OF DATA ERROR IN 30, it would be nicer to say I ,
WASN'T TAUGHT THAT COLOR. |

We want the computer to say I WASN'T TAUGHT THAT
COLOR, when it reaches the end of the data. To do I
that, say DONE at the end of the data; and when the
computer reaches the DONE, tell it to say I WASN'T

TAUGHT THAT COLOR: i
10 INPUT "WHICH COLOR INTERESTS YOU? ";CS$

20 DATA WHITE,BLANC, YELLOW, JAUNE, ORANGE, ORANGE, ;
RED, ROUGE

30 DATA GREEN,VERT,BLUE,BLEU, BROWN, BRUN, BLACK, _
NOIR, DONE, .

40 READ E$,F$: IF ES="DONE" THEN PRINT "I WASN'T
TAUGHT THAT COLOR": END

50 IF ES<>C$ THEN GOTO 40 '
60 PRINT "IN FRENCH, IT'S ";FS$

After line 60, the program just ends. Instead of '
letting the computer end, let's make it

automatically rerun the program and translate
another color. To do that, say GOTO and RESTORE: |

0

10 INPUT "WHICH COLOR INTERESTS YOU? ";CS$

20 DATA
WHITE,BLAHC,YELLOW,JRUNE,DRANGE,DRAHGE,RED,ROUGE
30 DATA
GREEN,VERT,BLUE,BLEU,BROWN,BRUN,BLACK,NGIR,DGﬁE,
DONE

40 READ ES$,FS: IF ES="DONE" THEN PRINT "I WASN'T
TAUGHT THAT COLOR": GOTO 70

50 IF E$<>C$ THEN GOTO 40

60 PRINT "IN FRENCH, IT'S ",FS$

70 RESTORE

80 GOTO 10

To exit this, and any other program containing a
loop that you must break, hit CONTROL-C.

For...Next

Let's make the computer print every number from 1 to
100, like this:

oW & Wk

etc.
100

To do that, type this line:
20 PRINT X

and also tell the computer that you want X to be
every number from 1 to 100. To tell the computer
that, say "FOR X = 1 TO 100", like this:
10 FOR X 1 TO 100
20 PRINT X

I

Whenever you write a program that contains the wor
FOR, you must say NEXT. So your program should loo
like this: |

10 FOR X =1 TO 100
20 PRINT X
30 NEXT X

That program works; it makes the computer print
every number from 1 to 100,

Here's how it works...The computer begins at line
10, which says that you want X to be every number a
from 1 to 100. So X starts at 1. Then the computer
comes to line 20, which says to print X; so the -
computer prints: 1 —

Then the computer comes to line 30, which says to dg
the same thing for the next X, and for the next X,
and for the next X; so the computer prints 2, and 3,
and 4, and so on, all the way up to 100.

That program makes the computer print many numbers,
That's because the computer does line 20 many times
(once for each X). The computer does line 20 many‘g
times because that line is between the words FOR an
NEXT: it is underneath FOR, and above NEXT. The
computer repeats anything that's between the words i
FOR and NEXT.

Party i
For a more advanced example, let's make the computer
print these lyrics: i
I SAW 2 GULLS

MEET 2 BUOYS :
TRA-LA-LA!

I SAW 3 GULLS i
MEET 3 BUOYS

TRA-LA-LA!

I SAW 4 GULLS
MEET 4 BUOYS
TRA-LA-LA!

12

'I SAW 5 GULLS
MEET 5 BUOYS
TRA-LA-LA!

THEY ALL HAD A PARTY!
HA-HA-HA!

To do that, type these lines:

20 PRINT "I SAW ";X;" GULLS"
30 PRINT "MEET ";X;" BUOYS"
40 PRINT "TRA-LA-LA!l"

50 PRINT

This gives you each line of each verse plus a blank
line underneath each verse,

Now you have to tell the computer that you want X to
be every number from 2 up to 5. Here's how:

10 FOR X = 2 TO 5

20 PRINT "I SAW ";X;" GULLS"
30 PRINT "MEET ";X;" BUOYS"
40 PRINT "TRA-LA-LA!"

50 PRINT

60 NEXT X

At the end of the song, print the closing couplet:

10 FOR X = 2 TO 5

20 PRINT "I SAW ";X;" GULLS"

30 PRINT "MEET ";X;" BUOYS

40 PRINT "TRA-LA-LAI"

50 PRINT

60 NEXT X

70 PRINT "THEY ALL HAD A PARTY!"
80 PRINT "HA-HA-HA!"

That program works; it makes the computer print the
entire song.

Since the computer does lines 20-50 repeatedly,
those lines form a loop. Here's the general rule:
the statements between FOR and NEXT form a loop.

The computer goes round and round the loop, for X=2,
X=3, X=4, and X=5. Altogether, it goes around the
loop 4 times, which is a finite number. Therefore,

the loop is finite. -

If you don't like the letter X, choose a differentti

letter. For example, you can choose the letter I:

E
10 FOR I = 2 TO 5 -
20 PRINT "I SAW ";I;" GULLS"
30 PRINT "MEET ";I;" BUOYS"

40 PRINT "TRA-LA-LA!L" |
50 PRINT
60 NEXT I
70 PRINT "THEY ALL HAD A PARTY!" "

80 PRINT "HA-HA-HA!l"

Most programmers prefer the letter I, when using th]
word FOR. 1In other words, most programmers say "FOR
I", instead of "FOR X". Saying "FOR I" is an "old
tradition",., We'll follow the tradition: in the I
rest of this book, we'll say "FOR 1", except in
situations where some other letter feels peculiarly
more natural. i

Squares i

To find the square of a number, multiply the number .
by itself. The square of 3 is "3 times 3", which is
9. The square of 4 is "4 times 4", which is 16.

Let's make the computer print the square of 3, 4, EE
etc., up to 100, like this:

IS 9 .
IS 16

IS 25
IS 36
IS 49

THE SQUARE OF
THE SQUARE OF
THE SQUARE OF
THE SQUARE OF
THE SQUARE OF
etc,

THE SQUARE OF 100 IS 10000

~Sann s W

T | N N

To do that, type this line:

- i

20 PRINT "THE SQUARE OF ";I;" IS ";I*I

now tell the computer that you want I to be every i
number from 3 up to 100. Here's the program:

10 FOR I = 3 TO 100 i
20 PRINT "THE SQUARE OF ";I;" IS ";I*I

30 NEXT I

74 J

|Sacret meeting

‘This program prints 12 copies of the same message:

10 FOR I =1 TO 12
20 PRINT "HUSH,HUSH!"

30 PRINT " WE'RE HAVING A SECRET MEETING..."
40 PRINT " IN THE COMPUTER ROOM..."

50 PRINT " TONIGHT..."

60 PRINT " AT 2 A.M.,"

70 PRINT " WEAR A FUNNY HAT."

80 PRINT

90 PRINT

100 NEXT 1I

Lines 80 and 90 leave blank lines at the end of each
copy, for your signature,

Midnight
This program makes the computer count to midnight:

10 FOR I =1 TO 12
20 PRINT I
30 NEXT I
40 PRINT "MIDNIGHT"

The computer will print:

oUW -

MIDNIGHT

h.l

oy

Let's put a semicolon at the end of line 20:

10 FOR I =1 TO 12
20 PRINT I;" ";

30 NEXT 1

40 PRINT "MIDNIGHT"

The semicolon makes the computer print each item on
the same line, like this:

123456789 1011 12 MIDNIGHT

If you want the computer to press the RETURN key
before MIDNIGHT, insert a PRINT line:

10 FOR I =1 TO 12
20 PRINT I;" ";

30 NEXT I

35 PRINT

40 PRINT "MIDNIGHT"

—

Line 35 makes the computer press the RETURN key jud!!
before MIDNIGHT, so the computer will print MIDNIGHT
on a separate line, like this: E

1234567891011 12
MIDNIGHT E;

In line 20, the semicolon means: do not press the
RETURN key after I. Line 35 means: do press the
RETURN key. So line 35 undoes line 20, and makes E
the computer press the RETURN key before MIDNIGHT,

Let's make the computer count to MIDNIGHT three
times, like this:

1] 234567891011 12
MIDNIGHT
1234567891011 12

MIDNIGHT
1234567891011 12

MIDNIGHT E

1 %1 11\

To do that, put the entire program between the words
FOR and NEXT: E

6 =

5 FOR A =1 TO 3

10 FOR I =1 TO 12
20 PRINT I;" ";

30 NEXT 1I

35 PRINT

40 PRINT "MIDNIGHT"
50 NEXT A

That version contains a loop inside a loop: the
loop that says "FOR I" is inside the loop that says
"POR A". The A loop is called the outer loop; the I
loop is the inner loop. The inner loop's variable
must differ from the outer loop's. Since we called
the inner loop's variable "I", the outer loop's
variable must not be called "I"; so we picked the
letter A instead. Notice that each NEXT loops back
to a specific FOR. Including the variable atfter the
NEXT makes your programs easier to read; but
SmartBASIC really is smart! It will keep track of
which NEXT goes with each FOR automatically.

Often, programmers think of the outer loop as a
bird's nest, and the inner loop as an egg inside the
nest. So programmers say the inner loop is pested
in the outer loop. The two loops are nested loops.
Be careful if you use variables with your NEXT's or
your loops won't be nested and you will get an
error.

Favorite color
This program plays a guessing game:

10 PRINT "I'LL GIVE YOU FIVE GUESSES...."

20 FOR I =1 TO 5

30 INPUT "WHAT'S MY FAVORITE COLOR? ";G$

40 IF GS="PINK" THEN GOTO 100

50 PRINT "NO."

60 NEXT I

70 PRINT "SORRY, YOUR FIVE GUESSES ARE UP! YOU
LOSE."

80 END

100 PRINT "CONGRATULATIONS! YOU DISCOVERED MY
FAVORITE COLOR."

110 PRINT "IT TOOK YOU ";I;" GUESSES."

-
Line 10 warns the human that only five guesses are _®
allowed. Line 20 makes the computer count from 1 to
5; to begin, I is 1. Line 30 asks the human to
guess the computer's favorite color; the guess is
called GS. If the guess is PINK, the computer jumps
from line 40 to line 100, prints CONGRATULATIONS,
and tells how many guesses the human took. But if
the guess is not PINK, the computer proceeds from
line 40 to line 50, prints NO, and goes on to the =
next guess. If the human guesses five times withou ®
success, the computer proceeds from line 60 to line
70 and prints SORRY...YOU LOSE.

For example, if the human's third guess is PINK, the
computer prints:

CONGRATULATIONS! YOU DISCOVERED MY FAVORITE COLOR.
IT TOOK YOU 3 GUESSES.

If the human's very first guess is PINK, the
computer prints: 5

CONGRATULATIONS! YOU DISCOVERED MY FAVORITE COLOR,
IT TOOK YOU 1 GUESSES.

It's ungrammatical, but understandable.

-
Lines 20-60 form a loop. Line 20 says the loop wil.®
normally be done five times. The line after the
loop, line 70, is the loop's normal exit., But if o
the human happens to input PINK, the computer jumps 8
out of the loop early, to line 100, which is the
loop's abnormal exit. Be careful when you use
abnormal exits. 1It's very easy for both you and thxi
computer to get confused. Usually 1ts better to use
a counter and IF...THEN rather than abnormally exit
a FOR...NEXT. (See Chapter Four.) i

:
-

Short cuts

On ADAM, when you type NEXT, you don't have to type
the variable even for nested looOpS. So, instead of
saying:

50 NEXT I

you can say:

50 NEXT

Instead of saying:

10 FOR I =1 TO 5
20 PRINT "FAT"

30 PRINT "CAT"

40 PRINT

50 NEXT I

You can put the entire loop on a single line, like
this:

10 FOR I = 1 TO 5: PRINT "PAT": PRINT "CAT": PRINT:
NEXT

Step

The FOR statement can be varied:

Statement Meaping

FOR I=5 TO 17 STEP 3 1 will be every
third number from

X £t0 l1lls 8O
I will be 5, then
g8, the 14, then
175

FOR I=17 TO 5 STEP -3 I will be every
third number from
17 down to 5.
So I will be 17,
then 14, then 11,
then 8, then 5.

9

To count down, you must use the word STEP. To cnudi
from 17 down to 5, give this instruction: |

-
FOR I = 17 TO 5 STEP -1 -
This program prints a rocket countdown: -
-
10 FOR I = 10 TO 1 STEP -1
20 PRINT I e
30 NEXT I -
40 PRINT "BLAST OFF!"
.
The computer will print: -
10 -
9 -
8
7
6 -
5
“
3 -
2
1
BLAST OFF! ‘
This statement is tricky: i

FOR I = 5 TO 16 STEP 5

It says to start I at 5, and keep adding 5 until I i
gets past 16. So I will be 5, then 10, then 15. 1I
won't be 20 inside the loop, since 20 is past 16.
The first value of I is 5; the last value printed fa
inside the loop is 15.

10 FOR I=5 TO 16 STEP 5 !
20 PRINT I;" IN THE LOOP"

30 NEXT I

40 PRINT I;" AFTER THE LOOP" i

Prints out:

5 IN THE LOOP

10 IN THE LOOP

15 IN THE LOOP l
20 AFTER THE LOOP

S0]

In the statement FOR I = 5 TO 16 STEP 5, the first
value, or initial value of I is 5, the limit value
is 16, and the step size or increment is 5. The I
is called the counter or index or loop-control
variable. Although the limit value is 16, the
last value or terminal value is 20.

Random Numbers

Usually, the computer is predictable: it does
exactly what you say. But sometimes you want the

| computer to be unpredictable. In games, for

instance; you want the computer to be unpredictable,
to "surprise" you. Without an element of surprise,

Ithe game would be boring. And if you want the

computer to act artistic, and create a new, original
masterpiece that's a "work of art", you need a way
to make the computer get a "flash of inspiration”.
And flashes of inspiration are not predictable; they

are surprises.

This makes the computer print a list of
unpredictable numbers from 1 to 6:

10 FOR I=1 TO 10
20 PRINT INT(1+6*RND(1))

§ 30 NEXT

Unpredictable numbers are called random numbers.
Line 20 makes the computer print a random number
from 1 to 6. So the computer will print 1 or 2 or 3
or 4 or 5 or 6; you can't predict which of those
numbers the computer will print; the computer's
choice will be a surprise.

To make the computer print many such random numbers,
say GOTO:

10 PRINT INT(1+5*RND(1))
20 GOTO 10

8l

The computer will print many numbers, like this:

UMM UIWHB &N W

tc.

Each number will be 1 or 2 or 3 or 4 or 5. The
order in which the computer prints the numbers is ps
unpredictable. The program is an infinite loop; to
stop it, you must abort your program. Use Control=
to break into the loop and stop the RUN. —

To get sequences of random numbers that are the sanps
each time, use a negative number inside the RND's
parentheses.,

10 INPUT N

20 LET N=RND(-N)

30 PRINT INT(1+RND(1))
40 GOTO 30

This will print a sreies of 0s and 1ls that will be
the same each time the program is run. Change theE
sequence by INPUTing a new value for N,

We can make random work better by using the DEF FHE
statement. At the same time, we'll use less paper
(or less screen) by making the computer print the
numbers across instead of down. ;

324 4135 22 5 etc.

To do this, put a semicolon in the PRINT statment:

10 DEF FN D(N)=INT(1+N*RND(1))
20 PRINT FN D(5):" ";
30 GOTO 20

Tl A\

That program prints random numbers up to 5. To see
random numbers up to 1000, say FN D(1000).
82

[r

10 DEF FN D(N)=INT(1+N*RND(1))
20 PRINT FN D(1000);" ";
30 GOTO 20

The computer will print something like this:
485 729 537 1000 13 1 842 156 1000 972 etc.
This program plays a guessing game:

5 INPUT N

6 N=RND (-N)

10 DEF FN D(N)=INT(1+N*RND(1))

20 PRINT "I'M THINKING OF A NUMBER FROM 1 TO 100."
30 C=FN D(100)

40 INPUT "WHAT DO YOU THINK MY NUMBER IS? ";G

50 IF G<C THEN PRINT "YOUR GUESS IS TOO LOW.": GOTO
40

60 IF G>C THEN PRINT "YOUR GUESS IS TOO HIGH.": GOTO
40

70 PRINT "CONGRATULATIONS! YOU FOUND MY NUMBER!"

Input any one, two, or three digit number when
asked by the computer.

Line 20 makes the computer say:
I'M THINKING OF A NUMBER FROM 1 TO 100,

Line 30 makes the computer think of a random number
from 1 to 100; the computer's number is called "C".
LLine 40 asks the human to guess the number; the
guess is called "G". If the guess is less than the
computer's number, line 50 makes the computer say
YOUR GUESS IS TOO LOW and then GOTO 40, which lets
the human guess again. If the guess is greater than
the computer's number, line 60 makes the computer
say YOUR GUESS IS TOO HIGH and then GOTO 40. When
the human guesses correctly, the computer arrives at
line 70, which prints:

CONGRATULATIONS! YOU FOUND MY NUMBER!

83

Here's a sample run:

RUN

I'M THINKING OF A NUMBER FROM 1 TO 100.
WHAT DO YOU THINK MY NUMBER IS? 54
YOUR GUESS IS TOO LOW.

WHAT DO YOU THINK MY NUMBER IS? 73
YOUR GUESS IS TOO HIGH.

WHAT DO YOU THINK MY NUMBER IS? 62
YOUR GUESS IS TOO LOW.

WHAT DO YOU THINK MY NUMBER IS? 68
YOUR GUESS IS TOO LOW.

WHAT DO YOU THINK MY NUMBER IS? 70
YOUR GUESS IS TOO HIGH.

WHAT DO YOU THINK MY NUMBER IS? 69
CONGRATULATIONS! YOU FOUND MY NUMBERI

This program makes the computer talk about your
friends: -

5 INPUT N

6 N=RND (=N)

10 DEF FN D(N)=INT(1+N*RND(1))

20 INPUT "TYPE THE NAME OF SOMEONE YOU LOVE...? ";
30 R=FN D(3)

40 IF R=1 THEN PRINT N$;" WEARS LOUD, STRIPED
SOCKS. ARE YOU SURE YOU WANT TO GET INVOLVED?": _
GOTO 20 -
50 PRINT NS$:;" LOVES YOU, TOO": GOTO 20

Note that lines 5 and 6 area a kind of internal EE
RESET in this program. This is called a "seed"”.
This two-line "seed" is what tells ADAM which randg
sequence to use, ﬂ;

question mark appears.

Type in any one, two, or three digit number when t?:
Line 20 makes the computer ask:

TYPE THE NAME OF SOMEONE YOU LOVE...? i;

Suppose the human says SUZY. The N§$ is SUZY. Line
30 says R is a random number from 1 to 3. If R isi;
1, line 40 makes the computer say:

SUZY WEARS LOUD, STRIPED SOCKS. ARE YOU SURE YOU E
WANT TO GET INVOLVED?

&1 =

If R is 2 or 3, the computer arrives at line 50,
which prints:

SUZY LOVES YOU, TOO

In that program, the chance is only 1 out of 3 that
the computer will say WEARS LOUD, STRIPED SOCKS
etc. The chance is 2 out of 3 that the computer
will be nicer, and say LOVES YOU, TOO. Here's a
sample run:

RUN

? 123

TYPE THE NAME OF SOMEONE YOU LOVE...? SUZY

SUZY LOVES YOU, TOO

TYPE THE NAME OF SOMEONE YOU LOVE...? JOAN

JOAN WEARS LOUD, STRIPED SOCKS. ARE YOU SURE YOU
WANT TO GET INVOLVED?

TYPE THE NAME OF SOMEONE YOU LOVE...? ALICE

ALICE LOVES YOU, TOO

TYPE THE NAME OF SOMEONE YOU LOVE...? FRED

FRED LOVES YOU, TOO

TYPE THE NAME OF SOMEONE YOU LOVE...? UNCLE CHARLIE
UNCLE CHARLIE WEARS LOUD, STRIPED SOCKS. ARE YOU
SURE YOU WANT TO GET INVOLVED?

etc,

This program predicts what will happen to you today:

5 INPUT N

6 N=RND (-N)

10 DEF FN D(N)=INT(1+N*RND(1))

20 PRINT "YOU WILL HAVE A ";

30 R=FN D(5)

40 IF R=1 THEN PRINT "WONDERFUL";

50 IF R=2 THEN PRINT "BETTER-THAN-AVERAGE";
60 IF R=3 THEN PRINT "SO-SO";

70 IF R=4 THEN PRINT "WORSE-THAN-AVERAGE";
80 IF R=5 THEN PRINT "TERRIBLE";

90 PRINT " DAY TODAY"

The computer will say:
YOU WILL HAVE A WONDERFUL DAY TODAY

or

or some in-between comment. For inspiration, run

YOU WILL HAVE A TERRIBLE DAY TODAY i
that program when you get up in the morning. _i

-
Print Zones -

What are zones and how do they work? The leftmost .
part of the screen is the first zone; to the right
of that zone lies the second zone. Each print zone
1s 16 characters wide. This allows 2 zones per lingg
on the screen and 5 zones per line on the printer, =

A comma makes the computer jump to a new zone;
here's an example:

10 PRINT "THIN","KING"

The computer will print THIN and KING on the same
line; but because of the comma before KING, the
computer will print KING in the second zone, like
this:

THIN KING

This program does the same thing:

10 PRINT "THIN",
20 PRINT "KING"

Line 10 makes the computer print THIN and then jump

to the next zone. Line 20 makes the computer printe
KING. The computer will print:

THIN KING E
This program makes the computer greet you:

10 PRINT "HI","HI" E

el 6} F

The computer will print HI two times; each time will
be in a new zone, like this:

HI HI

This program prints a list of words and their
opposites:

10 PRINT "GOOD", "BAD"

20 PRINT "BLACK","WHITE"

30 PRINT "GRANDPARENT" , "GRANDCHILD"
40 PRINT "HE","SHE"

Line 10 makes the computer print GOOD, then jump to
the next zone, then print BAD. Altogether, the
computer will print:

GOOD BAD

BLACK WHITE
GRANDPARENT GRANDCHILD
HE SHE

The first zone contains a column of words; the
second zone contains the opposites. Altogether, the
computer's printing looks like a table. So whenever
you want to make a table, use€ zones, by putting
commas in your program.

Let's make the computer print this table:

NUMBER SQUARE
9
16
25
36
49
64
8l
0 100

= Ooo~ITonUds W

Here's the program:

10 PRINT "NUMBER","SQUARE"
20 FOR I = 3 TO 10

30 PRINT I,I*I

40 NEXT I

87

Line 10 prints the word NUMBER at the top of the
first column, and the word SQUARE at the top of the
second. Line 20 says I goes from 3 to 10; to begin.
I 1s 3. Line 30 makes the computer print: -

3 9
Line 40 makes the computer do the same thing for the
next I, and for the next I, and for the next; so the
computer prints the whole table. ,
Here's another program:

10 PRINT "YOU'RE NICE","...LIKE ME!"

The computer will print YOU'RE NICE, then jump to ¢
new zone, then print ...LIKE ME! like this:

YOU'RE NICE «« LIKE ME!

LESSON 4

TACKLE THE TOUGH STUFF

Incrementing

Here's a strange program; until you stop and think
about it:

10 A=5
20 A=3+A
30 PRINT A

Line 20 means: the new A is 3 plus the old A. ©So
the new A is 3+5, which is 8. Line 30 prints:

8

Here's another one. See if you can see the logic
behind it:

10 B=6
20 B=B+l
30 PRINT B*2

Line 20 says the new B is "the old B plus 1". ©So
the new B is 6+1, which is 7. Line 30 prints:

14

In that program, line 10 says B is 6; but line 20
increases B, by adding 1 to B; so B becomes 7.
Programmers say that B has been increased or
incremented. In line 20, the "1" is called the
increase or increment.

Decrementing
The opposite of increment is decrement:
10 J=500

20 J=J-1
30 PRINT J

8Y

In line 20, the "1" is called the decrease or
decrement,
Counting

Suppose you want the computer to count, starting a
3, like this:

Moo~ U & W

Line 10 says J starts at 500; but line 20 says the
new J is "the old J minus 1"; so the new J is 500~
which is 499, Line 30 prints:
499
In that program, J was decreased, or decremented.
tC.

This program does it, by incrementing: E

10 C=3

20 PRINT C s
30 C=C+l E
40 GOTO 20

In that program, C is called the counter, because ﬂi
helps the computer count. Line 10 says C starts at

3. Line 20 makes the computer print C; so the :
computer prints: E

3

Line 30 increases C, by adding 1 to it; so C becomne
4., Line 40 sends the computer back to line 20,
which prints the new value of C:

E
) -
-
-

LH)

Then the computer comes to line 30 again, which
increases C again, so C becomes 5. Line 40 sends
the computer back to line 20 again, which prints:

5

The program is an infinite loop: the computer will
print 3,4,5,6,7,8,9,10,11,12, and so on, forever,
unless you abort your program,

Here's the general procedure for making the computer
count:

1. Start at some value (such as 3).

2 Use C. (for example, tell the computer
to PRINT C.)

3. Increase C (by saying C=C+l).
4. GO back TO step 2.

To read the printing more easily, put a semicolon at
the end of the PRINT statement:

10 C=3

20 PRINT C:" ";
30 C=C+l1

40 GOTO 20

The semicolon makes the computer print horizontally:
34567 89 etc.

This program makes the computer count, starting at
| -

10 C=1
20 PRINT C:;", ":

30 C=C+1
40 GOTO 20

The computer will print 1, 2, 3, 4, etc.

91

This program makes the computer count, starting at
0:

10 C=0

20 PRINT C;", ";
30 C=C+l

40 GOTO 20

The computer will print 0, 1, 2, 3, 4, etc.

|

=

Let's make the computer print a table showing each
number and its square, like this:

NUMBER SQUARE
0

1

4

9

16

25

36

49

64

MO WO

rf
G
i

This program does it:

5 PRINT "NUMBER", "SQUARE"
10 C=0

20 PRINT C,C*C

30 C=C+1

40 GOTO 20

Line 5 prints the headings. Lines 10-40 make the
computer count (0,1,2,3,etc.); but instead of
printing just C, line 20 also prints C*C.

92

Let's make the computer print a table that shows the
squares of decimals, like this:

NUMBER SQUARE
0 0

o | .01
. .04
«3 .09
.4 .16
> e25
.6 .36
ol .49
.8 .64
.9 .81
1 1
1.1 l.21
l.21 1.44
l.3 1.69
1.4 1.96
led 2+25
etc.

To make the computer do that, just change line 30,
so that the computer increases by .1 instead of 1:

5 PRINT "NUMBER", "SQUARE"
10 C=0

20 PRINT C,C*C

30 C=C+.1

40 GOTO 20

Quiz

Let's make the computer give this quiz:
What's the capital of Nevada?

What's the chemical symbol for iron?
What word means 'brother or sister'?

What was Beethoven's first name?
How many cups are in a quart?

93

To make the computer score this quiz, we'll have t;i
tell it the correct answers, which are:

-
CARSON CITY ’
FE
SIBLING
LUDWIG
&

10 DATA "WHAT'S THE CAPITAL OF NEVADA? ", "CARSON
CITY" i
20 DATA "WHAT'S THE CHEMICAL SYMBOL FOR IRON? ", "FES
30 DATA "WHAT WORD MEANS 'BROTHER OR SISTER'?

", "SIBLING" nj
40 DATA "WHAT WAS BEETHOVEN'S FIRST NAME? ", "LUDWIG
50 DATA "HOW MANY CUPS ARE ‘THERE IN A QUART? ","4" :
Tell the computer to READ the data: |

100 READ Q$,AS —;

S0 our program will contain this data: _i

That line reads a pair of data: it reads a questic
(Q%) and the correct answer (A$). The next step i{t
to make the computer ask the question, and wait for

the human's response: Hi

110 PRINT QS$;
120 INPUT "22";HS

Line 120 prints question marks after the question,
and waits for the human to respond; the human's :
response is called HS. HE

To complete the program, evaluate the human's
response. If the human's response (HS$) is the
correct answer (A$), make the computer say CORRECT,
and then GOTO the next gquestion:

130 IF H$=A$ THEN PRINT "CORRECT": GOTO 100

04

F M1 Wl W

But if the human's response is wrong, make the
computer say NO and reveal the correct answer:

140 PRINT "NO, THE ANSWER IS: ";A$: GOTO 100
Here's a sample run:

RUN
WHAT'S THE CAPITAL OF NEVADA??? LAS VEGAS

NO, THE ANSWER IS: CARSON CITY

WHAT'S THE CHEMICAL SYMBOL FOR IRON??? FE
CORRECT

WHAT WORD MEANS 'BROTHER OR SISTER'??? I GIVE UP
NO, THE ANSWER IS: SIBLING

WHAT WAS BEETHOVEN'S FIRST NAME??? LUDVIG

NO, THE ANSWER IS: LUDWIG

HOW MANY CUPS ARE IN A QUART?7?7? 4

CORRECT

OQUT OF DATA ERROR IN 100

To give a quiz about different topic, change the
data in lines 10-50.

Instead of making the computer say OUT OF DATA ERROR
IN 100, let's make it say:

I HOPE YOU ENJOYED THE QUIZ

To do that, write an end mark and an end routine:
60 DATA "DONE", "DONE"

100 READ Q$,AS$: IF QS$S="DONE" THEN PRINT "I HOPE YOU
ENJOYED THE QUIZ": END

Let's also make the computer count how many

questions the human answered correctly. To do that,
we need a counter. As usual, we'll call 1t C:

Q5

5 =0 I’

10 DATA "WHAT'S THE CAPITAL OF NEVADA? ", "CARSON
CiTY" -
20 DATA "WHAT'S THE CHEMICAL SYMBOL FOR IRON? ","FI B
30 DATA "WHAT WORD MEANS 'BROTHER OR SISTER'?

", "SIBLING" .
40 DATA "WHAT WAS BEETHOVEN'S FIRST NAME? “,“LUDWI(_E
50 DATA "HOW MANY CUPS ARE IN A QUART? ","4"

60 DATA "DONE","DONE"

100 READ Q$,AS: IF QS$="DONE THEN PRINT "YOU ANSWERLE
";C;" OF THE QUESTIONS CORRECTLY": PRINT "I HOPE YOU
ENJOYED THE QUIZ": END

110 PRINT QS ;
120 INPUT "?22";HS

130 IF H$=A$ THEN PRINT "CORRECT": C=C+l: GOTO 100 ,
140 PRINT "NO, THE ANSWER IS: ";AS: GOTO 100 jE

Line 5 begins the counter at 0 (because at the ;
beginning, the human hasn't answered any qguestions ;
correctly yet). When the program ends, line 100
prints the value of the counter. Line 130 makes
sure that each time the human answers a question j;
correctly, the counter increases.

Line 100 prints a message such as: JE

YOU ANSWERED 2 OF THE QUESTIONS CORRECTLY

"B

Summing

Let's make the computer imitate an adding machine,
80 a run looks like this:

RUN

NOW THE SUM IS 0

WHAT NUMBER DO YOU WANT TO ADD TQO THE SUM? 5
NOW THE SUM IS 5

WHAT NUMBER DO YOU WANT TO ADD TQO THE SUM? 3
NOW THE SUM IS 8

WHAT NUMBER DO YOU WANT TO ADD TO THE SUM? 6.1
NOW THE SUM IS 14.1

WHAT NUMBER DO YOU WANT TO ADD TO THE SUM =10
NOW THE SUM IS 4.1

etc.

F Y 51 71 Bl WY mw

D6

Here's the program:

10 S=0
20 PRINT "NOW THE SUM IS ";S
30 INPUT "WHAT NUMBER DO YOU WANT TO ADD TO THE SUM?
Il.x
’
40 S=5+X
50 GOTO 20

To exit from these looping programs, hit CONTROL-C.

Line 10 starts the sum at 0. Line 20 prints the
sum, Line 30 asks the human what number to add to
the sum; the human's number is called X. Line 40
adds X to the sum, so the sum changes. Line 50
makes the computer go to line 20 which prints the
new sum, Lines 20-50 form an infinite loop, which
you must eventually abort. Here's the general
procedure for making the computer find a sum:

l. Start S at 0

2. Use S. (For example, tell the computer to PRINT
S)

3. Find out what number to add to S. (For example,
tell the human to input a number X)

4. Increase S (by saying S=S+the number to be
added)
5. GO back TO step 2.

Checking account

If your bank is nasty, it treats your checking
account something like this: you must pay a 20 cent
service charge for each good check; you must pay a
$10 penalty for each check that bounces; and the
money you've deposited earns no interest.

a7

This program makes the computer imitate such a hankE

10 S=0

20 PRINT "YOUR CHECKING ACCOUNT CONTAINS $ ";S E
30 INPUT "DEPOSIT OR WITHDRAW? ";AS

40 IF AS$="DEPOSIT" THEN GOTO 100

50 IF A$="WITHDRAW" THE GOTO 200 E

60 PRINT "PLEASE SAY 'DEPOSIT' OR 'WITHDRAW'": GOTO

30

100 INPUT "HOW MUCH TO YOU WANT TO DEPOSIT? ";D E
110 S=S+D

120 GOTO 20

200 INPUT "HOW MUCH DO YOU WANT TO WITHDRAW? ";W E
210 W=w+.20

220 IF W<=S THEN PRINT "OKAY": S=S-W: GOTO 20

230 PRINT "THAT CHECK BOUNCED": S=S-10: GOTO 20 E

Line 10 starts the sum at 0. Line 20 prints the ,
sum., Line 30 asks whether the human wants to E
deposit or withdraw.

If the human says DEPOSIT, the computer goes from E
line 40 to line 100, which asks how much to

deposit. Line 110 increases the sum in the accnuntE
by adding the deposit.

Line 120 sends the computer back to line 20, which
tells the human the new sum (i.e., the balance), a
gets ready for the next transaction.

If the human says WITHDRAW instead of deposit, the
computer goes from line 50 to line 200, which asks
how much to withdraw. Line 210 adds the 20 cent -
charge to the withdrawal amount. Line 220 cc:mparesE
the withdrawal amount (W) against the sum in the
account (S). If W<=S, the computer says OKAY,
processes the check, decreases the sum in the
account (by subtracting W), and gets ready for the
next transaction (by going back to line 20). If W>§
instead, the computer says THAT CHECK BOUNCED,
decreases the sum in the account by $10 (the penalty
fee), and goes back to line 20, for the next _
transaction. E

Again, to exit this program, press CONTROL-C and
RETURN. i

Us m

Series

Let's make the computer add together all the numbers
from 7 to 100. In other words, let's make the
computer find the sum of this series:

7+8+49+...+100, Here's how:

Set the sum at zero: 10 S=0
Make I go from 7 to 100: 20 FOR I=7 TO 100
Add each I to sum: 30 S=S+1
40 NEXT I
Print final sum: 50 PRINT S

Let's make the computer add together the squares of
all the numbers from 7 to 100. In other words,
let's make the computer find the sum of this series:
(7 squared) + (8 squared) + (9 squared) + ...+ (100
squared). Here's how:

10 S=0

20 FOR I = 7 TO 100
30 S=S+I1*1

40 NEXT I

50 PRINT S8

It's the same as the previous program, except that
line 30 says to add I*I instead of I. Line 50
prints the final sum, which is 338259.

Data

This program adds together the numbers in the data:

10 S=0

20 DATA 5, 6.1, etc.

30 DATA etc.

40 DATA etc.

50 DATA 0

60 READ X: IF X=0 THEN PRINT S: END
70 S=5+X

80 GOTO 60

Line 10 starts the sum at zero. Lines 20-40 contain
the numbers to be added. The zero in line 50 is an
end mark, Line 60 reads an X from the data. If the
X it reads is zero, then end of the

90

data has been reached, so we want the computer to
print the sum (S) and stop; but if the X it reads is
not zero, the computer proceeds from line 60 to lin
70, adds X to the sum, and goes from line 80 to ling
60, which reads another X.

Instead of being a single number, X can be a whole E
list of numbers, like this:

57 .2 -

-8.3
476

X= 2.008
-19
372.402
0
215.6

Single Subscripts

Here's how to make X be that list of numbers. . .
Begin your program by saying:

10 DIM X(8)

dimension; the line says the dimension of X is 8. =
Next, tell the computer what numbers are in X. Type
these lines:

That says X will be a list of 8 numbers. DIM meansE

20 X(1)=57.2

30 X(2)=-8.3

40 X (3)=476

50 X(4)=2.008
60 X(5)=-19

70 X(6)=372.402
80 X(7)=0

90 X(8)=215.6

Line 20 says: X's first number is 57.2. Line 30
says X's second value is -8.3. The remaining lines
define the other numbers in X.

10X

If you'd like the computer to print all those
numbers, type this:

100 PRINT X(1) ,X(2) ,X(3) ...etC,

That means: print all the numbers in X. The
computer will print:

57 .2 -8¢3
476 2.008
-19 372.402
0 215.6

To achieve the same results, in a single column
configuration, you can say:

100 FOR I = 1 TO 8: PRINT X(I): NEXT

In that program, line 20 talks about X(1l): Instead
of saying X(1), math books say:

X1

The "1" is called a subscript. Similarly, in line
30, which says "X(2)=-8.3", the number 2 is a
subscript. Some programmers pronounce line 30 like
this: "X subscripted by 2 is -8.3". To be briefer,
most programmers say this instead: "X sub 2 is
-8.3". Some programmers simply say: "X 2 1s -8.3".

In that program, X is called an array. Definition:
an array is a variable that has subscripts. An
array may be multidimensional in that it may have 1
to 88 dimensions.

Data

That program said X(1) is 57.2, and X(2) 1s -8.3,
and so on, This program does the same thing, more
briefly:

10 DIM X(8)

20 DATA 57.2, -8.3, 476, 2.008, -19, 372.402, 0,
215.6

30 FOR I
40 FOR I

1l TO 8: READ X(I): NEXT
1 TO 8: PRINT X(I): NEXT

101

lines. This line makes the computer add the eight
numbers together and print the sum:

50 PRINT X(1)+X(2)+X(3)+X(4)+X(5)+X(6)+X(7)+X(8)
That 1line makes the computer print:

Let's make the program fancier, by adding extra 3
1095.91 ﬂ
Let's make the computer print the numbers in reverswi
order (starting with the eighth number, and ending
with the first). In other words, let's make the
computer print X(8), the print X(7), then print
X(6), etc, To do that, you could say:

60 PRINT X(8)
70 PRINT X(7)
80 PRINT X(6)
etc.

But this way is shorter:

70 PRINT X (I)
B0 NEXT I

Lines 60-80 print:

60 FOR I = 8 TO 1 STEP -1 E
215.6
0 -
372.402

-19

2,008 .
476

-8.3

57.2 -
So, if you run this program, you'll get the initial j
listing, the total, and the initial listing again, E
but in reverse order,.

102 .

Analysis

Suppose you want to analyze 50 numbers. Begin your
program by saying:

10 DIM X(50)
Then type 50 numbers, as data, like this:

20 DATA etc.
30 DATA etc.
40 DATA etc.

Tell the computer to READ the data:

100 FOR I 1l TO 50: READ X(I): NEXT

After line 100, you have many choices, depending on
which problem you want to solve. . .

Problem: print all the values of X. Solution:

110 FOR I = 1 TO 50
120 PRINT X(I)
130 NEXT I

Problem: print all the values of X, in reverse
order. Solution:

110 FOR I = 50 TO 1 STEP -1
120 PRINT X (I)
130 NEXT I

Problem: print the sum of all the values of X. In
other words, print X(1)+X(2)+X(3)+...+X(50).
Solution: start the sum at 0:

110 S=0

and then increase the sum, by adding each X(I) to
it:
120 FOR I = 1 TO 50

130 S=S5+X(I)
140 NEXT I

103

Solution: begin by finding the sum:

110 S=0

120 FOR I = 1 TO 50
130 S=S+X(I)

140 NEXT I

and then divide the sum by 50:
150 PRINT "THE AVERAGE IS ";S/50

Problem: f£find out whether any of the values of X
79.4., 1In other words, find out whether 79.4 is a
number in the list. Solution: if X(I) 1is 79.4,
print YES:

Finally, print the sum:
150 PRINT "THE SUM OF ALL THE NUMBERS IS ";S
Problem: find the average value of X. 1In other
words, find the average of the 50 numbers.
110 FOR I = 1 TO 50 ii
120 IF X(I)=79.4 THEN PRINT "YES, 79.4 IS IN THE
LIST":END -
130 NEXT I

otherwise, print NO: ii

140 PRINT "NO, 79.4 IS NOT IN THE LIST"

Problem: in the list of numbers, count how often thE

number 79.4 appears. Solution: start the counter
at zero:

110 C=0

number is 79.4:
120 FOR I = 1 TO 50

130 IF X(I)=79.4 THEN C=C+l

and increase the counter each time you see the E
140 NEXT I ;

Finally, print the counter:
-
.
-

150 PRINT "THE NUMBER 79.4 APPEARS ";C;" TIMES"

10k

Problem: print all the values of X that are
negative. In other words, print all the numbers
that have minus signs. Solution: begin by
announcing your purpose:

110 PRINT "HERE ARE THE VALUES THAT ARE NEGATIVE:"

and then print the values that are negative; in
other words, print each X(I) that's less than 0:

120 FOR I = 1 TO 50
130 IF X(I)<0 THEN PRINT X(I)
140 NEXT I

Problem: print all the values of X that are "above
average”™, Solution: find the average, and make A
the average:

110 S=0

120 FOR I = 1 TO 50
130 S=S+X(I)

140 NEXT I

150 A=S/50

then announce your purpose:

160 PRINT "THE FOLLOWING VALUES ARE ABOVE AVERAGE:"

Finally, print the values that are above average; in
other words, print each X(I) that's greater than A:

170 FOR I = 1 TO 50
180 IF X(I)>A THEN PRINT X(I)

190 NEXT I

Problem: find the biggest value of X. 1In other
words, find which of the 50 numbers is the biggest,
Solution: let B stand for the biggest number,
Begin by tentatively setting B equal to the first
number :

110 B=X(1)

but if another number is bigger than that B, change
B:

15

120 FOR I = 2 TO 50

130 IF X(I)>B THEN B=X(I)
140 NEXT I

Afterwards, print B:

150 PRINT "THE BIGGEST NUMBER IN THE LIST IS ";B

Problem: find the smallest value of X. 1In other
words, find which of the 50 numbers is the ;
smallest. Solution: 1let S stand for the smallest

number. Begin by tentatively setting S equal to the
first number: -

110 S=X(1)
but if another number is smaller than S, change S:

120 FOR I = 2 TO 50
130 IF X(I)<S THEN S=X(I)
140 NEXT I

Afterwards, print S:
150 PRINT "THE SMALLEST NUMBER IN THE LIST IS "8

Problem: find out whether the values of X are in
strictly increasing order. 1In other words, find niﬁ
whether the following statement is true: X(1) is a
smaller number than X(2), which is a smaller number
than X(3), which is a smaller number than X(4), ii
etc. Solution: if X(I) is not smaller than X(I+1),
print NO: i;
110 FOR I =1 TO 49

120 IF X(I)>=X(I+l1l) THEN PRINT "NO, THE LIST IS NO
IN STRICTLY INCREASING ORDER": END h
130 NEXT I

otherwise, print YES:

140 PRINT "YES, THE LIST IS IN STRICTLY INCREASING
ORDER"

-
=

106

l

Multiple Arrays

Suppose your program involves two lists of numbers.
Suppose the first list is called A and the second
list is called B. Suppose A's list contains 18

numbers and B's list contains 57 numbers. ToO say
all that, begin your program with this statement:

10 DIM A(18), B(57)
Double Subscripts

You can make X be a table of numbers, like this:

xX= 5? B.4
=6 1000
0 7 i

Here's how to make X be that table:
Begin by saying:

10 DIM X(3,2)

That says X will be a table, having 3 rows and 2
columns.

Then tell the computer what numbers are in X. Type
these lines:

20 X(1,1)=57
30 X(1,2)=8.4
50 X(2,2)=1000
60 X(3,1)=0

70 X(3,2)=7.717

Line 20 says: the number in X's first row and first
column is 57. Line 30 says the number in X's first
row and second column is 8.4. The remaining lines
define the other numbers in X.

| O

=

If you'd like the computer to print all those
numbers, type this:

80 FOR I =1 TO 3: FOR J = 1 TO 2: PRINT X(1,J),: i
NEXT: PRINT: NEXT

In that program, X is called a table or a doubly i
subscripted array.

Multiplication table
This program prints a multiplication table:

10 DIM X(10,2)

20 FOR I = 1 TO 10

30 FORJ =1 TO 2

40 X(I,J)=I*J

50 NEXT J

60 NEXT I

70 FOR I = 1 TO 10: FOR J = 1 TO 2: PRINT
X(I,J),:NEXT: PRINT: NEXT

Instead of multiplication, you can have addition,
subtraction, or division: just change line 40.

Most programmers follow this tradition: the row's
number is called I, and the column's number is
called J. Line 40 obeys that tradition. Notice I®
comes before J in the alphabet; I comes before J in
X(I,J): and FOR I comes before FOR J in lines ,
20-30. If you follow the I-before-J tradition, i
you'll make fewer errors.

sSums

Suppose you want to analyze this table:

32.7 19.4

-8 402

5106 =2

36.0 .04

777 666

1.99 2.99

50 40

12 3% -
0 1000 ’
108

The table has 9 rows and 2 columns; sSo begin your
program by saying:

10 DIM X(9,2)
Each row of the table becomes a row of the data:

11 DATA 32.7, 19.4
12 DATA _Bp 402

13 DATA 5106, -.2
14 DATA 36.0, .04
15 DATA 777, 666
16 DATA 1.99, 2.99
17 DATA 50, 40

18 DATA 12, 21

19 DATA 0, 1000

Make the computer read the data:

I

20 FOR I = 1 TO 9: FOR J
NEXT: NEXT

1l TO 2: READ X(I,J):

To make the computer print the table, say this:

30 FOR I =1 TO 9: FOR J =1 TO 2: PRINT X{Y,d) 2
NEXT: PRINT: NEXT

problem: find the sum of all the numbers in the
table. Solution: start the sum at O:

100 S=0

and then increase the sum, by adding each X(I,J) to
it:

100 FOR I =1 TO 9
120 FOR J = 1 TO 2
130 S=S+X(I1,J)

140 NEXT J

150 NEXT I

Finally, print the sum:

160 PRINT "THE SUM OF ALL THE NUMBERS IS ";S

100

The computer will print:

THE SUM OF ALL THE NUMBERS IS 8158.82

~ Rl n"i

Problem: find the sum of each row. In other words,
make the computer print the sum of the numbers in
the first row; and then print the sum of the numbe
in the second row; and then print the sum of the
numbers in the third row; etc. Solution: the
general idea is:

100 FOR I =1 TO 9
110 print the sum of row I
120 NEXT I

Here are the details:

100 FOR I = 1 TO 9

110 S=0

111 FORJ =1 TO 2

112 S=S+X(I,J)

113 NEXT J

114 PRINT "THE SUM OF ROW ";I;" IS ":;S
115 NEXT I

The computer will print:

FEL) Al Bl 1 M1 Wl W

THE SUM OF ROW 1 IS 52.1
THE SUM OF ROW 2 IS 394
THE SUM OF ROW 3 IS 5105.8
etc.

Problem: find the sum of each column. In other
words, make the computer print the sum of the
numbers in the first column; and then print the sum
of the numbers in the second column; and then printes
the sum of the numbers in the third column: etc. E!
Solution: the general idea is:

- T "ML

100 FOR J = 1 TO 2 E
110 print the sum of column J '
120 NEXT J E

|
110 —

Here are the details:

100 FOR J =1 TO 2

110 S=0

11] FOR I =1 TO 9

112 S=S+X(I,J)

113 NEXT I

114 PRINT "THE SUM FOR COLUMN ";J;" IS ";S8
115 NEXT J

The computer will print:

THE SUM OF COLUMN 1 IS 6007.59
THE SUM OF COLUMN 2 IS 2151.23

In all the other examples we looked at, FOR I comes
before FOR J, but in this unusual example, FOR I
comes after FOR J.

String Arrays

You've seen that X can be a list of numbers, or a
table of numbers. Similarly, on ADAM, X§$ can be a
list of strings, or a table of strings. For
example, you can make X$ be this table:

DOG CAT
X$= WOOF MEOW
HOTDOG CATSUP

by saying this:

10 DIM X$(3,2)

20 X$(1,1)="DOG"

30 X$(1,2)="CAT"

40 X$(2 ;1) ="WOOF"
etc.

or by saying this:
10 DIM X$(3,3)
20 DATA DOG,CAT,WOOF, MEOW, HOTDOG, CATSUP,

30 FOR I =1 TO 3: FOR J =1 TO 2: READ X$(I,J):
NEXT: NEXT

|11

LOW RESOLUTION GRAPHICS
UNDERSTANDING CONCEPTS

The only concept you really need to understand in
this section is how graph paper works. "It doesn'
work, it just sits there". . . I know, I know. But
for accuracy, it might be a good idea to take out
piece of graph paper, since the screen doesn't 1i
divide itself into an actual grid pattern that you
can see, However, 1f you're into the more etherealms
and less concrete, then picture, in your mind, a 'ﬁi
piece of graph paper. On this graph paper, there
are 40 columns and 40 rows, with space for four
lines of text at the bottom. Think of your screen H
as if it was this piece of graph paper. Type GR.
You will notice that the screen has gone black.
Don't worry, you didn't kill it. You'll also see
that the text cursor is now at the bottom of the
screen, and your text has been cleared. i

Drawing with ADAM

-
Now, since man cannot live by black-and-white alone@
you have 16 colors to choose from, merely by typing
COLOR= at this time. The chart below will show you
which color options you have, and the codes you mu&i
enter in order to use them:

g

Color
black

magenta (purple)

dark blue i
dark red

dark green

grey]
medium green

light blue

dark yellow (orange) j
medium red

grey

light red J
light green

light yellow

cyan (agua) J
white

I OO EWN O
MW O

112

|HOTE= The listed colors willl appear somewhat
different, depending upon what sort of television
set your ADAM 1s hooked up to. Also--if you want
lcolor graphics, ADAM must be hooked up to a color
television. You won't see color on a black and
lHhite set !

To get ADAM to draw for you, in straight lines, vou
‘have to input instructions on which way to draw the
rlines, vertically or horizontally.

Horizontal Lines

The command for a horizontal line is HLIN. You must
type this in, along with a location on the screen
grid (remember the graph paper?). Here's an
example:

HLIN 5,20 AT 35

5,20 indicates the ¢olumn in which the line is to
begin and end. This one would, therefore, begin at
column 5 and end at column 20. AT 35 designates the
Iow in which the line will be drawn. The 5 and the
20 are known as first epd point and gecond epd
point, respectively. The first end point may be
greater than, equal to, or less than the second end
point, Remember that these "points" are locations
and pot values.,

Try running this program:

10 GR
20 COLOR=14
30 HLIN 10,35 AT 20

Line 20 sets the color to cyan (a shade of blue).
Line 30 tells ADAM to draw a line in row 20 from
column 10 to column 35. Another thing to remember
is that the first column and the first row are not
numbered 1, but 0. Don't worry, you still have 40
columns, but they're numbered 0 to 39, and you still
have 40 rows, too, which are also numbered 0 to 39.

113

Right now you're probably mumbling to yourself abo
people who tell you that no math is required to
program ADAM. Take heart--this isn't really math,,
so stop playing with your mental blocks and put th
away. What you really have in front of you is a
space—age version of an Etch-A-Sketch. Remember
those? Red plastic with two white dials--one for
vertical and one for horizontal? And you could
erase the screen by shaking it up and down? Well,
DON'T shake ADAM to erase the screen! This gets
expensive. The analogy may be a bit

gsimplified, but for our purposes, the idea of
plotting coordinates may frighten you less if you
think of your computer graphics as an electronic
Etch-A-Sketch. l

Vertical Lines

So. We have horizontal lines. On to vertical. i
It's almost the same set-up as HLIN, except the
command is VLIN. The main difference between VLIN
and HLIN 1s this:

HLIN plots column coordinates first and uses a row
coordinate for an end point.

coordinate for an end point.

Oh, it is not either confusing. Try this program
for VLIN:

10 GR
20 COLOR=1
30 VLIN 10,21 AT 20

-
-
VLIN plots row coordinates first and uses a cnlumni
:
:

Line 20 sets the color to magenta., Line 30 tells
your computer to draw a vertical magenta line from
row 10 to row 21 in (AT) column 20.

Are you beginning to see the creative possibilities
in this? Are yvou parents thinking, "Hmmmm, this
could be a great way to keep the kids busy!"? AreJ
you kids thinking, "Hmmmmm, this could be a great

way to keep my parents busy!"? J

| 14 |

;Blnck Coloring

If you want to move from line drawing into filling
iin a whole square, or "block" on your "graph-paper"
grid, you'll need the PLOT statement.

iTry this one:

10 GR
20 COLOR=13
30 PLOT 20,2

IWhat happened on your screen? Did you get a block
of yellow (13) at column 20, row 2? You can create
@ pattern on your screen by writing up a long
program that changes the colors many times in many
different grid locations, 1It's easy! 1It's fun!

'It's computer needlepoint!

When plotting coordinates, keep in mind that
coordinate position 0,0 (column 0, row 0) is at the
'tup left corner, 39,0 (column 39, row 0) is at the
top right corner. 0,39 (column 0, row 39) is at the
bottom left corner. 39,39 (column 39, row 39) is at
Ithe bottom right corner of your screen.

lHere's a wild program. Run this one:

10 GR

20 COLOR=INT(RND(1) *16)
fan X=INT(RND(1l)*40)

40 Y=INT(RND(1) *40)

50 PLOT X,Y

60 GOTO 20

Didn't know ADAM could dance, did you?

NOTE: Variables X and Y signify columns and rows
respectively.

SCRN Function

Our next function is called SCRN. This reads the
color displayed at any designated position on your

115

graphics screen. So, if you had done some computegs
coloring and needed to know what color was in the
block at column 5 row 9, type:

SCRN (5,9)

and your computer will tell you what color you
selected for that coordinate block.

These functions are not intended for use with

high-resolution graphics. For information on the
use of high-resolution graphics, please consult thg
reference section at the back of this manual.

when you're finished experimenting with graphics, =
you can return to a full text display screen simpljiss
by typing:

P
TEXT s

And that's all there is to low-resolution graphicCs..=
Wasn't as hard as you thought it would be, was it?js

For an interesting example that shows how you can s
use the game controllers to draw pictures, see thejs
PDL function in the Reference Section.

- mn

Congratulations, ADAM programmer! E

School's out, and you've just graduated! In
successfully completing the initial learning proces
on your ADAM Family Computer, you are now an ﬁ;
official SmartBASIC programmer. Should you care to
press on and learn a little more, turn to the
Reference Section which follows. This section
discusses more advanced commands which you may find
will be handy to understand for future use. P
—

EF ML "N

ADAMTM smartBASICTM
REFERENCE SECTION
—
—
—
—
—
—
—
—
—
—
—

TABLE OF CONTENTS

ABS

AND

ARROW KEYS
ASTERISK
BACKSPACE
CATALOG
CHRS

CLEAR
CLOSE
COLON
COLOR=
COMMA
CONT
CONTROL KEYS
DASH
DATA/READ
DEF FN

DEL

DELETE

DIM
DOLLAR SIGN
END

ERRNUM
FLASH

FOR. . . STEP/NEXT

FN

GET
GOSUB
GOTO

GR
HCOLOR=
HGR

HGR2

HLIN

HOME

HOME (key)
HPLOT
HTAB
IF...GOTO
IF...THEN
INPUT

INT
INVERSE

A-1
A-2
A-3
A-4
A-5
A-6
A-T
A-8
A-9
A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19

A-20-22

A-23
A-24
A-25
A-26
A-27
A-28
A-29
A-30
A-31
A-32

A-33-34

A-35
A-36
A-37
A-38
A-39
A-40
A-41
A-42
A-43
A-44
A-45
A-46

ONERR GOTO/CLRERR
ON. ..GOSUB
ON. . .GOTO

OPEN

OR

PARENS

RETURN(key)
RIGHTS

SAVE

SEMI COLON
SGN

SPEED=
SOR
STOP
STRS
TAB

TRACE/ NOTRACE

A-47
A48
A-49

A-50-51

A-32
A-53
A-54
A-55
A-56
A-57
A-58
A-59
A-60
A-61
A-62
A-63
A-64
A-65
A-66
A-67
A-68
A-69
270
A-71
72
A-73
A-74
A-75
A-76
A-T1
A-78
A-79
A-80
A-81
M-82
A-83
A-84
A-85
A-86
A-87
A-88
A-89
2-90
A-91
A-92
A-93
A-94

A-95-96

UNLOCK A~ 97

VAL A- 98
VLIN A- 99
VPOS 2-100
VTAB A-101
WRITE/READ A-102

For more advanced commands, refer to the ADVANCED
REFERENCE SECTION, which follows this section.

WARNING:If you try to use BASIC commands that are
not documented on the following pages, you may get
unpredictable results.

COMMANDS are used in the immediate mode.
STATEMENTS are used in programs.

OS COMMANDS can only be used in programs by
printing them preceded by a CONTROL~-D.

Function

ABS

ABS is a special function which strips the minus
signs from negative numbers and leaves other
numbers unchanged. In other words, it returns the
absolute value of the given number. A number's
absolute value is its value without a plus or a

minus sign.

Test Program:

10
20
30
40
50
60

X=35

PRINT "ABS WORKED IF ";
PRINT ABS(-436.38);" ";
PRINT ABS(-.63245);" ";

PRINT ABS(-X)
PRINT "ARE ALL PRINTED AS POSITIVE

NUMBERS. "

70

Sample Run:

END

ABS WORKED IF 436.38 .63245 35
ARE ALL PRINTED AS POSITIVE NUMBERS.

A-1

Operator

AND

AND is a logical operator. This means that it is
used to combine and compare two logical values
(true/false) to yield a logical result. AND 1is
true (value=l) if both expressions are true. AND
is false (value=0) if one or both expressions are
false.

Test Program:

10 A=6

20 B=4

30 IF A=6 AND B=4 THEN 60
40 PRINT "'AND' BLEW IT"

50 GOTO 70
60 PRINT "'AND' WORKED!"
70 END

Sample Run:

'"AND' WORKED!

A-2

Function

ARROW KEYS

UP ARROW - will make the cursor move up one line,
but will not change the buffer or force a scroll.

DOWN ARROW - will move the cursor down one line,
but will not change the buffer or force a scroll,

RIGHT ARROW - will copy the character the cursor
is currently under into the input buffer and move
the cursor to the right.

LEFT ARROW - will take the last character out of
the buffer and move the cursor to the left.

If you hold down any of these keys, the movement
of the cursor left, right, up, or down will be
repeated.

Test Program:

NONE

Sample Run:

NONE

A-3

Operator

ASTERISK
(%)

Asterisks are used in mathematics to indicate
multiplication.

Test Program:

10 PRINT 10+(6%*2)

Sample Run:

22

A4

' Function

BACKSPACE
I (key)

!The BACKSPACE key does the same thing as the left
arrow key. See Arrow Keys.

Test Program:

NONE

Sample Program:

NONE

0S Command

CATALOG

CATALOG prints out an index of all file names in
your digital data pack directory to your screen or
your printer, This enables you to see what's
stored on your digital data pack.

Test Program:

J]CATALOG,D1

The "D1" is optional, and tells ADAM to CATALOG
using the first (left-most) digital data pack. If
you wish to use the second digital data pack,
substitute "D2".

Sample Run:

This will print out a listing of the
names of all files stored on your
digital data pack.

VOLUME: HELLO
A 1 FACE

A 1 DAMAGE
a 1 DAMAGE

250 Blocks Free

The capital A's beneath VOLUME tell you that these
files are main files. The small a signifies a
back up file. The 1's tell you how many blocks of
memory your files have taken up. Each block holds
1K or 1024 characters. The final message lets you
know how much space you have left (measured in
blocks) in memory.

A-6

Function

CHRS

This function takes a numeric ASCII decimal code
and matches it up with the character or the value
of the string variable it represents.

Test Program:

10 REM THIS IS A 'CHRS$' TEST PROGRAM
20 PRINT CHRS$(75)
30 END

Sample Run:
K

75 represents the letter K in ASCII code.

NOTE: CHRS$(4) = control D
CHRS$(7) = bell
CHRS(10)= linefeed
CHRS(13)= carriage return

See the Compendium (Appendix C) at the
back of this manual for a complete ASCII
character code table.

Command
Statement

CLEAR

CLEAR 1is used to free up memory space by setting
all numeric variables to zero and erasing all
string variable data -- so be careful when you use

it!

Test Program:

10 A=705

20 AS="TEST STRING"

30 PRINT "BEFORE 'CLEAR' A=":A

40 PRINT "STRING VARIABLE AS=":AS
50 CLEAR

60 PRINT "AFTER 'CLEAR' A=";A

70 PRINT "STRING VARIABLE AS$=":AS

Sample Run:

BEFORE 'CLEAR' A=705

STRING VARIABLE AS=TEST STRING
AFTER 'CLEAR' A=0

STRING VARIABLE AS=

A8

0S Command
CLOSE

You must CLOSE a file when you are finished
working on it. If you wish to close a file, use
the syntax:

CLOSE<filename>, [D#]

If you fail to C(IOSE a file, ADAM will allocate
the rest of the space on the digital data pack for
the file. To fix this problem, type
(LOSE<filename> in the immediate mode.

Note: If you DELETE a file that has not been
CLOSED ADAM may get confused as to how much
space is left on your digital data pack. A

remedy is to copy all your files to a new
data pack and INIT the old one,

Test Program:

(You've stored a file named "FACE")

10 D$=CHRS(4)
20 PRINT D$;"OPEN FACE,D1"
30 PRINT D$;"CLOSE FACE"

Sample Run:
The file called FACE 1is now closed.

A-9

Operator

COLON(:)

Colons are used to place several statements on the
same line,

|

Test Program:

10 A=5: B=7: PRINT A+B

Sample Run:

12

A-10

Command
Statement

COLOR=

COLOR= sets the display plotting color for low
resolution graphics mode. The color code may also
be a numeric variable. See the list of codes and
colors below:

ODE COLOR

black

magenta (purple)
dark blue

dark red

dark green

grey

medium green
light blue

dark yellow (orange)
medium red

grey

light red

light green
light yellow
cyan (aqua)
white

wo~Jonbhn&awpp - OO

N el el el el
MW O

Test Program:

10 GR
20 COLOR=14
30 HLIN 10,35 AT 20

Sample Run:

A line of cyan (aqua) from column 10 to
column 35 has been drawn in row 20.

A-11

Operator

COMMA
(/)

A comma 1s usually used in a PRINT statement., The
comma serves to make the information which follows
it print in the next zone of your output device

(screen or printer). Commas are used to separate
variables in an INPUT statement.

Test Program:

10 PRINT 1,2
20 PRINT 3,4

Sample Run:

1 2
3 4

The numbers are grouped into two
columns, one column per zone.

Test Program:

10 INPUT " NAME 2 COLORS ":;AS,BS
20 PRINT AS$,BS

Sample Run:

NAME 2 COLORS RED,BLUE
RED BLUE

A-12

Command

CONT

This command is useful in restarting a program
which has been halted prematurely by a CONIROL~C,
STOP, or END statement. The difference between
CONT and RUN is that RUN will start the whole
program over again from the beginning, whereas
CONT will continue the program from where it was
stopped, as long as you don't make a change to the
program before typing in CONT.

Test Program:

10 PRINT “I HAVE A MICROCHIP ON MY
SHOULDER"

20 PRINT "ENTER THE 'CONT' COMMAND"
30 STOP

40 PRINT “AND A BYTE ON MY LEG"

50 END

Sample Run:
I HAVE A MICROCHIP ON MY SHOULDER

AND A BYTE ON MY LEG

A-13

CONTROL
KEYS

CONTROL-C - Breaks into a program which is in the*™
process of running onscreen., Allows you to stop or
abort a running program. Pick up the run where youy
broke it by typing in CONT. Start it over again, at
the beginning, by typing RUN. If your program 1s
waiting for INPUT, the CONTROL-C will not take
effect until you press RETURN.

CONTROL-D - When PRINTed allows the use of 0S
commands from within a program.

CONTROL-H - Does the same as BACKSPACE key.

CONTROL-L - Clears the screen. No data in the

=
-
buffer is changed. E
CONTROL-M - Does the same as RETURN key.
-
=

CONTROL-N - Allows you to insert a letter, word,
phrase, or paragraph at whatever point you
designate,

CONTROL-0 - Acts as a delete key. Allows you to
erase any information you wish to dispose of.

CONTROL-P - Will output to printer whatever is on
your screen, Be sure you have paper in your printeﬁ
before pressing this! The printer cannot be stoppec
until it has printed out the whole screen!

CONTROL-S =~ Freezes your screen without breaking i
into your program., That is, it temporarily stops
the output on your screen until you press COHTROL-S‘E
to restart it.

CONTROL-X - Will "undo" an input line. But i
instead of erasing it, a backslash will appear at
the end of the line to be disregarded. J

CONTROL-=-— Moves the cursor left and has no other
effect.

CONTROL-—Moves the cursor right and has no other -
effect.

A-14

Operator

DASH (-)

The dash indicates subtraction.

Test Program:

10 PRINT 5-3

Sample Run:

2

A-15

Statement
DATA/READ

The DATA statement contains a list of items or
facts which will be needed in your program. It's
a sort of “reference section" or information

pool. Don't use DATA without READ. Every item in
your DATA statement must be separated with a
comma. If an item must contain a comma, enclose
the entire item in quotes.

READ reads from DATA and assigns each item to a
variable., DATA statements can be located anywhere
in the program.

Test Program:

10 DATA MEAT, POTATOES, LETTUCE, TOMATOES,
BUTTER, CHEESE, ONIONS, PEAS

20 READ AS

30 PRINT AS

40 GOTO 20

Sample Run:

MEAT

POTATOES

LETTUCE

TOMATOES

BUTTER

CHEESE

ONIONS

PEAS

20ut Of Data Error In 20

A-16

Statement

DEF FN

The DEF FN (define function) statement lets you
create your own formulas; which can really save
you time. Instead of writing the same formula
over and over again, just define it once as a
function, name it, then just use that name to call
it up when you need it. But take care not to
begin the names of two different functions with
the same two letters (e.g. DULL and DUMMY).

This would end up referring to the same function,
since both names begin with the same two
characters. The variable used in DEF FN is a
dummy. It must be a real (floating point)
variable. String or interger variables are not
allowed. You may change the name of the variable
when you use it later in FN.

Test Program:

10 PRINT "THIS CONVERTS FAHRENHEIT TO
CELSIUS"

20 T=212 : A = 32

30 DEF FN FTC(T)=(T-32)*5/9

40 PRINT FN FTC(T)

50 PRINT FN FTC(A)

Sample Run:

THIS CONVERTS FAHRENHEIT TO CELSIUS
100

A-17

Command
Statement

DEL

The DEL command may be used to erase a single
line, a sequence of consecutive lines, or an
entire program.

Test Program:

10 PRINT "TEN"

20 PRINT "TWENTY"
30 PRINT "THIRTY"
40 PRINT "FORTY"

DEL 15,40
or DEL 20,40
or DEL 20,999

Sample Run:

TEN

A-18

OS Command
DELETE
The DELETE command may be used to erase unlocked
files.

NOTE: Do not DELETE OPEN files. (see CLOSE.)

Test Program:

DELETE Joe

Sample Run:
The data file "Joe" is now erased f rom

the digital data pack unless the file
was locked.

A-19

Statement

DIM

This statement establishes the number of elements
in a numeric or string array. You may have a one-
two - three or more dimensional array. The arrays
are numbered beginning at 0 and the computer
automatically dimensions for 10 (eg. A(0)-A(10)).
DIM is useful in composing charts and tables. The
maximum number of elements depends on the amount
of available memory. The dimension number may be
a variable.,

Test Program #l--One-Dimension Array

10 DIM A(5)

20 PRINT "THIS IS A SINGLE-DIMENSION"
30 PRINT "NUMERIC ARRAY,"

40 FOR X=1 TO 5

50 A(X)=X

60 PRINT A(X):" ";

70 NEXT X

80 END

Sample Run:

THIS IS A SINGLE-DIMENSION
NUMERIC ARRAY.
1 2 3 45

Test Program #2--Two-Dimension Array

10 DIM A(2,4)

20 PRINT "THIS IS A TWO-DIMENSION"
30 PRINT "NUMERIC ARRAY."

40 FOR I=1 TO 2

50 FOR J=1 TO 4

60 A(I,Jd)=1

70 NEXT J

80 NEXT 1I

A-20

Continued... Statement

DIM

90 FOR I=1 TO 2

100 FOR J=1 TO 4

110 PRINT A(I,J);:"™ ";
120 NEXT J

130 PRINT

140 NEXT I

150 END

Sample Run:

THIS IS A TWO-DIMENSION
NUMERIC ARRAY

1 1 1 1

2 2 2 2

Test Program #3-- Three-Dimension Array

10 DIM A(4,2,2)

20 PRINT "THIS IS A THREE-DIMENSION"
30 PRINT "NUMERIC ARRAY."
40 FOR K=1 TO 2

50 FOR I=1 TO 4

60 FOR J=1 TO 2

70 A(I,J,K)=I

80 NEXT J

90 NEXT I

100 NEXT K

110 FOR K=1 TO 2

120 FOR I=1 TO 4

130 FOR J=1 TO 2

140 PRINT A(I,J,K),

Continued...

150
155
160
170
180
190

Sample Run:

A-22

1
2
3

> W N

NEXT J
PRINT
NEXT I
PRINT
NEXT K
END

= W N -

= W N

Statement

DIM

Operator

DOLLAR
SIGN (§)

This 1s the symbol which should follow a letter or
a letter-number combination that you want to be
designated as a string variable.

NOTE: LS is usually pronounced "L String."
Test Program:

10 LS="THEY'RE LAUGHING AT YOU"
20 PRINT LS
30 PRINT LS
40 PRINT LS

Sample Run:

THEY'RE LAUGHING AT YOU
THEY'RE LAUGHING AT YOU
THEY'RE LAUGHING AT YOU

Statement

END

END terminates program execution. 1It's use is
optional if it is placed at the highest line
number,

Test Program:

10 PRINT "THIS IS THE FIRST VERSE,"
20 END
30 PRINT "THIS IS THE SECOND VERSE."

40 END

Sample Run:

THIS IS THE FIRST VERSE.

A-24

Function

ERRNUM

ERRNUM gives you the error code when used with
ONERR GOTO.

Test Program:
10 ONERR GOTO 60
20 PRINT 10/0
60 PRINT ERRNUM(O0)
Sample Run:

133

b

bt ¥

Command
Statement

FLASH

After FLASH is activated, any character printed on
your screen will flash rapidly between INVERSE and
NORMAL ,

Test Program:

10 TEXT:HOME F
20 FLASH

30 PRINT "WARNING"

40 NORMAL

50 PRINT "HA,HA,ONLY FOOLING"

Sample Run:

WARNING flashes.
HA,HA,ONLY FOOLING prints normally. |

A-206

Statement

FOR. ..STEP/NEXT

FOR and NEXT are used to create finite loops.
Whenever you write a program containing FOR, you
must use NEXT at the end of the loop. The
FOR...NEXT statement acts as a counter. The STEP
statement is only necessary if you want to count
by increments other than one. For backward steps
use the minus sign. The variable index is
optional with the NEXT, even with nested loops.

Test Program:
10 FOR X=1 TO 100

20 PRINT X
30 NEXT X

Sample Run:

s W

etc.
100

Test Program:

10 FOR X=100 TO 0 STEP -5
20 PRINT X
30 NEXT X

Sample Run:

100
95
90

etc.
10

5
0 A-27

Function

FN

FN is used to calculate formulas you use many
times. First you must use DEF FN to tell ADAM
what the formula is and give it a name. In your
programs, substitute FN<name><variable> for your
formula.

Test Program:

See DEF FN

Sample Run:

See DEF FN

A-26

Statement

GET

GET is used to get information from the operator

of the computer.
key 1s pressed.

The program will pause until a
It differs from INPUT in that

there is no option to prompt, only one keypress is
read, the results of the keypress are not
displayed on the screen, the cursor is not moved,

and it is not necessary to press RETURN.

GET can

be used with either numeric or string variables.

Test Program:

10 PRINT
CONTINUE:";
20 GET AS

30 IF AS<O>"L"
40 PRINT
50 PRINT

Sample Run:

PRESS THE 'L' KEY
--—computer waits
key——-
-=—=computer Kkeeps
key is pressed---
THANK YOU

"PRESS THE

'L' KEY TO

THEN 20

"THANK YOU"

TO CONTINUE
for user to press

cycling until correct

A-29

Statement .

GOSUB

GOSUB is used to extend or "branch" out of the
main part of a program into a subroutine. GOSUB .
must be followed by a line number telling the
computer where the first line of the subroutine is
located. RETURN must be used at the end of the "
subroutine in order to return you to the main part
of your program,

Test Program:

10 PRINT "ONE ":
20 GOSUB 100

30 PRINT "FIVE"; L
90 END

100 PRINT "TWO "; :
110 GOSUB 200 &
120 PRINT "FOUR ";
130 RETURN

190 END

200 PRINT "THREE ";
210 RETURN

L-_- Ln_n_-_‘

Sample Run:

ONE TWO THREE FOUR FIVE

e 00 hameas 0 s B 000 E__.. 20000 b

A-30

Statement

GOTO

GOTO makes ADAM skip to a line number that you
designate,

Test Program:

10 PRINT "CAT"
20 PRINT "DOG"
30 GOTO 10

Sample Run:

CAT
DOG
CAT
DOG
CAT
DOG
etc.,

Use CONTROL-C to break out of this loop.

A-31

Command
Statement

GR

GR sends your screen from the TEXT mode into the
low resolution graphics mode. The graphics mode
provides you with 40 columns and 40 rows for
graphics with space for 4 lines of text at the
bottom of the screen. For low resolution graphics
the screen is numbered 0 to 39 across and 0 to 39
down starting in the upper left corner. GR always
sets the low resolution color to black.

Test Program:

GR

Sample Run:

A-32

The screen has gone black,
The text cursor is at the bottom left of
the screen.

Statement

HCOLOR=

HOOLOR= selects the drawing color used only for

plotting high resolution graphics. The HOOLOR=

code number may be a numeric variable. You have
16 colors from which to choose:

CODE QOLOR

0 black

1 green

2 dark red

3 white

4 black

5 medium red

6 medium blue

7 white

8 dark yellow (orange)

9 dark blue

10 grey

11 light red

12 dark green

13 light yellow

14 cyan (agua)

15 magenta (purple)
Test Program:

10 HGR

20 HCOLOR=3

30 HPLOT 140,10 TO 250,140 TO 30,140 TO

140,10

40 HQOLOR=2

45 HPLOT 140,30 TO 250,158 TO 30,158 TO

140,30

47 GET g$

50 HPLOT 140,30 TO 250,158

51 GOSUB 100

52 HPLOT 250,158 to 30,158

53 GOSUB 100

54 HPLOT 30,158 TO 140,30

55 GOSUB 100

99 END

100 FOR t = 1 TO 500:NEXT €

101 RETUR A-33

Continued.. . Statement
HOOLOR=

Sample Run:

This program draws two triangles, one in
white and one in dark red.

Test Program #2-—Colors sometimes “bleed" when
differently colored lines are plotted close
together. This test program illustrates video
“bleeding",

10 HGR

20 HCOLOR=2

30 HPLOT 40,10 TO 40,150
40 HOOLOR=7

>0 HPLOT 30,10 TO 50,150

NOTE: If an image is drawn in one color, redrawn
in the background color, then drawn again at a
nearby location, it will appear to move. This is
the basic method of animation.

NOTE: Due to the way color video works, to get
true colors you must plot at least two points side
Oy side, ie HPLOT 20, 10 TO 40, 50: HPLOT 21, 10
10 41, 50.

A-34

Statement

HGR

The HGR statement sends you into the high
resolution graphics screen. This screen provides

you with a 256 wide x 159 high grid of points on
which graphics images can be seen, with space for
four lines of text at the bottom area of the
screen.

The screen is numbered starting at the upper left
hand corner. Columns 0 to 255 go across and rows
0 to 191 run down. Row values between 159 and 191
will not show. On some screens, you may not be
able to see columns 0 to 3.

Test Program:

10 HGR

20 HCOLOR=3
30 HPLOT 10,10 TO 100,10

40 HPLOT TO 100,100
50 HPLOT TO 10,10

Sample Run:

This program draws a white triangle.

A-35

Statement

HGR2

The only difference between the HGR and HGR2
statements is that with HGR2, you have full screen
graphics, with no space at the bottom of the
screen for text. Therefore, you have a 0-255 x
0-191 grid of points available to plot with. On
SOme€ screens you may not be able to see columns 0

to 3.

Test Program:
10 HGR2 :HCOLOR=6

20 HPLOT 100,100 TO 190,100 TO 190,190
30 HPLOT 190,190 TO 100,190 TO 100,100

Sample Run:

This draws a medium blue square at the
bottom of the screen.

A-36

Statement

HLIN

HLIN draws a horizontal line, in the designated
display color, at the points indicated. This is a
low resolution graphics statement.

Test Program:

10 GR
20 COLOR=14
30 HLIN 10,35 AT 20

Sample Run:
A horizontal line in row 20 has been

drawn from column 10 to column 35. The
color is cyan (aqua).

A-31

Command
Statement

HOME

-

HOME clears the screen (text window) and sends the
cursor to the upper left corner (beginning of line

l).

If you're in the graphics screen, the lower 4

text lines are cleared and the cursor 1is sent to
the beginning of line 21.

Test Program:

10 FOR X=1 TO 12

20 PRINT "ERASE THIS"

30 NEXT X

40 HOME

50 PRINT "DO YOU WANT ANYTHING ELSE
ERASED?"

60 END

Sample Run:

A-34

DO YOU WANT ANYTHING ELSE ERASED?

Function

HOME
(key)

The HOME key will move the cursor to the upper
left corner of the screen. In graphics mode, the
cursor moves to the upper left corner of the text
window.

NOTE: HOME and HOME key do different things in
graphics mode. The HOME key moves the cursor to
the upper left corner of the window. HOME drops
the cursor down one line. (See HOME.)

Test Program:

NONE

Sample Run:

NONE

A-39

Statement

HPLOT

HPLOT plots lines and points on the high
resolution graphics screen in the current display
color. The first expression in the HPLOT pair
refers to column (0 to 255) location. This is
followed by a comma, which is followed by a row
location. Row locations are numbered 0 to 158 for
mixed text and graphics and 0 to 191 for full
Screen dgraphics. To plot a line, specify two
points separated by the word TO.

Test Program:

10 HGR
20 HCOLOR=3
30 HPLOT 50,60 TO 80,100

Sample Run:

This program draws a line starting at
column 50, row 60 and ending at column
100, row 80,

Test Program:
10 HGR

20 HCOLOR=1
30 HPLOT 50,60 to 80,100

Sample Run:

This program draws a green line starting
at column 50, row 60 and ending at
column 100, row 80.

A-40

Statement

HTAB

HTAB will move the cursor left or right on a
horizontal line without moving or affecting any
text., You must specify the column number for
HTAB. Columns are numbered from 1 to 31, left to
right. The number used with HTAB can be a

variable.

Test Program:

5 HTAB 1l:PRINT "X";

10 HTAB 15:PRINT
20 HTAB 20:PRINT
30 HTAB 30:PRINT
40 HTAB 31:PRINT

Sample Run:

l'lxl"l;
Hxﬂ:
Hxl’l;

nxﬂ;

This will cause your cursor to jump
across the screen, stopping to print
an X at columns 1,15,20,30, and 31.

A-41

Statement

IF...GOTO

IF...GOTO indicates a branching statement which

jumps you to a different area of your program
according to whether or not certain conditions

within the statement are met.

Test Program:

10 A=20/4
20 IF A=5 GOTO 50
30 PRINT "STAND IN THE CORNER,

’ IF_GOTO. . "
40 GOTO 60
50 PRINT "'IF-GOTO' WORKS!"

60 END

Sample Run:

'IF-GOTO' WORKS!

A-42

Statement

IF...THEN

IF...THEN is a decision statement. Everything
between the IF and THEN is tested to see if it is
"true." If a "true" condition exists, then the
program tries to execute the instructions
following the word THEN. If the test result is
"false" then the program jumps to the next line.

IF...THEN can also be used for branching in the
same way as IF...GOTO.

Test Program:

10 INPUT "ARE YOU MALE OR FEMALE? ";AS
20 IF AS="MALE" THEN PRINT "SO IS
FRANKENSTEIN": END

30 IF AS="FEMALE" THEN PRINT "SO IS MARY

POPPINS": END

Sample Run:

ARE YOU MALE OR FEMALE? MALE
SO IS FRANKENSTEIN

A-43

Statement

INPOUT

INPUT is a statement which allows the operator to
assign values to variables from keyboard to

memory.

Test Program:

10 INPUT "WHAT IS YOUR NAME?
20 PRINT "YOU HAVE A NICE NAME,

"; NS
"; NS

Sample Run:

WHAT IS YOUR NAME? ALBERT
YOU HAVE A NICE NAME, ALBERT

A-44

Function

INT

The INTeger function is used to round numbers to
their whole number (or integer) value. In other
words, anything to the right of the decimal point
is discarded, no matter what its value.

Therefore, when the computer "rounds" your number,
it rounds it down...except if you're dealing with
a negative number. Then it will round to the next
smaller integer. For example, -4.65 becomes -5.
Rounding with INT does not necessarily provide you
with the nearest integer unless you first add .5
before applying the function. For example,

INT (AGE+.5)

Test Program:
10 A=45.67: B=-3.1

20 PRINT INT(A);" ";INT(B);" ":
30 PRINT INT(A+B);" ";INT(6*B)

Sample Run:
45 -4 42 ~19

A-145

Command
Statement

INVERSE

Take a look at your screen. Anything you type on
it, under normal circumstances, appears as a
pattern of white dots on a black background. But
if you activate INVERSE, your screen will switch
to a pattern of black dots on a white backgound.

Test Program:

10 TEXT:HOME

20 PRINT "NORMAL TEXT"
30 INVERSE

40 PRINT "INVERSE TEXT"
50 NORMAL

60 PRINT "NORMAL AGAIN"

Sample Run:

NORMAL TEXT white on black
INVERSE TEXT black on white
NORMAL AGAIN white on black

A=

Function

LEFTS

The LEFTS function is used to extract a specified
number of digits or characters from strings. Be
sure to remember to count spaces.

Test Program:

10 AS="THEODORE"

20 BS=LEFTS("TESTING",4)

30 PRINT LEFT$(AS$,3);" '"LEFTS' FUNCTION
PASSED THE ";BS$

40 END

Sample Run:

THE 'LEFTS$' FUNCTION PASSED THE TEST

A-47

Function
LEN

LEN counts the number of characters in a string.
LEN stands for LENgth. Be sure to remember to
count spaces. To use LEN to determine the number
of digits in a number, if A is a positive, whole
number, you would say, A=LEN(STR$(A))

Test Program:
10 AS="U.S. GRANT": B=LEN(AS)
20 C=1822: D$=STRS(C) : E$S="1882": F=27

30 PRINT LEN(AS$):" ";B;" ";LEN(DS);
" ";LEN(ES) ;" ";LEN(STRS(F))

Sample Run:
10 10 4 4 3

A48

Statement

LET

The statement LET assigns values to variables,
both numeric and string. 1Its use is optional.

Test Programs:

10 LET X=20
20 PRINT "AFTER 19 COMES ";X

30 END

Sample Run:
AFTER 19 COMES 20

1.1,41_}

Command
Statement

LIST

LIST is used to display your program in its
entirety in correct numerical (line number)
order. LIST may also be used to display
individual lines, as well as particular sections
of your program. You can temporarily halt the
listing of a program by pressing CONTROI~S. To
resume, press CONTROL-S again. To LIST a program
to the printer, type PR#1:LIST:PR#0.

Test Program:

PRINT “LOOKING"
PRINT “HERE'S"
PRINT “YOU, "
PRINT "KID"

O Wb =N

LIST

PRINT “HERE'S"
PRINT “LOOKING"
PRINT “AT"
PRINT “YOU,"
PRINT "KID"

U N

HERE'S

LOOKING

AT

YOU,

KID
Test Program:

List 2
Sample Run:

2 PRINT "LOOKING"

A-50

Continued Command

Statement

LIST

Test Program:
List 2,4

Sample Run:

2 PRINT "LOOKING"
3 PRINT "AT"

4 PRINT "YOU"

A-51

OS Command

LOAD

The LOAD command retrieves a program, it does not
execute it. It merely reads a copy into your

computer's memory. Any program already in memory
1s erased and replaced by the new program. Once

this 1s done, the program is available to be
executed with a RUN command.

NOTE: Upper and lower case letters are not the
same in file names. Be sure you LOAD the program
the same way you SAVE it.

Test Program:

10 PRINT "THIS PROGRAM IS NOW LOADED"
20 END

SAVE TEST

NEW

LOAD TEST

RUN

Sample Run:

THIS PROGRAM IS NOW LOADED

A-52

OS Command

LOCK

LOCK will protect your file from being deleted
accidently.

Test Program;:

10 PRINT "MY DAD"
20 PRINT "IS SAD"
SAVE DAD
LOCK DAD
] CATALOG

Sample Run:

If you try to delete DAD, the message
that the file is locked will appear on
the screen. CATALOG will warn you of a
locked file by displaying an * by the
file name.

VOLUME: HELLO
*A DAD

A-53

Function

MIDS

The MID$ function is used to manipulate strings.
It isolates and extracts a substring from any
specified location from within a string. For
example, PRINT MIDS("HI THERE",4,5) prints THERE,
because the 4 tells it to begin at the fourth
position from the left of the character string
which puts you at the "T" in "THERE". The five
says to print the next 5 characters. If the last
number is omitted, all the characters to the end
of the string will be printed.

Test Program:

10 AS="YELLOW SUBMARINE"
20 C$=MIDS(AS,4)

30 B=4

40 PRINT C$, MIDS(AS,B,7)
50 PRINT AS

Sample Run:

LOW SUBMARINE LOW SUB
YELLOW SUBMARINE

Command

MON

MON, or monitor, allows you to monitor information
entering and leaving your digital data pack, using
four parameters., C, I, O and L.

C = monitors commands to the digital
data pack

I = causes input from the digital data
pack to be displayed.

O = causes output to the digital data
pack to be displayed.

L = monitors input from the digital data
pack when LOADing a SmartBASIC file.

For example:

MON L
LOAD <filename>
will show you each line as it comes into

memory.

Syntax for MON is:
MON C,I,O,L

C,I,0, and L may be used in any combination or
order, but at least one must be present or the
command will be ignored. To disable MON, use
NOMON with the appropriate parameters.

Test Program:

NONE

Sample Run:

NONE

Command
Statement

NEW

The NEW command will delete your current program

from memory and clear all values assigned to
numeric and string variables.

Test Program:

10 PRINT "TEN"

20 A=20: PRINT 20
NEW

30 PRINT "TWENTY"
40 PRINT A

Sample Run:

TWENTY
0

Command

NOMON

NOMON or no monitor, cancels the MON command.
 NOMON uses the same parameters as MON (C,I,O,L),
but NOMON can specify which parameters it wants to

stop monitoring.

Test Program:

MON I1,0,C,L
NOMON O

Sample Run:

NOMON O cancelled the monitoring of
output to the digital data pack. The
monitoring of I,C, & L are left
untouched.

Command
Statement

NORMAL

NORMAL is used to cancel the INVERSE and FLASH
text display modes and return to white on black
character display. Normal is the usual mode of

text display.

Test Program:

10 TEXT:HOME

20 PRINT "NORMAL"
30 INVERSE:PRINT
40 PRINT "INVERSE"

50 NORMAL :PRINT
60 PRINT "NORMAL AGAIN"
Sample Run:
NORMAL white on black
INVERSE black on white

NORMAL AGAIN white on black

A-08

Operator

NOT is a logical operator which is used in
comparison statements to reverse the condition of

your premise. In other words, NOT is true

éval ue=l) if the argued expression is completely
alse.

Test Program:

10 X=7

20 IF NOT (X<4) THEN 50

30 PRINT "'NOT' DIDN'T WORK"
40 GOTO 60

50 PRINT "'NOT' WORKED!"

60 END

Sample Run:
"NOT' WORKED!

A-59

Statement

ONERR GOTO

ONERR GOTO overrides the computer's normal
error-handling procedures and instead, when an
error is encountered, sends control out to a
special error subroutine that you must write.
ONERR GOTO must appear in the program before an
error in execution is committed. This is referred
to as error-trapping., Error-trapping may be
disabled at any time with the statement CLRERR.
You return from the error subroutine with the
statement RESUME.

Refer to the Compendium at the back of this bcok
for a complete list of error codes.

Test Program--counts number of items in a DATA

statement

10 ONERR GOTO 60

20 N=0

30 READ A

40 N=N+1

50 GOTO 30

60 PRINT N

70 END

80 DATA 20,864,218,10,299

Sample Run:

\-60)

5

Without line 10, the error message "OUT
OF DATA ERROR IN 30 would have been
printed and the number 5 would not have
been displayed. The error-handling
subroutine consists of lines 60 and 70.

-

[U Se———

'S S8 |

|

Statement

ON...GOSUB

The ON...GOSUB statement instructs the computer to
branch out into subroutines depending on the value
of a variable or numeric expression. The
locations of the subroutines are listed by line
number following the ON...GOSUB statement. The
variable or expression used with ON...GOSUB must
be positive. If the variable or expression is
zero or greater than the number of branches
listed, the ON...GOSUB is ignored.

Test Program:

10 PRINT "ENTER THE NUMBER 1,2,3,4,0R 5%;
15 INPUT "";X

20 IF X<1 OR X>5 THEN PRINT "OUT OF
RANGE, RETYPE: ";:GOTO 15

30 ON X GOSUB 100,130,140,140,100
40 GOTO 10

100 PRINT "VALUE IS 1 OR 5 "

125 RETURN

130 PRINT "VALUE IS 2 "

135 RETURN

140 PRINT "VALUE IS 3 OR 4 "

145 RETURN

Sample Run:

ENTER THE NUMBER 1,2,3,4, OR5 5

VALUE IS 1 OR 5
ENTER THE NUMBER 1,2,3,4, OR 5 2

VALUE IS 2
etc.

A6

Statement

ON...GOTO

The ON...GOTO statement is applied the same way as
ON. . .GOSUB,
Refer to ON...GOSUB and GOTO for further
information.
Test Program:

NONE
Sample Run:

NONE

A-62

-

J———

[

0S Command

OPEN

OPEN does what 1its name implies in order to give
you access to a file. When you OPEN a file,
certain information is provided to the computer as
a result of typing in the command. . . information
concerning whether or not the file is on the
digital data pack, and if so, where. You must use
OPEN within a program. It must be in a PRINT
statement and be preceded by CONTROL-D. 1In
SmartBASIC, you use CHR$(4) to print a CONTROL-D.
A maximum of 2 files may be OPEN at once.

However, under some circumstances, a user may only
be able to OPEN one file at a time. An error
message will appear if a user tries to OPEN more
files than are permitted at the time.

Syntax for OPEN is:

OPEN <filename>,L<length>
the length specification is needed only for use

with random files.

NOTE: See the Compendium (Appendix C) for more
information on sequential and random text
files.

Test Program:
(You've stored a file named "FACE")
10 D$=CHRS(4)
20 PRINT D$;"OPEN FACE"
30 PRINT DS$;"CLOSE FACE"
] CATALOG
Sample Run:

You have just accessed your file.

A-63

Operator
Statement

OR

OR is a logical operator. Like AND, OR has a
value of 1 for a true statement and 0 for a false
one, Unlike AND, OR is true if either or both of
the original expressions are true.

Test Program:

10 INPUT "WHAT'S YOUR NAME?";NS$
20 IF N$="AL" OR N$="LYNN" THEN
PRINT "HELLO ";N$:END

30 PRINT "UNAUTHORIZED!"

Sample Run:

WHAT'S YOUR NAME? LYNN
HELLO LYNN

A-6

Operator

PARENS
()

Parentheses are used in arithmetic problems to
indicate order of operations. Anything in
parentheses is calculated first. Parentheses
override the "multiplication and division" first
rule. Parentheses are also used with all
functions and arrays.

Test Program:

10 PRINT (10%*(5-3))/2

Sample Run:

10

A-6D

Function

PDL

PDL refers to "paddles" or hand control units.
These control units are not only good for game
play, but for precise positioning of your cursor
in graphics. With ADAM's PDL function it's like
having a joystick, paddle, and numeric keypad in a
single unit,

For the front controller, #1, the values are as
follows. To determine the values for the rear
controller, subtract one from the PDL numbers
listed.

PDL (X) FUNCTION RANGE

1 Up and Down 0-255

3 Left and Right 0=255

5 Direction Up=1, Down=4
Left=8 Right=2

7 Left Trigger Off=0, On=1

9 Right Trigger Off=0 On=l

11 ASCII code for Nothing pressed

keypad =0

13 Keypad # pressed *=10,#=11,
nothing pressed=1l5

15 (Reserved for future use)

Test Program:

10 GR: COLOR=1

20 LET c=PDL(13)

30 IF c¢=15 THEN GOTO 50

40 COLOR=c

50 LET x=39*PDL(3)/255:y=39*PDL (1) /255
60 PLOT x,y

70 IF PDL(7)=1 THEN END

80 GOTO 20

Sample Run:

Experiment with your front game
controller to see what this program
A-GG does.,

Command
Statement

PLOT

PLOT is for coloring in entire blocks of your low
resolution graphics screen grid. The range is 0

to 39.

Test Program:

10 GR
20 COLOR=13
30 PLOT 20,2

Sample Run:

A block of light yellow will appear at
column 20, row 2.

A-67

Operator

PLUS SIGN
(+) |

The plus sign is used in arithmetic to signify I
addition. It is also used to concatenate strings.

|

Test Program:

10 PRINT 1 + 2

Sample Run:

3

Test Program:

10 LET AS="FAT"
20 LET B$="HER"
30 LET CS$=AS+BS
40 PRINT CS$

Sample Run:

FATHER

A-0O8

Function

POS

The screen can display 31 characters of text per
line. The positions of these characters are

numbered from 0 to 30 (beginning at the left of
the screen). POS gives you the current horizontal

position of the cursor relative to the left edge
of the screen.

Test Program:

10 PRINT "E";: A=POS(0)

20 PRINT " PLURIBUS";: B=POS(0)
30 PRINT " UNUM ";: C=POS(0)

40 PRINT A;" ":B;" "eC

Sample Run:
E PLURIBUS UNUM 1 10 15

A-GY

Statement

PRINT

PRINT can do several different things. PRINT
followed by nothing yields a blank line when RUN,
PRINT writes to your output device (screen or
printer). PRINT displays variable values. To
print out your work, type PR#1 then, at the end of

your program, type PR#0 to send output back to the
monitor. (See PR#.)

You can use ? as an abbreviation for PRINT. When
you use SmartWRITER to edit a SmartBASIC program,
you will see ? used in place of the word PRINT.

Test Program:

10 PRINT "SPRING HAS SPRUNG."
20 PRINT "THE GRASS HAS RIZ."
30 PRINT "I WONDER WHERE"
40 PRINT "THE FLOWERS IS."

Sample Run:

SPRING HAS SPRUNG.
THE GRASS HAS RIZ.
I WONDER WHERE
THE FLOWERS 1IS.

0OS Command
Command
Statement

PR#

PR# (device) is an output related command which
transfers output to your printer or your screen.,
PR#1 transfers output to your printer, while PR#0
returns output to your TV screen or monitor.

Test Program:

10 PRINT "ADAM'S THE GREATEST!"
PR#1 :LIST:PR#0

Sample Run:

ADAM'S THE GREATEST!
--prints out on your screen.

10 PRINT "ADAM'S THE GREATEST!"
--prints out on your printer.

NOTE: Before you try to print anything
on your printer, be sure that there
1s paper in it.

Test Program:

10 PR#1

20 PRINT "HI"

30 PRINT "THERE!"
40 PR#0

Sample Run:

HI
THERE !
--prints out on your printer.

Operator

QUOTATION
MARKS (" ")

Quotes are necessary around any letters or words
that you want to be printed on your output device
(screen or printer). Without the quotes, ADAM
will recognize any typed material following a
PRINT statement as variables. Single quotes or
apostrophes cannot substitute for quotation marks.

Test Program:
10 PRINT "BO DEREK STARRED IN ";

20 PRINT "10"

Sample Run:

BO DEREK STARRED IN 10

A-72

Relative
Operators

Il

N AV ANV A
N/

These signs are used in IF...THEN statements to
compare two values. They are, top to bottom:

less than or equal to, greater than or equal to,
less than, greater than, not equal to, egual to.

Test Program:

5 INPUT "GUESS MY NUMBER ";A

10 IF A>4 THEN PRINT "TOO BIG":GOTO 5
20 IF A<4 THEN PRINT "TOO LOW":GOTO 5
30 PRINT "YOU GOT IT!"

40 END

Sample Run:

GUESS MY NUMBER 2
TOO LOW

GUESS MY NUMBER 6
T00 BIG

GUESS MY NUMBER 4
YOU GOT IT!

Statement I

The REM statement is like writing a note to
vourself on a scratch pad. The computer ignores l
it, so it is not executed, but will be displayed
when the program is listed. Most people use REM

to jot down the purpose of their program or a i
program line., REM stands for REMark. REM
statements can appear throughout your
program--wherever you wish to make a notation for l
human eyes only.

REM

NOTE: Whenever a REM statement is used
as one of several statements on a single
line, the REM statement must be last.
Otherwise the statements following it
will be overlooked by the computer.

Test Program:

10 PRINT "THIS IS A 'REM' TEST PROGRAM" |
20 REM PRINT "THIS SHOULDN'T PRINT"

30 REM PRINT "REM FLUNKED THE TEST IF
LINE 20 PRINTED OUT" |
40 PRINT "REM WORKED":REM TELL THE USER
THAT REM WORKED |
50 END

Sample Run:

THIS IS A 'REM' TEST PROGRAM
REM WORKED

0S Command

RENAME

RENAME changes the name of a file. The format is
RENAME oldname,newname,

Test Program:

RENAME HELLO,BYE

Sample Run:

HELLO 1s now BYE.

Statement

RESTORE

RESTORE causes the DATA pointer to return to the
first piece of data in the first DATA list, and
read it all over again, from the beginning. This
allows you to use data stored in DATA statements
more than once.

Test Program:

10 DATA 1,2,3,4,5
20 DATA 2,4,6,8,10
25 FOR I=1 TO 5

30 READ A,B

35 PRINT A;" ";B
38 NEXT I

40 RESTORE

50 GOTO 25

Sample Run:

1 2
3 4
5 2
A 6
8 10
1 2
3 4

The DATA list is read and printed again
and again. Use CONTROL-C to break out
A-T6 of this loop.

Statement

RESUME

RESUME is usually used as the final statement in
ONERR-GOTO routines, telling the computer toO
resume executing the program. In other words,
RESUME returns control to the main program from an
error routine. Never use RESUME in the immediate

mode, but always within a program.

Test Program:

10 ONERR GOTO 60
20 INPUT "TYPE A POSITIVE NUMBER: ";N

30 R=SQR(N)

40 PRINT "THE SQUARE ROQOT OF ":N;" IS
“FR

50 END

60 N==N

70 RESUME

Sample Run:

TYPE A POSITIVE NUMBER: 64
THE SQUARE ROOT OF 64 IS 8

NOTE: If you type 1n a negative number, the
computer will ignore the negative sign, assuming

that you didn't intend to put it there.

statement

RETURN

The RETURN statement is always preceded by a GOSUB
statement. The purpose of RETURN is to "jog the
computer's memory"™. After branching into a
subroutine, when the computer encounters the
statement RETURN, it "remembers" where it branched
from, and so branches back to the statement after
the most recently encountered GOSUB. RETURN
cannot be used by itself. It must be paired with
GOSUB. The computer keeps track of which RETURN

matches which GOSUB, Also use RETURN with
GN' s B GOSUB -

Test Program:

10 GOSUB 40

20 PRINT "WORKED"
30 GOTO 70

40 PRINT "THE RETURN STATEMENT ",
20 RETURN

60 PRINT "DIDN'T WORK"
70 END

Sample Run:

THE RETURN STATEMENT WORKED

A-78

| RETURN
(key)
|

The RETURN key will send the current input line to
the computer, will clear to the end of the line,

[and move to the beginning of the next line. ADAM
will not look at a program line or command until

you press RETURN at the end of it. CONTROL-M does
the same thing.

' Test Program:

NONE

~Sample Run:

NONE

A-T9

Function

RIGHTS

The RIGHTS function works on the same idea as MIDS
and LEFTS, except that RIGHTS will return a
specific number of characters at the right, or end

of the string.The syntax of RIGHTS is: [

RIGHTS (<string variable>,number)

where "number"™ must be from 1-255.

Test Program:

10 AS="PICKLE CROCK"

20 BS=RIGHTS (AS,5)

30 PRINT "ALLIGATORS LOVE ";BS$;" 'N
ROLL. "

40 END

Sample Run:

ALLIGATORS LOVE CROCK 'N ROLL,

A-80

Function

RND

RND returns a random real number less than 1 and
- greater than or equal to zero. Its syntax is:

RND (x)

where “x" is an arithmetic expression. If x is
positive, each time RND(x) 1s used you will get a
new random number. The sequence of random numbers
will be the same each time Smart BASIC is booted.
If x is less than zero, then the same random
number will be generated every time that
particular x is used. Different random sequences
may be brought about by using different negative
arquments. This negative “seed" procedure is
useful in program debugging. Should your
arithmetic expression be zero, then you'll get the
 most recent previous random number (sequence)
generated.

Test Program:

5 INPUT N

10 N=RND(-N)

20 DEF FN D(N)=INT(1+N*RND(1))
30 FOR I=l TO 6

40 PRINT FN D(5)

50 NEXT

Sample Run:

Ld ol e DO L0 LD w)

ADAM will print a random number between
one and five.

0S Command
Command

Statement i

RUN

RUN tells the computer to execute or "run through"
the program stored in main memory. RUN followed
by a filename tells the computer to LOAD and RUN ai
program stored on the digital data pack. RUN
followed by a line number begins running your
program at the line number. RUN clears all
variables.

Test Program:

.
10 PRINT "I LOVE YOU" ’
20 PRINT "YOU TURN ME ON"
30 PRINT "LET'S GET MARRIED" .
RUN !
Sample Run: i
I LOVE YOU

YOU TURN ME ON |
LET'S GET MARRIED

NOTE: RUN can also be used within a program to
have one program automatically load and execute
another program on your digital data pack. When
this statement is executed in the first program,
all string and numeric variables are cleared, and
the second program begins execution. For example,
suppose you had a program named DUMMY that you
wanted to run right after a program called MAIN.

Here's how:
Type the program DUMMY (whatever it may
be)
SAVE DUMMY
Type the program MAIN
SAVE MAIN
RUN MAIN
Be sure to put the line (line #)
PRINT CHRS$(4);"RUN DUMMY" as the last line in the
program MAIN.

A-82

0OS Command

SAVE

SAVE allows you to store your program on a digital
data pack for future use. The name you invent for
your program must not exceed 10 characters. The
syntax 1s SAVE<filename>,D#. With only one drive,
D1 is optional.

Test Program:

10 PRINT "MY DAD"
20 PRINT "IS SAD"
SAVE DAD

Sample Run:

If you type CATALOG at this point, you
will be able to prove that your program
DAD 1s now stored on your digital data
pack.

NOTE: If you give your program a filename that
already exists, the computer will not destroy your
old program. It will be saved as a backup copy.
Any backup copies that exist with the same name
will be destroyed.

A-83

Function

SCRN

The SCRN function is used to identify colors at
particular locations on your graphics screen

grid. The location of the graphics block is
specified by low resolution X,Y coordinates. (See
GR) The color number is the same as low
resolution color (see COLOR=).

Test Program:

10 GR

20 COLOR=8

30 PLOT 30,20

40 IF SCRN(30,20)=8 THEN 70
50 PRINT "SCRN FAILED"

60 GOTO 80
70 PRINT "SCRN WORKED"
80 END

Sample Run:

SCRN WORKED

A-84

Operator

SEMICOLON
()

Semicolons allow you to join together in an
unbroken line, words or letters within quotation
marks, or string variables. Like the comma,
semicolons are used in PRINT statements. When
items are separated by semicolons, no space is
printed between them.

Test Program:

10 PRINT "ME";"ET";"ING"

Sample Run:

MEETING

A-85

Function

SGN

The SGN function tells whether a given number 1s
positive, negative, or zero. This is quite useful
whenever a course of programming action depends on
whether a certain number is less than, equal to,
or greater than another number. If SGN(X) is
positive, SGN replies with a 1. If zero, a 0.

And if negative, a -1. For example, PRINT

SGN(-5) ,SGN(3), SGN(0) prints: -1 i | 0

Test Program:

10 X=-6

20 Z=SGN(X)

30 IF Z=-1 THEN 60

40 PRINT "SGN DIDN'T WORK"

50 GOTO 70
60 PRINT "SGN FUNCTIONS CORRECTLY"
70 END

Sample Run:

SGN FUNCTIONS CORRECTLY

ﬁi ~t30

- Operator
I SLASH (/)

lIhe slash is used mathematically to indicate
division.

Test Program:
| 10 C=1297.43
20 PRINT C/37

Sample Run:

35.0656757

A-87

Function ‘

SPC i

The SPC function is used in conjunction with the |
PRINT statement to insert spaces among text beingi
displayed. The format is SPC(X) where X is any

whole number from 0 to 255. This is the number of
spaces you wish to be inserted in your displayed i

material. It is useful for right-justifying copy,
as well as line indentations.

Test Program:

-
.
10 FOR I=1 TO 4 E
20 READ AS

30 PRINT SPC(10-LEN(AS)):AS -
40 NEXT I

50 DATA WASHINGTON, _
JEFFERSON, ADAMS , MADISON "

Sample Run:

WASHINGTON
JEFFERSON
ADAMS
MADISON

A-88

l Command
Statement

" SPEED=

:SPEED= allows you to control how fast or slowly
the computer sends characters to an output device
(your screen, your printer). Your range is any

Iwhnle number from 0 to 255. Zero is the slowest
speed, 255 is the fastest, and is also the normal

,speed of your output devices. SPEED= only affects
text. The number following the = may be a
variable,

Test Program:

[10 PRINT "AT FULL SPEED"

20 SPEED=150

30 PRINT "NOT QUITE SO FAST"

= 40 SPEED=100

50 PRINT "SLOWER THAN BEFORE"
60 SPEED=50

I 70 PRINT "THIS IS QUITE SLOW"
80 SPEED=0

90 PRINT "DO YOU REALLY WANT TO GO THIS
: SLOwW?"

100 SPEED=255

: 110 PRINT "BACK TO FULL SPEED"
:

I

Sample Run:

AT FULL SPEED

NOT QUITE SO FAST

SLOWER THAN BEFORE

THIS IS QUITE SLOW

DO YOU REALLY WANT TO GO THIS SLOW?

BACK TO FULL SPEED

These lines will appear on your output
device at a slower and slower rate,
until the last line, which is back to
normal speed.

- A-89

Function

SQR

SQR (X) is the square root function. It
calculates the square root for X when X 1s any
positive number.

Test Program:

10 PRINT "THE SQUARE ROOT OF 64 IS ";

20 PRINT SQR(64)
30 PRINT "'SQR' WORKED IF THE ANSWER IS

B‘l‘l
40 END

Sample Run:

THE SQUARE ROOT OF 64 IS 8
' SQR' WORKED IF THE ANSWER IS 8

A-O0)

Statement

STOP

The placement of STOP within your program will
stop program execution at that line, and the
computer will display BREAK IN X where X is
whatever line number your STOP statement is on.
The computer will now be in immediate execution
mode. To continue your program, type in CONT. 1If
you type in RUN, your program will start all over
again, from the beginning. You can also use GOTO
at this juncture, if you wish your program's run
to resume on a line other than the one immediately
following your STOP statement. STOP does not
clear variables,

Test Program:

10 PRINT "A GREEN LIGHT MEANS GO, A RED
LIGHT MEANS "

20 STOP

30 PRINT "PULL OVER. YOU JUST WENT
THROUGH A STOP LIGHT"

40 END

Sample Run:

A GREEN LIGHT MEANS GO, A RED LIGHT
MEANS

BREAK IN 20

CONT

PULL OVER. YOU JUST WENT THROUGH A STOP
LIGHT,

A-91

Function

STRS

STRS will convert numbers or numeric variables
into strings. The advantage of this is that
string modifiers may be used to manipulate them.
(e.g. MIDS, LEFTS$, ASC) The maximum length of a
string is 255 characters.

Test Program:
10 INPUT "HOUSE NUMBER, STREET NAME?

n
+N,SS
20 PRINT "YOUR ADDRESS IS ":STRS(N)+" "+S§

Sample Run:

HOUSE NUMBER, STREET NAME? 10, DOWNING
STREET

YOUR ADDRESS IS 10 DOWNING STREET

A92

= Function
H‘ TAB

TAB is useful for displaying items on the screen
% in designated positions. This function is

essential in the makeup of charts, tables, etc,
. When using TaB, keep these things in mingd:

l. TAB can only be used within a PRINT
statement.

2. Your line length available for
positioning text is 255 characters long.

3. TAB will not cause the cursor to
: backspace. If the TAR value is less

i than or equal to the cursor position
nothing will happen.

, 4. TAB value must be positive,

| 5. If the line to contain the displayed
; items already has some characters
displayed in it, TAB will convert to

spaces everything from the cursor to the
TAB value

Test Program:

10 PRINT TAB (25);"UPHILL"
20 PRINT TAB (20) ; "GOING"
30 PRINT TAB (15);"ILL"

40 PRINT TAB (10);"FEEL"
50 PRINT TAB (5);"1"

Sample Run:

UPHILL
GOING
ILL
FEEL

A-93

Command
Statement

TEXT

TEXT 1s used to switch your screen out of the
graphics mode back to a full TEXT or narrative
screen., Be aware that when you type TEXT, your
screen will be cleared and the cursor will be
positioned at the upper left corner. Similarly, a
program can be ended with 999 TEXT:END to leave
the screen in a clean form for the next user.

Test Program:

10 TEXT

20 PRINT "'TEXT' WORKED"
30 END

GR

RUN

Sample Run:

'TEXT' WORKED

A-94

g —

Command
Statement

TRACE
and
NOTRACE

TRACE and NOTRACE are command statements used in
program debugging. Use of the TRACE command will
cause the computer to print out the line numbers
of your program, as each one is executed. This
allows you to isolate a bug more easily and
quickly. You'll probably have little use for
TRACE and NOTRACE, because of ADAM's specific,
line-by-line error messages—-but it's something
which may be useful to you in the future, should
your interest in computers continue.

NOTRACE turns off or cancels the TRACE command.

Test Program:

10 PRINT "'TRACE' IS A LINE-BY-LINE"
20 TRACE

30 PRINT "ERROR DETECTIVE"

40 GOTO 60

50 NOTRACE

55 GOTO 100

60 PRINT "UNTIL FOILED BY 'NOTRACE'"
80 PRINT "THAT NEFARIOUS"

90 GOTO 50

100 PRINT "CHAMPION OF BUGS"

110 END

A-95

Continued... Command
Statement

TRACE
and
NOTRACE

Sample Run:

'TRACE' IS A LINE-BY-LINE

#30 ERROR DETECTIVE

#40#60%#60 UNTIL FOILED BY 'NOTRACE'
#80 THAT NEFARIOUS

#90#50#50 CHAMPION OF BUGS

If you use TRACE with operating system commands,
print a CHR$(13); just before the normal CHRS$(4).

10 TRACE
20 PRINT CHRS$(13) ;CHRS(4) ;"LOAD JOE"

When TRACE encounters a GOTO or GOSUB, the line #
jumped to is also printed out.

A-96

0S Command

UNLOCK

UNLOCK removes LOCK and allows a locked file to be
deleted.

Test Program:

10 PRINT "MY DAD"
20 PRINT "IS SAD"
SAVE DAD

LOCK DAD
CATALOG (to see the asterisk, indicating

that DAD is locked)
UNLOCK DAD

Sample Run:

You will now be able to delete DAD.

A97

Function

VAL

The VAL function is the opposite of the STRS
function, in that it takes numbers written as
strings and converts them back to numeric
notation.

Test Program:
10 A$="37.50"

20 PRINT VAL (AS);" ":AS
30 END

Sample Run:

37.5 37.50
Test Program:

10 AS$=STR$(14.50)

20 PRINT VAL (AS$)
30 END

Sample Run:
14.5

Test Program:
10 A$="999 QUAKER LN, "

20 BS="SOUTH"
30 PRINT VAL (AS) ,VAL (BS)

Sample Run:
999 0

A-O8

Statement

VLIN

VLIN draws a vertical line, in the designated

display color, at the points indicated. This is a
low resolution graphics statement,

Test Program:

10 GR
20 COLOR=9
30 VLIN 10,21 AT 20

Sample Run:

A-0q

Function

VPOS

The screen can display 24 lines of text. The
positions of these lines are numbered 0 to 23.
VPOS gives you the current vertical position of
the cursor relative to the top line. Note that
the VTAB statement is numbered from 1 to 24.

Test Program:

10 VTAB 1

20 PRINT "THE TOP LINE IS AT ",
VPOS(1)

30 FOR T=1 TO 3000 :NEXT

40 VTAB 24
50 PRINT "THE BOTTOM LINE IS AT ",

VPOS(1)
60 FOR T=1 TO 3000:NEXT T

Sample Run:

THE TOP LINE IS AT O

THE BOTTOM LINE IS AT 23

A-100

Statement

VTAB

VTAB is a way to position text on the screen at a
specified location. VTAB (or vertical tab) has a
value of 1 to 24, because this is the number of
rows your screen contains. VTAB directs the
computer as to where to print. The number
following VTAB can be a variable.

Test Program:

10 PRINT "YOU WILL PLEASE ENTER A VTAB

VALUE "

20 INPUT X

30 VTAB X

40 PRINT "SEE, IT WORKED! THIS PRINTED
ON LINE ";X

50 END

- Sample Run:

YOU WILL PLEASE ENTER A VTAB VALUE 4

SEE, IT WORKED! THIS PRINTED ON LINE -

A-101

OS Command
WRITE/READ

WRITE must be used before any PRINT statements may
be used to write data to a file. The format is:
WRITE<f ilename>, [D#]
WRITE must appear within a PRINT cammand, preceded
by a CONTRAL~D. READ must be used before any
INPUTs fram a data file. The syntax is:
READ<f ilename>, [D#]
The D# refers to the drive number and may be
omitted if you only have one drive.

For additional information, see SEQUENTIAL TEXT
FILES in Appendix C.

Test Program:

10 D$=CHRS (4)
20 PRINT DS$;"OPEN WELCCME"

30 PRINT DS$;"WRITE WELCOME"

40 PRINT “THIS WILL BE STORED"

50 PRINT D$; “CLOSE WELCOME"

60 PRINT D$;"OPEN WELCOME"

70 PRINT D$; "READ WELCOME"

80 INPUT B§$:PRINT BS

100 PRINT D$; "CLOSE WELCOME"
JMON C

Sample Run:

OPEN WELQOME

WRITE WELCOME

CLOSE WELCQOME

OPEN WELCOME

READ WELCOME

?THIS WILL BE STORED
CLOSE WELCOME

The INPUT B$ doesn't require operator input, as
the computer is taking its input from the file
rather than the screen.

A-102

ADAMTM sSmartBASICTM

ADVANCED REFERENCE SECTION

—
—
—
—
—
—
—
—

TABLE OF CONTENTS

APPEND
ASC
ATN
BLOAD
BRUN
BSAVE
CALL
COS
DRAW
EXP
FRE
HIMEM:
INIT
LOG
LOMEM:
PEEK
POKE
POP
POSITION
RANDOM
RECOVER
ROT=
SCALE=
SIN
TAN
USR
WAIT
XDRAW

B~1
B-2
B=3
B-4
B-5
B-6
B=7

B-9

B-10
B-11
B-12
B-13
B-14
B=15
B-16
B-17
B-18
B-19
B-20
B-21
B-22
B-23
B-24
B=~25
B-26
B=-27
B-28

0S8 Command

APPEND

APPEND allows you to append more data to an
existing sequential file. This is used only for
sequential files., It is also important to bear 1in
mind that a sequential file should be closed after
you finish writing. Otherwise ADAM will use all
the remaining space on the data pack for your file
and will not be able to APPEND., It's syntax is:

APPEND <filename>, [D#]
where D#, or Device Number.

APPEND is similar to OPEN in that both commands
open your file; but it differs from OPEN in three
important respects:
1. To use APPEND, the file must already
exist. You cannot use APPEND to create
a file.
2. APPEND will place the pointer at the
end of the file, where data will be
added. OPEN places the pointer at the

beginning of the file.
3. There is no need to do a WRITE after

the APPEND.

Test Program:

10 DS$S=CHRS(4)

20 PRINT DS;"APPEND FACE,D1"
30 PRINT "ADDING TO FACE"

40 PRINT DS$;"CLOSE FACE"
]MON C

Sample Run:

APPEND FACE
CLOSE FACE

B-1

Function

ASC

For every character you use there is, programmed
into your computer, a mrre.:-'.pondmg ASCII decimal
number value for it. ASC is the function that
converts upper and lower case characters and
symbols to their ASCII values.

Test Program:

10 PRINT “THE ASCII QODE FOR LETTER H IS

20 PRINT ASC(“H")

30 IF ASC (“"H")=72 THEN 60
40 PRINT “ASC BLEW IT"

50 GOTO 70

60 PRINT “ASC IS QORRECT*
70 END

Sample Run:

THE ASCII CODE FOR LETTER H IS 72
ASC IS QORRECT

B-2

Function

ATN

ATN, or arctangent, is a trigonometric function.
It is defined as the angle in a right triangle
required for a particular ratio of the length of
the side opposite it to the length of the side

adjacent to it. AN is the complement of TAN, and

is expressed not in degrees, but in Radians., Its
syntax is:

ATN(exprnm)
where (exprnm)=numerical expression.

NOTE: pi=4*ATN(1)
Test Program:

10 PRINT "ENTER A TANGENT VALUE: ";
20 INFUT N

30 A=ATN(N)

40 PRINT "THE ARCIANGENT OF ";N:" IS
":A;" RADIANS"

50 END

Sample Run:

ENTER A TANGENT VALUE: 1
THE ARCTANGENT OF 1 IS .785398164
RADIANS

B-3

0S Comman

BLOAD

The command BLOAD retrieves images stored in
binary files on your digital data pack and loads
them into memory.

The syntax for BLOAD 1is:

BLOAD <filename>,A#,D#

A% is the memory location into which the binary

file will be LOADed. Use of a memory address 1S
optional for BLOAD, as is drive designation (D%#).
If these values are not input then ADAM assumes a

preset default mode and adjusts for these values
itself. BLOAD is useful for LOADing shape tables,
among other things.

NOTE: To use BLOAD, you first need to do a BSAVE,

Test Program:

BLOAD shape, A51456

Sample Run:
Loads a previously BSAVE'd binary file

named "shape" into memory starting at
memory location 51456.

B-1

|
|

0S Command

BRUN

BRUN 1s used in binary files and is much the same
as BLOAD, except that after you load the file,
BRUN will execute a machine language "jump" to the
starting address automatically, 1It's syntax is:

BRUN <filename)> , A#,D#
The A and D values are optional. If you don't
specify an address or drive, then ADAM will go
into the preset default for that information, will

go directly to the address under which your image
was stored, and will assume Drive 1.

Test Program:

NONE

Sample Run:

NONE

B-5

Command
Statement

BSAVE

BSAVE is used to save binary information on your
digital data pack. The syntax of a BSAVE command
would be:

BSAVE <filename>, A#,L#,D#

A = specifies the starting address of the memory
portion to be stored on the digital drive. Its
use is NOT optional. You may input your memory
address as either a decimal or a hexadecimal. 1If
hexadecimal is used, the values must be preceded
by a dollar sign ($). The range acceptable for
decimal values is 0 to 65535. Be careful about
using space reserved for SmartBASIC or the

operating system. (See the memory map in Appendix

C.)

L = the length of the image or information to be

saved., Its use is NOT optional. Length specifies

the number of bytes to be stored. Again, you may
use decimals or hexadecimals to specify this.

D = the drive used. 1Its use in the program is
optional,
Test Program:

BSAVE shape, A51456,L1l4

Sample Run:
This will save the shape table created

in the SHAPE TABLE example to a binary file named
"shape."

B-6

WARNING: FOR EXPERTS ONLY! Statement
CALL

CALL lets you execute a machine-language
subroutine at a specified memory location, the
decimal value of which may be 0 through 65535.
Its syntax 1is:

CALL <location of machine-language sub>

Test Program:
NONE

Sample Run:

NONE

Function

QoS

Q0S is a trigonometric function which will compute
the cosine of an angle, expressed in radians
rather than degrees. (osine is defined for a
right triangle as the ratio of the length of the
side adjacent to the angle to the length of the
hypotenuse. Its syntax is:

Q0S (exprnm)

where exprnm is a numeric expression.

Test Program:

10 PRINT “ENTER ANGLE (IN RADIANS): “;
20 INPUT T

30 Y=CQ0S(T)

40 PRINT "'COS' OF "“;T;" IS ":;Y

50 END

Sample Run:

ENTER ANGLE (IN RADIANS): 7?1
'C0S* OF 1 IS .540302307

B-8

Statement

DRAW

DRAW 1s used in high resolution graphics to draw a
pre-defined shape at a specific location. DRAW
assumes that a shape table has already been loaded
into memory. You must follow the statement DRAW
with the shape table index number of the shape you
wish to have ADAM take from your shape table and
draw on the screen. The screen location at which
you want your shape drawn follows the word AT and
is a two-expression term, separated by a comma.
If the screen location is omitted, the shape will
be drawn at the last point plotted; or at 0,0 if
this is the first plot.

Test Program:

5 HIMEM:51455

10 pATA 01,00,04,00
20 DATA 54,63,36,36
30 DATA 45,45,54,54
40 DATA 63,00

50 FOR 1=0 TO 13

60 READ a

70 POKE 51456+i,a

80 NEXT

90 POKE 16766 ,0

100 POKE 16767 ,201
110 HGR: HCOLOR=3
120 SCALE=10

130 FOR i=1 TO 64
140 ROT=1

150 DRAW 1 AT 125,85
160 XDRAW 1 AT 125,85
170 NEXT

Sample Run:

A white square with a straight line from
the midpoint downward.

B-9

Function

EXP

EXP raises e to the indicated power, exprnm.
EXP's syntax is:

EXP (exprnm)

where exprnm is a numeric expression.

Test Program :

10 PRINT "ENTER 'EXP' VALUE: ";
20 INPUT N

30 E=EXP(N)

40 PRINT "'EXP' QF ";N;" IS ™;E
50 END

Sample Run:

B-10)

ENTER 'EXP' VALUE: ?1
'EXP' VALUE OF 1 IS 2.71828183

NOTE: You can also raise numbers to
various powers by using the CARET (")
key., For example, 10"2 would equal
100.

Function
FRE
FRE(expr) allows you to keep a running tally on
exactly how many bytes of allocated space you have
available to you in memory.
Test Program:
PRINT FRE(0)
Sample Run:
25820
Test Program:
10 B=FRE(1)
20 AS="HELLO"

30 C=FRE(1)
40 PRINT B-C

sample Run:
13

It takes 13 bytes to store HELLO.

|
WARNING: FOR EXPERTS ONLY! Statement |

HIMEM:

automatically preset, but you may change the
settings if you wish to. HIMEM: is used to

protect the area of memory above a designated
location, since HIMEM: will create a boundary to
allow you to safely input your data without

writing over important data above your boundary. ,
But, since HIMEM: is pre-set to allow you the i
maximum free memory space, we DO NOT recommend

that you reset it unless you are working with ,
assembly language. It is imperative that you i
investigate reserved memory before going ahead and
changing the HIMEM: boundary.The HIMEM: syntax is:

i

HIMEM: or highest program memory location, is J

HIMEM:<memory location>

i
where memory location has a range of 0-65535 as i
well as -32767 down to -1, Positive or negative
values, if equivalent, may be used interchangeably |,

(-32767 equivalent to 65535). {
u
Test Program: L
NONE ;
4
Sample Run:
NONE j
L
u
I_
U

B-12

l. Command

I INIT

INIT, or initialize, is a command that should only

| be used in the immediate mode. Use INIT when you
wish to wipe out your old directory in your digital
data pack., INIT will reinitialize the directory

l (delete all file name entries), so be very careful
when using it! INIT will not initialize a
SnartBASIC tape, so don't worry about that., INIT

.~ syntax is:

INIT <volumename>,D#

The D value is optional, and indicates a particular
digital data drive.

NOTE: You don't need to initialize your
blank digital data packs before you use
them. Also, it is not possible to turn
an ordinary cassette into a blank
digital data pack using this command.

Be careful not to 'INIT' over a Super
Game !

Test Program:

NEW
INIT HELLO,D1

-——wait while ADAM initializes
| CATALOG
Sample Run:

VOLUME: HELLO

253 Blocks Free

This says that you're operating in Drive
1, that your volume name is HELLO with
253 blocks free.

B-13

Function
LOG

LOG computes the natural logarithm of any number
whose value is larger than 0.

Test Program:

10 PRINT “ENTER POSITIVE NUMBER ";

20 INPUT Q

30 L=LOG(Q)

40 PRINT “'LOG' OF ";Q;" IS ";L
50 END

Sample Run:

ENTER POSITIVE NUMBER 210
‘LOG' OF 10 IS 2.30258509

B-14

WARNING: FOR EXPERTS ONLY! Statement

LOMEM:

The opposite of HIMEM:, LOMEM: sets the lowest
 memory location available. It's syntax is:

l LOMEM: <memory location>

where <memory location> is an arithmetic
expression between -32767 and +65535. Note that

'Either positive or negative addresses can be used
if equivalent.

lkgain, it is inadvisable to change the value of
LOMEM: unless you are a very experienced

programmer. We do not recommend it unless you are
linvulved with assembly language.

iTest Program:
i NONE
~ Sample Run:

i NONE

- B-15

WARNING: FOR EXPERTS ONLY! Statement

PEEK

PEEK allows you to look at whatever data is in the
memory location you specify. No writing, just
looking! You are able to PEEK into RAM
(read/write memory). The syntax of PEEK is:

PEEK <memory location>
where <memory location> is the address of the

memory location you wish to read. Range for PEEK
is 0 - 65535; but PEEK may also be used with POKE i

to read what has been POKED in at whatever address
is within POKE range, as well.

Test Programs:

5 HIMEM: 51456 -
10 FOR X=51457 TO 51467

20 READ Y I
30 POKE X,Y

40 NEXT X

50 FOR X=51457 TO 51467 =
60 Y=PEEK (X)

70 PRINT CHRS(Y);

80 NEXT X -
90 DATA 80,69,69,75,45,65,45,66,79,79,33
100 END

Sample Run:

PEEK-A-BOO!

B-16 -

WARNING: FOR EXPERTS ONLY! Statement
POKE

POKE alters the contents of a memory location, in
that it will store a designated value directly into
a specific memory location. Syntax for POKE 1is:

POKE <memory location>,<value 0-255>

where value is the decimal number representing the
eight-bit quantity of data to be stored in the
memory location specified. Memory location range is
-32767 through 65535 inclusive. You can POKE into
RAM (read/write memory) only.

NOTE: The SmartBASIC POKE will not function when
using values above 54160 or below 0.

Test Program:

5 HIMEM:51455

10 DATA 01,00,04,00
20 DATA 54,63,36,36
30 DATA 45,45,54,54
40 DATA 63,00

50 FOR i=0 TO 13

60 READ a

70 POKE 51456+1i,a

80 NEXT

90 POKE 16766,0

100 POKE 16767 ,201
110 HGR: HCOLOR=3
120 SCALE=10

130 FOR i=]1 TO 64
140 ROT=1

150 DRAW 1 AT 125,85
160 XDRAW 1 AT 125,85
170 NEXT

Sample Run:

This will give you the "default shape”,
which is a square with a straight line
running from the mid point, downward.
For a picture of it, see the Shape Table
section of the Compendium at the back of
this manual. B.17

WARNING: FOR EXPERTS ONLY!

Statement

POP

The POP statement “pops" or discards the line
nunber of the most recent GOSUB. So when a RETURN
statement appears, it will return to the statement
following the secondmost GOSUB.

Test Program:

10 PRINT “ONE *;

20 GOSUB 100

30 PRINT “FOUR"

90 END

100 PRINT "IWO “;
110 GOSuUB 200

120 PRINT “ONE TWENTY"
130 RETURN

140 STOP

200 PRINT "“THREE ";
210 POP

220 RETURN

Sample Run:

ONE TWO THREE FOUR
At line 210 you “popped" past line 110

and returned after line 20 to print line
30.

B-14

Command
POSITION

POSITION moves the positiomin-the-file pointer
forward only. It can be used only in sequential
files, and only to skip the number of records you
select. You cannot write to your file using
POSITION. Its syntax is:

POSITION <filename>,R#

where R#=record number (relative)

Test Program: (Assumes you have a sequential
file named UP with at least 4

records) .

10 D$S=CHRS(4)

20 PRINT DS; "OPEN UP"

30 PRINT DS; "POSITION UP,R3"
40 PRINT D$; "READ UP"

50 INPUT AS: PRINT AS

60 PRINT DS; "CLOSE UP"

JMON C

Sample Run:

OPEN UP

POSITION UP,R3

READ UP

(prints 'record 4'as 4th record
in file 'UP')

CLOSE UP

B-19

Files E

Random access files will allow you to open a file at
a particular record number, READ it and/or WRITE a E
new record into it., R#=record number and L#=record
length. Please keep in mind that the file must
already exist, and the READ or WRITE must be withiig
the existing file. And always, always remember to
CLOSE your file when you're through.

RANDOM/Fixed Length Files

For more information on random files, refer %o the
Compendium at the back of this book. (Apperndix C).

Test Program:

10 D$=CHRS$ (4)

20 PRINT D$;"OPEN DOOR,L20"
30 PRINT D$; "READ DOOR,R5"
40 INPUT AS:PRINT AS

50 PRINT D$; "CLOSE DOOR"

or

30 FOR I=1l TO 10

40 PRINT D$S;“WRITE DOOR,R";I
50 PRINT “"REQORD NUMBER";I
60 NEXT

70 PRINT D$; “CLOSE DOOR"

JMON C
NOTE :R#=record number
Li#=record length

Sample Run:

OPEN DOOR,LZ20
READ DOOR,R5
CLOSE DOOR

or

OPEN DOOR,L20

WRITE DOOR, Rl

RECORD NUMBER 1

: (write ten records)
CLOSE DOOR

The files you access in this manner do
B-2() not have to be sequential.

Statement

RECOVER

The RECOVER statement is used to access a back up
file. Its syntax is:

RECOVER <filename>,D#

where D# means "device number" and is optional.

Test Program:

] CATALOG
Vvolume: BOZO
A 1 FOO

a 1 FOO

253 BLOCKS FREE
]DELETE FOO

] CATALOG
Volume: BOZO

a 1l FOO

254 BLOCKS FREE
] RECOVER FOO

] CATALOG
Volume: BOZO
A 1 FOO

254 BLOCKS FREE
]LOAD FOO

Sample Run:

You will now have access to your back up
file of FOO. The most recent version of

"FOO" has been deleted. To keep both
versions, first RENAME "FOO".

B-21

Statement

ROT=

The ROT=, or ROTation statement sets the spatial
orientation of a shape in high resolution graphics
before your shape is drawn. The number following
ROT= dictates the rotation of the shape in 5.625
degrees/unit. Therefore, ROT=0 orients the shape
exactly as defined in the shape table; whereas
ROT=16 turns the shape 90 degrees in a clockwise
direction, ROT=32 turns it 180 degrees. ROT=64
turns it one complete revolution so that you're
back where you started from. The number following
the = may be a variable.

NOTE: Because the ratio of width to height of
most TVs and monitors is not 1, the
proportions of a shape may change as the
shape is rotated.

Test Program:

10 HGR2

20 HCOOLOR=6

30 SCALE=10

40 ROT=0

50 DRAW 1 AT 50,100
60 ROT=8

70 DRAW 1 AT 120,100

Sample Run:

You will end up with two blue shapes on
your screen—one oriented as originally
defined, and one rotated 45 degrees.

B-22

Statement

SCALE=

SCALE= 1s used in high resolution graphics to set
the relative size at which a shape will be drawn.
This scaling factor may be as low as 1 or as high
as 255; 1 being an exact size reproduction from
the one specified; 255 being the shape reproduced
at 255 times its originally defined size. The
number following = may be a variable.

Test Program:

10 HGR

20 HCOLOR=5

30 ROT=0

40 SCALE=1

50 DRAW 1 AT 50,50
60 SCALE=3

70 DRAW 1 AT 100,150
80 SCALE=2

90 DRAW 1 AT 200,100

Sample Run:

Color is set to medium red. You will
draw one shape at original size and
orientation at column 50, row 50. The
same shape will be redrawn at column
100, row 150 at 3 times the original
size. The same shape will be redrawn a
third time at column 200, row 100 at
twice its original size,

Function

SIN

SIN, a trigonometric function, is used to compute
the sine of an angle (expressed in radians). Sine
is the ratio of the length of the side opposite
the angle under examination to the length of the
hypotenuse in a right triangle, Syntax of SIN is:

SIN(x)

where "x" is an arithmetic expression.

Test Program:

10 PRINT "ENTER ANGLE (IN RADIANS): ";
20 INPUT M

30 Y=SIN(M)

40 PRINT "'SIN' OF ";M;" IS ";Y

50 END

Sample Run:

ENTER ANGLE (IN RADIANS): 1
'SIN' OF 1 IS .841470988

Function

TAN

In trigonometry, TAN is used to find the tangent
of an angle, expressed in radians. Tangent is the
ratio of the length of the side opposite the angle
in question to the length of the side adjacent to
it in a right triangle. 1Its syntax is:

TAN(x)

where "x" can be an arithmetic expression,

Test Program:

10 PRINT "ENTER ANGLE (IN RADIANS): ",
20 INPUT Z

30 Y=TAN(Z)

40 PRINT "'TAN' OF k™ ISy

50 END

Sample Run:

ENTER ANGLE (IN RADIANS): 1
'"TAN' OF 1 IS 1.55740772

B-25

WARNING: FOR EXPERTS ONLY! Function |
USR

USR executes a machine-language function routine

and requires a full knowledge of machine-language |
programming. USR stands for User Supplied Routine

and is usually used to perform a high-speed +
computation that can neither be done quickly nor |
expressed in SmartBASIC. Store a USR function in

memory with a POKE statement.

Test Program:

NONE

Sample Run:

NONE

B-26

WARNING:: FOR EXPERTS ONLY!! Command
Statement

WAIT

WAIT does what its name implies. It halts a
program execution until a designated bit pattern
appears at a particular port location. If you try
to access a port device that is not receiving, a
WAIT command will "hang up" your system. Syntax
of WAIT is:

WAIT <port #(0-255)>,<value 1>,<value 2>
where value 1 is ANDed with data from <port number
(0-255)>. Value 2 is optional, it is XORed with
value 1., If value 2 is omitted, zero is assumed.
WAIT will loop until the logical operation is zero.

Test Program:

NONE

Sample Run:
NONE

B-27

Statement

XDRAW

In high resolution graphics, XDRAW does the same
thing DRAW does, except for the fact that the
color you choose in drawing the shape 1is the
complement of the color already existing at each
plotted point. You may also use XDRAW to erase a
shape (by plotting a new shape at the same
location, SCALE, and ROT), and leave the
surrounding graphics untouched.

IF YOUR THEN XDRAW COLOR IS:
COLOR 1IS:

MED.BLUE MED. RED

MED. RED MED.BLUE

DK. RED GREEN

GREEN DK.RED

BLACK WHITE

WHITE BLACK

Test Program:

5 HIMEM:51455

10 DATA 01,00,04,00
20 DATA 54,63,36,36
30 DATA 45,45,54,54
40 DATA 63,00

50 FOR i=0 TO 13

60 READ a

70 POKE 51456+i,a

80 NEXT

90 POKE 16766 ,0

100 POKE 16767,201
110 HGR: HCOLOR=3
120 SCALE=10

130 FOR i=1 TO 64
140 ROT=1i

150 DRAW 1 AT 125,85
160 XDRAW 1 AT 125,85
170 NEXT

Sample Run:
A square with a straight line from the

midpoint, downward. See the Compendium
(APPENDIX C) for a picture of it.

ADAMTM SmartBASICTM

COMPENDIUM OF USEFUL PROGRAMMING INFORMATION

(APPENDIX C)

TABLE OF CONTENTS

- ERROR MESSAGES and ONERR...GOTO CODE

FOR USERS WITH TWO DIGITAL DATA PACK
DRIVES

. SEQUENTIAL TEXT FILES

RANDOM ACCESS TEXT FILES
TURNKEY SYSTEM

ASCII CHARACTER CODES
BASIC MEMORY MAP

SHAPE TABLE

READ ONLY MEMORY

RANDOM ACCESS MEMORY

GLOSSARY OF TERMS

Sraart 58 V37,2 s128

Cl-C4

C5-C6
C7-C8
C9-C10
Cll
Cl12=C1l>
Clé
Cl7-C23
C22

C22

C24 -C30

<=3

ERROR MESSAGES

Run Time Error Messages ONERR GOTO Codes

BAD SUBSCRIPT (107)
You've tried to reference an array element
that's outside the array's dimensions.

BREAK (255)

This message appears when you use CONTROL-C to
interrupt a program, or you have a STOP in your
program,

CAN'T CONTINUE

You tried to continue a program that doesn't
exist, after an error occurred, or after you
removed or inserted a line in a program.

DIVIDE BY ZERO (133)
Division by zero is not acceptable.

FATAL SYSTEM ERROR
Your program is corrupted. Type NEW or reboot
SmartBASIC.

ILLEGAL FUNCTION ASSIGNMENT (16)
You tried to use a function in an INPUT or
READ statement.

ILLEGAL MODE
You can't use DATA, GET, DEF FN, or INPUT in
immediate execution mode.

ILLEGAL QUANTITY (53)

This error can be caused by: using LOG with a
negative or zero argument; using SQR with a
negative arqument; or using LEFT$, RIGHTS$, MIDS,
WAIT, POKE, PEEK, TAB, SPC, ON/GOTO, or any
graphics function with an inappropriate argument.

NEXT WITHOUT FOR (0)

You typed in NEXT on your program and have
omitted the corresponding FOR. Always pair FOR
with NEXT.

(-1

OUT OF DATA (42)
ADAM is trying to execute a READ statement
when all the data has been read. You haven't

provided enough data, or your program tried to
read too much data. '

OUT OF MEMORY (77)

This may be caused by: a program that is too
large; excessive variables; more than 14 nested
FOR loops; more than 30 nested GOSUB levels; too
complicated an expression; setting LOMEM: too high
or too low; or setting HIMEM: too high,

OVERFLOW (69)
This results when a calculation answer is too _
large for ADAM to handle. An underflow will I

result if the calculation answer is too small for
ADAM to handle. 1In this case, a zero will be
substituted for the correct result, and no error
message will appear.

REDIMENSIONED ARRAY (120)

After you dimensioned an array, ADAM
encountered another dimension statement for the
same array.

REENTER (254)

You made an inappropriate response to an
INPUT.

RETURN WITHOUT GOSUB (22)
ADAM encountered a RETURN without a
corresponding GOSUB statement.

STACK OVERFLOW (77)

You've taken up too much room in your stack by
using too many FOR/NEXT statements or GOSUB
statements. Too many subroutines will fill your
stack to the extent that you need to POP
information from the top before you can push any
more in from the bottom.

STRING TOO LONG (176)
You've put together a string that has more
than 255 characters.

SYNTAX (16)

Check to see if you are missing parentheses,
have an illegal character in a line, or incorrect
punctuation, etc.

TYPE MISMATCH (163)
You've given a function or variable which

expected a numeric argument, a string argument, Or
vice versa.

UNDEFINED FUNCTION (224)
You tried to use FN for a function that you
have not yet defined. See DEF FN.

UNDEFINED STATEMENT (90)
You tried to send a GOTO, GOSUB, or THEN to a
)ine number which doesn't exist.

File Error Messages

CONTRCOL BUFFER OVERFLOW (12)
You have exceeded the fixed size limit of your

input buffer. You have probably used too many
characters following a CONTRCL~D.

END OF DATA (5)
You've tried to read or write past the end of

your data file.

FILE LOCKED (10)

The file to which you are trying to write is
locked., Use CATALOG to see which files are
locked. Look for filenames with asterisks in
front of them. To release a file, see UNLOCK and
RECOVER.

(-

FILE NOT FOUND (7)

ADAM can't find the file using the name you've
input. Check your spelling (especially the way
you used upper and lower case letters). Type
CATALOG to be sure the file is on your digital
data pack.

FILE TYPE MISMATCH (13)
You tried to run a binary file.

I/0 ERROR (8)
This is an input/output error. Be sure your
digital data pack is firmly in place.

NO BUFFERS AVAILABLE (12)
You've run out of buffers because you have too

many data files open.

NO MORE ROOM (9)
There is no more file space left on your

digital data pack. The directory will only hold
35 files. You may have an unclosed data file.
See CLOSE.

RANGE ERROR (2)
You've exceeded your available range by making
a command parameter too large for ADAM to deal

with,

SYNTAX ERROR (11)
You've used a bad file name, wrong parameter,

or wrong punctuation in an OS command.

IFOR USERS WITH TWO DIGITAL DATA PACK DRIVES

?

You can use either drive for SmartBASIC. When you
reset ADAM, the computer first looks for a digital
data pack in the left drive (Dl). If one 1is
found, ADAM expects it to contain SmartBASIC. If
there is no tape in the first drive, or the door
is open, ADAM tries to boot the drive on the right
(D2) . The left drive becomes the default drive,
If a drive isn't specified, every OS command
automatically goes to the default drive. Every
time you use an 0OS command with the drive
specified, that drive becomes the default drive.

DIGITAL DATA PACKS

1. Don't store your programs or data files on the
SmartBASIC digital data pack. Take it out and put
it away as soon as SmartBASIC is loaded. Use a
blank pre-formatted digital data pack to store

your programs and files.

2. Do yourself a favor. If you're working on a
long program, SAVE it every 15 or 20 minutes. Use
a new version number each time. This way, if your
power goes off unexpectedly, you won't lose
everything you've input. You'll only lose what's
been entered since the last time you SAVEd. If
your digital data pack starts to get full, then
DELETE the earliest SAVEd versions,

3. Make extra copies of important programs and
data files on a separate digital data pack. Keep
one "working" copy, then store the other in a safe
place -- away from your "working" copy so you
won't get confused.

4. Digital Data Packs are specially designed for
your ADAM computer. Although they may look like
audio cassette tapes, digital data packs are very
different., Audio cassette tapes cannot be used in
place of digital data packs. If the tape in a
digital data pack breaks, do not splice the ends

together and try to re-use the data pack. To
erase information on a digital data pack, delete
unwanted files, Never use a bulk tape eraser--if
you do, you'll erase the special format that makes
the data pack unique for ADAM. Digital data packs .
cannot be write-protected.

Keep your digital data packs away from magnets.
Don't put them on top of the printer; there's a
magnet inside. Store your digital data pack in a
safe place, away from dust, temperature extremes,
electrical currents, and water. Don't open the
drive door while the tape is in motion. Never
press the RESET button while ADAM is storing a
file. Do not store a digital data pack on or near
a television or monitor. Keep your data packs
away from heat and sunlight. Keep spare digital
data packs in their original plastic cases when
they are not in use,

(.-6

F
|

|

SEQUENTIAL TEXT FILES

Sequential text files are information storage
files where data records follow one right after
another, in seguence.

To create a sequential text file, always begin
with OPEN, then follow it with WRITE. All PRINTs
will now go to the file until the WRITE is
cancelled. To cancel a WRITE command, PRINT

~ CONTROL~D (PRINT CHRS(4)).

The sample program which follows will create a
sequential text file called SESAME. The first 13
records contain three strings and the numbers
1-1.0-

10 DS$=CHRS (4)
20 PRINT D$; "OPEN SESAME"

50 PRINT DS$; "WRITE SESAME"

60 PRINT “HEY CHIP": PRINT "LET'S STEP ouT"
70 PRINT "FOR A BYIE"

80 FOR J=1 TO 10

90 PRINT J: NEXT J

100 PRINT DS; "CLLOSE SESAME"

BEWARE:: If you OPEN a file already existing and
WRITE to it, you'll overwrite part of your
original file. Use APPEND to add to files.

To retrieve the file, SESAME, one record at a
time, here's what to do:
(and to see what's going on, type MON I)

10 D$=CHRS(4)
20 PRINT D$;"OPEN SESAME"
30 PRINT D$;“READ SESAME"

40 INPUT AS$,BS,CS

50 FOR I=1 TO 10

60 INPUT W(I)

70 NEXT I

80 PRINT D$; "CLOSE SESAME"

OPEN must come before READ. After the READ, all

INPUT comes from the file. You can cancel a READ
command by PRINT CHRS(4). Don't forget to CLOSE

your file when you're done.

To add data to a sequential text file, try this
type of program:

10
20
40
50
60

D$S=CHRS (4)

PRINT D$; "APPEND SESAME"

PRINT "NO, THANKS"

PRINT "I'VE A BIT OF A HEADACHE."
PRINT D$; "CLOSE SESAME"

Each string is an additional record of the file.

o

-8

RANDOM ACCESS (Fixed Length) TEXT FILES

Think of random access text files as a series of
equal-sized pigeon holes in a desk. Each pigeon
hole is called a "record".

Random access text files differ from sequential
text files in the fact that random access text
records must be of a fixed length, where
sequential text records may be of any length. The
drawback is that when you WRITE to a random access
text file, enough space is set aside for a
complete record, whether you fill that entire
space or not. From this, you see that, while
random access text files may not represent the
best usage of available space, the files are
arranged in such an orderly fashion that it's a
quick and easy procedure to recall and edit
information from any part of your file!

Use random access text files when you want:
l.fast access to different parts of your files
2.to change pieces of information in your files

fairly frequently (mailing lists, name, address,
phone number files, etc.).

The procedure to create or retrieve random access
text files is similar to that used for sequential
text files. Here are the slight differences you
should know about:

OPEN needs a length parameter
specified. (maximum length is 255).

READ needs a record parameter specified.

WRITE needs a record parameter specified.

Here's a sample program for you:

10 DS=CHRS(4)

20 INPUT "NAME: ":NS

30 INPUT "PHONE: ":PS

40 PRINT DS$; "OPEN PHONEIND,L200"
50 PRINT D$; "WRITE PHONEIND,R1"
60 PRINT N$: PRINT P$

70 PRINT D$;"CLOSE PHONEIND"

MON C,I,0

You'll see this onscreen: (You type the
underlined words.

NAME: EARLE_W._MUNSON

PHONE: (203)_263-3292
OPEN PHONEIND,L200

WRITE PHONEIND, Rl
EARLE W. MUNSON
(203) 263-3292
CLOSE PHONEIND

Now, if you want to get the first record of
PHONEIND, use this:

10 D$=CHRS(4)

20 PRINT D$; "OPEN PHONEIND,L200"
30 PRINT D$; "READ PHONEIND,R1"
40 INPUT N1S,P1lS

50 PRINT D$;"CLOSE PHONEIND"
]MON C,I,0

You'll see this onscreen:

OPEN PHONEIND,L200
READ PHONEIND, R1
EARLE W. MUNSON
(203) 263-3292
CLOSE PHONEIND

C-10

TURNKEY SYSTEM

You can create a turnkey system on ADAM. This is
a system that runs the same initial program every
time a digital data pack is booted for

SmartBASIC. You may use any sort of program that
does any task; but most people use what's called a
"greeting program". A greeting program will make
ADAM seem more human by doing pretty much what the
program category implies. . . by greeting you. A
greeting program may be as long or as short as you
choose to make it; from "HELLO" to an involved
conversation which requires input from you to
answer gquestions ADAM poses. Save your program
using the name HELLO,

10 PRINT, "HELLO, HUMAN"
20 GOTO 20
SAVE HELLO

Hit RESET to put you back into SmartBASIC and
rewind your tape. HELLO is in your directory on
your SmartBASIC tape. SmartBASIC READs your
directory and looks for the HELLO file. When it
is found, it is LOADed and executed every time you
boot SmartBASIC. Only the program named "HELLO"
is run when the SmartBASIC tape is booted. If no
"HELLO" file is found, ADAM turns control over to
you.

C-11

ASCII CHARACTER CODES

I¥ GET A%

1y TF ASC{Ad/ = > THEN ENL
g Lrent B Yoo W
DEC HEX CHARACTER TYPED MEANING
0 00 CONTROL-@
1 01 CONTROL-A
2 02 CONTROL~-B
3 03 CONTROL-C
4 04 CONTROL-D
5 05 CONTROL-E
6 06 CONTROL~-F
7 07 CONTROL-G bell
8 08 CONTROL-H backspace
9 09 CONTROL~-T 14s horiz. tab
10 0A CONTROL-J line feed
11 OB CONTROL-K
12 0C CONTROL-L clear screen
13 0D CONTROL~=M #=+ 7 1]
14 OE CONTROL~-N
15 OF CONTROL~-0
16 10 CONTROL-P dumps screen to
printer
17 11 CONTROL-0Q
18 12 CONTROL-R
19 13 CONTROL-S pause
20 14 CONTROL-T
21 15 CONTROL-U
22 16 CONTROL-V
23 17 CONTROL~-W
24 18 CONTROL~-X
25 19 CONTRCL~-Y
26 1A CONTROL~Z ﬁ
27 1B CONTROL~= [£5¢472/ wF
28 1C CONTROL-\
29 1D CONTROL-]
30 1E CONTROL-"
34 1F CONTROL~-_
32 20 SPACE

C-12

DEC HEX CHARACTER TYPED MEANING

73 49 I
74 4A J
15 4B K
76 4C L
77 4D M
78 4E N
79 4F #)
80 50 P
81 51 0
82 52 R
83 53 S
84 54 T
85 55 U
86 56 Vv
87 57 W
88 58 X
89 59 Y
90 5A Z
91 5B |
92 5C X
93 5D]
94 5E ”
95 5F 6
96 60 :
97 61 a
98 62 b
99 63 C
100 64 d
101 65 =
102 66
103 67 g
104 68 h
105 69 i
106 6A i
107 6B Kk
108 6C 1
109 6D m
110 6E n
111 6F (o]
112 70 P

(.-14

b DEC HEX CHARACTER TYPED MEANING

l 33 21 !
34 22 3
35 23 7
36 24 $
37 25 %
38 26 &
39 27 !
40 28 (
41 29)
42 2A *
43 2B +
44 2C ’
45 2D -
46 2E ’
47 2F /
48 30 0
49 31 -
50 32 2
5l 33 3
52 34 4
53 35 5
54 36 6
55 37 7
56 38 8
57 39 9
58 3A -
59 3B 2
60 3C <
61 3D E
62 3E >
63 3F ?
64 40 @
65 41 A
66 42 B
67 43 C
68 44 D
69 45 E
70 46 F
71 47 G
12 48 H

(-13

H'DEC HEX CHARACTER TYPED MEANING

' 113 71 q (£
114 712 r %
- 115 73 s Tf
116 74 t [2 Nty i
T N 0 PRI 6
118 76 v il
119 I, w £
120 78 X e
121 79 v
122 7A Z
123 7B bracket (left)
124 7C broken vertical line
125 7D bracket (right)
126 1E tilde
127 7F DELETE
| ¢ KO E -
! 24 b T sl a s d
'f 20 A~ et &7 gyl __?"I
I[J)Il_ ELncr7gsl 194
J7 R £VaE i |
13 Func 1104 2%
I"' F o+ I
I vl 2FT \ -‘h*; r’_; ' " Kevy
3 S
I 41,) o A R
I f L/ l:!"_.}
144 cory
/71 GET
,il iy .'- ks -:'_,.j_*lg-
} 5 {F | B
/50, WL LOCARO(sHEFT)
{53 _,ﬂﬁ. ~~'ﬂl
F3% ' /& -"'I
) Lo STUX (1 ""}“,-;
| ::_} i 2 o g)
12 Prné (sHLFTF
'5 ¢ & LT HDi=+ |

BASIC MEMORY MAP

GBUFH _____________________________ 27407
v (LOMEM:)
* SYMBOL TABLE
. NUMERIC VARIABLES
b ARRAY DESCRIPTIONS
*user RAM
*
9 STRING VARIABLES
o T P o el ol i i e i
. TOKENIZED USER
W PROGRAM (HIMEM:)
*
*
*
D]-BOH _____________________________ 53632
STACK
D390H _____________________________ 54160

OPERATING SYSTEM

PLEASE NOTE THAT POKE DOES NOT ALLOW POKING ABOVE
D390H (IN DECIMAL VALUES D390L=54160).

C-16

SHAPE TABLE

A shape table is used to input and file shapes for
use later in high resolution graphics.

Now we're getting complicated. Now you're going
to need a little extra help in the form of a
hexadecimal calculator, or "hex" calculator; or
you can program ADAM to do the calculation. You
will not be able, for all practical purposes, to
figure out hex values for various shapes without
one. Hex values are an easier way to interpret
and represent binary numbers.

Plotting Vectors

It is necessary to plot vectors in order to define
your shape. Each byte (composed of 8 bits) in a
shape definition, is divided into 3 sections.

Each section designates a plotting
vector...whether to move up, down, left, or right,
or whether to plot a point at all. ADAM knows
your shape is finished when it reaches a vector of
eight zeros.

Sec. C Sec. B Sec. A
Bit # 7 6 5 4 3 2 1 0
D D P D D P D D
DD=direction
P=point

IF DD=00 then move up

IF DD=01 then move right
IF DD=11 then move left
IF DD=10 then move down

C-17

IF P=0 then don't plot a point
IF P=1 then plot a point

Note that Section C has no P in it; therefore P=0
is assumed. Section C can only specify a
direction.

00 00 0
Here's a sample shape: 0 0

C @ O

o) @ Q

00 00O

Draw it on a piece of graph paper. Keep one dot
per square. Decide on where to begin your shape.
We chose the center. Draw a path around your
shape with arrows. These arrows are called

plotting vectors.
| §

Y

Next, unwrap the vectors from your shape, and
write them out in a straight line. Be sure to
include the points on the backs of the arrows
which have them,

qDﬂQl‘llGranbﬂpGDDch} - O

vy 0000 Yyvy

Next, transfer these vectors into a table 1like

this one:
vector code

A 000

= 001 or O1 imuve

Y 010or 10 only

- 011 or 11

A 100

o 101 s
Y 110
- 111

:sactiun C B A C B A

byte
0 e 00 010 | | 010 0001 | | 0010 12

TR o o 00 111 111 0011 | | 1111 3F

2 g g 00 100 | | 100 0010 | | 0100 24
3 00 100 | | 100 0010 | | 0100 24

[4 o || O ’ 00 101 101 ’ 0010 | | 1101 . 2D
5 G- || W= 00 101 101 0010 | | 1101 2D
6 Y|l ¥ 00 110 | | 110 0011 | | 0110 | 36

7 Y || Y 00 | | 110| [110 | |oo11| [o110| |36
8 < || =© 00 111 111 0011 | | 1111 l 3F
9

I

i A
this vector cannot
plot or move up;

’ fill with 00 if unused

~Now, another table. Now you need to recode your
 vector information into hexadecimal bytes. Use
the hexadecimal codes listed here:

| CODES

Binary Hexadecimal Decimal

1111 F 15
1110 E 14

1101 D 13
1100 C 12
1011 B 11
1010 A 10
1001 9 9
1000 8 8
0111 7 7
0110 6 6
0101 5 5
0100 4 4
0011 3 3
0010 2 2
0001 1 1
0000 0 0

You're almost done. Convert your data into this
form:

BYTE 0 01 (number of shapes)

C-19

00 (unused)

04 (index to shape def)
00 (index to shape def)
12 (first byte)

3F

24

24

2D

2D

36

36

3F

00 (last byte)

when you input a shape table, it is vital that you
designate a certain memory area for it. (see

HIMEM: and LOMEM:) For example: 10 HIMEM: 51455.

And now, your shape tablel

DOW PO~ U S WNH

c900,01 20 POKE 51456,01
C901,00 30 POKE 51457 ,00
c902,04 40 POKE 51458,04
Cc903,00 50 POKE 51459,00
c904,12 60 POKE 51460,18
C905,3F 70 POKE 51461,63
C906,24 80 POKE 51462,36
C907 ,24 90 POKE 51463,36
C908,2D 100 POKE 51464 ,45
C909,2D 110 POKE 51465,45
C90A,36 120 POKE 51466,54
C90B,36 130 POKE 51467 ,54
C906,3F 140 POKE 51468,63
C90D,00 150 POKE 51469,00

The second column is the one you'll actually be
typing in. The first column 1s the hex values of
the second.

Now, we must tell SmartBASIC where the shape table
is located in memory. This is done using two .
POKES:

160 POKE 16766 ,0

170 POKE 16767 ,201
175 HGR:HCQOLOR=3

180 SCALE=10

190 FOR i=1 to 64
200 ROT=1

210 DRAW 1 AT 125,85
220 XDRAW 1 AT 125,85
230 NEXT

Using BSAVE and BLOAD, you can save memory image
of the shape table. See BSAVE and BLOAD in the
Reference sections for further information.

Here's another way to input the Shape Table:
How to Use a Shape Table

5 HIMEN :51455
10 DATA 01,00,04,00
20 DATA 18,63,36,36
30 DATA 45,45 ,54,54
40 DATA 63,00
50 FOR i = 0 TO 13
60 READ a
70 POKE 51456+i, a
80 NEXT
90 POKE 16766, 0
100 POKE 16767, 201
110 HGR
120 FOR ¢ = 1 TO 15
130 HCOLOR = C
140 FOR i = 0 TO 32
150 ROT = i: SCALE = (i+2)*.9
160 DRAW 1 AT 125, 95
170 NEXT: NEXT
180 GOTO 120

Gorgeous!!
To interrupt this floor show, use CONTROL-C.

Lines 90 and 100 contain the location of the shape
table in memory in a converted form. The table
starts at 51456 decimal. This is C900 hex. The
hex value is separated into two bytes. The least
significant byte is 0 hex or 0 decimal. The most
significant byte is C9 hex or 201 decimal. The
decimal bytes are stored least first, most second.

READ ONLY MEMORY (ROM)

ROM contains the programs which enable ADAM to
understand and act on commands you type in at the
keyboard. Unlike RAM, ROM's contents never change
-- even if the power is turned off. 1It's sort of
like a sleeping person's personality...though it
1s not in evidence while asleep, it still exists,
unchanged.

RANDOM ACCESS MEMORY (RAM)

RAM is a read/write memory. Its contents change
constantly, depending upon which tasks you're
currently using ADAM to perform. RAM works only
as long as the power is on., When you turn ADAM
off, read/write memory data disappears. The
programs in RAM are classified as application
programs,

ADAM comes with 80K RAM. After SmartBASIC
is loaded, approximately 25950 bytes are available
for programs and variables.

If you have the 64K memory expander, see the
owner's manual that comes with it.

FOR EXPERTS ONLX

This program will give you the address
locations where many useful settings and pointers
are stored. Most locations are two byte addresses
with the least significant byte first. This
information requires advanced knowledge not
covered in this manual. Make sure you know what
you are doing before you try to use it,

10 PRINT ¥ Put paper in printer"“: PRINT
20 PRINT * Hit any key when ready.": GET g%
30 PR#1

100 IF PEEK (259) = 205 GOTO 140

120 address = (PEEK(257)+PEEK(258)*256)+54
130 GOTO 150

140 address = PEEK(260)+PEEK(261) *256

150 FOR i = 1 TO 13

160 READ desc$, offset

170 PRINT desc$; " 1s at "; addresst+offset
180 NEXT

190 PR#0: END

200 DATA “Himem setting",0,"Lomem setting",6

210 DATA wpointer to start of numeric values",
10

220 DATA vpointer to end of numeric values“,20

230 DATA “pointer to start of string space",22

240 DATA “pointer to end of string space",26

250 DATA “I,ine number where ONERR will GOTO,37

260 DATA "Speed setting",40

270 DATA “USR function address",41

280 DATA "Floating point accumulator",73

290 DATA “Floating point operand",82

300 DATA “ampersand routine address",43

310 DATA vNumber of significant digits on

output",89

GLOSSARY OF TERMS

ADDRESS - a number used to identify memory
location.

ARGUMENT - the value a function operates on.

ARRAY - a variable collection distinguished
through use of numerical subscripts and referred
to by the same name,

ASCII - acronym for American Standard Code for
Information Interchange. Comprised of numbers
ranging from 0 to 127 which stand for various
keyboard characters or operations.

ASSEMBLY LANGUAGE - a low-level programming
language which is so close to the actual machine

language that ADAM uses internally, that programs
can be executed almost directly because the
computer understands it so well.

BINARY - representing numbers in powers of 2,
using digits 0 and 1.

BINARY FILE - file whose information is still in
"raw" form - not expressed as text.

BIT - a binary digit (0 or 1). The smallest
possible unit of information.

BOOT - starting up ADAM by loading a program into
memory from a digital data pack.

BRANCH - to send program execution to a line out
of program seguence.

BUFFER - a reserved area of memory for special
information manipulation., In a way, it's a
"holding area" for information in transit.

BUG - a programming error.

BYTE - a unit of information composed of 8 bits.
Its value range may be from 0 to 255.

C-24

CHARACTER - any symbol used in displaying or
printing information in a form readable by a human
being (e.g a letter, digit, punctuation mark,
etc.)

CHARACTER CODE - a number used in place of a
character to facilitate processing by ADAM.

COMMAND - a word you type in which directs ADAM to
perform an immediate action.

CONCATENATE - to chain together strings.

CONDITIONAL BRANCH - a branch which depends on the
truth or value of a condition or expression.

DEFAULT - a pre-programmed value, setting, or
action which the computer automatically switches
to when no other specific information has been
given.

DEFERRED EXECUTION - using line numbers when you
type out your program. This postpones program
execution until you type RUN.

DIMENSION - the maximum size allowed to one of the
array subscripts.

DIRECTORY - a listing of all files on your digital
data pack.

DIGITAL DATA PACK DRIVE - the device where you put
your digital data pack 1in order to use ADAM. The
Drive reads the magnetic tape and writes
information onto it, if instructed to do so.

DISPLAY - information exhibited on the screen of a
display device.

DISPLAY DEVICE - anything which exhibits
information visually (e.g. television screen,
monitor, etc.).

EDIT - changes or modifications made to a document
(e.g. insert, delete, replace, move, etc.).

ELEMENT - an individual variable in an array.
C-25

EMBEDDED - something contained within. (e.q.
CELLAR DOOR has an embedded space between the R
and the D).

ERROR CODE - a symbol or number representing a
specific error.

ERROR MESSAGE - a message from ADAM telling you
about a programming error or an execution error.

EXECUTE - to carry out a specified action.

EXPRESSION - a mathematical formula for use in a
program calculation,

FILE - a collection of information sorted under a 1
certain name on your digital data pack.

FUNCTION - a calculation that is pre-programmed tnl
be autﬂmatlcally executed, if requested, at any

point in the program. hll functions consist of a
name followed by parentheses enclosing a number.

For some functions, the actual number you chose is
not important.

GRAPHICS - information presented as pictures or
images.

HARD COPY - computer printout on paper.

HARDWARE - the actual physical components which]
make up ADAM,..circuits, transistors, microchips,
etc,

HEXADECIMAL - number representation in powers of
16, Use digits 0 to 9 and letters A-F.

IMMEDIATE EXECUTION - the execution of a program
line (typed without a line number) as soon as it
is typed and RETURN is pressed. |

INDEX - a number used to identify a member of a
sequential list or table, [

INTEGER - a whole number with no fractional part.

Sy X |

C-26

K or KILOBYTE - 2 to the 10th power, or 1024,
32K=32%*1024=32768,

KEYWORD - a particular word that defines a certain
statement or command (e.g. PRINT, RUN, etc.).

LOGICAL OPERATOR - operators such as AND, OR, and
NOT that combine logical values to produce logical
results.

LOW-LEVEL LANGUAGE - a language that's very close
to the machine language that ADAM's processor can
execute directly.

MACHINE LANGUAGE - the internal language that ADAM
speaks and translates everything into before
executing programs or storing in memory.

MAIN MEMORY - a component in your computer which
stores information for recall later on., See RAM
and ROM.

MICROCOMPUTER - ADAM is a microcomputer, along
with any other computer whose processor is a
microprocessor.

MODE - the state of a computer system which
determines its behavior.

OPERATOR - a symbol which directs that an action
be performed on one or more values to yield a
result.

OS COMMAND - a command which tells ADAM to operate
the digital data pack or other peripheral device,
Cannot be used directly in a program; must be
printed using PRINT and CONTROL-D.

PEEK - allows you to read oply from a location in
ADAM's memory.

PERIPHERAL - at or outside ADAM's boundaries.

PERIPHERAL DEVICE - a device such as a television
screen monitor, printer, or disk drive,

PLOTTING VECTOR - used in shape definition, !
plotting vectors each represent single steps 1n
plotting the points of a shape and deciding on !
which direction to move on the screen,

POKE - used to store information in a specified "
location in ADAM's memory. !

POP - wipes out the top entry from a stack. ‘

PROCESSOR - this is where all computations are
performed. |

PROMPT - a message from ADAM which appears on your
screen to remind you that some action on your part|
is expected before your program can continue.

RADIAN - a measure of angle. There are 2pi
radians in a circle of 360 degrees. One radian
equals approximately 57.2957795 degrees.

RAM MEMORY - Memory whose contents can be accessed
in an arbitrary order.

REAL NUMBER - a number which may include a
fractional part.

RELATIONAL OPERATOR - a symbol which compares two
entities to arrive at a logical result (e.g. < >
(= = = &),

RESERVED WORD - a special word which has a single
purpose in programming, and therefore cannot be
used as a program name, See KEYWORD,

ROM MEMORY - memory whose information can only be
read.

ROUTINE - a piece of your program which performs
some task directly related to accomplishing the
overall task of the main program.

SCROLL - the onscreen shifting of information up

or down in order to make room for other
information appearing at the other end.

-28

SEED - a value used to start a flow of a
repeatable sequence of random numbers.

SHAPE DEFINITION - a coded description of a shape
to be drawn. Used in high resolution graphics.

SHAPE TABLE - a group of shape definitions and
their index numbers.

SHAPE TABLE INDEX - a table of contents of your
shape table which gives you the addresses of where
in memory your shapes are located.

SOFTWARE - programs which determine ADAM's
behavior.

SPACE CHARACTER - press the space bar, and you'll
see one.

STACK - a list where entries are periodically
added and removed at one end only (usually the

top) .

STATEMENT - an instruction in a line of your
program which tells ADAM what to do.

STRING - a sequence of text characters which
conveys information,

SUBROUTINE - a section of your program which can
be executed in an area out of sequence. Control
is returned to the program's regular sequence once
the branch execution is completed.

SYNTAX - the set of rules governing the structure
of programming statements and commands.

SYSTEM - a collection of interrelated parts
assembled to perform some function.

TEXT - information presented in an understandable
form to human beings.

TEXT FILE - a file with information expressed in

text form. Indentified as a file type H or h 1in
the catalog.

C-29

UNCONDITIONAL BRANCH - a branch whose execution
doesn't depend on the truth of a given condition.

USER - what you are when you operate ADAM.

VALUE - information which can be stored as a
variable, string, or number.

(=30

SmartBASIC Variables

smart BASIC has three kinds of variables:
Integer, Floating Point, and String. Integer and
floating point are both numeric. A variable name
can be one or more letters or numbers long, but
the first character must be a letter. Upper and
lower case letters are all converted to lower
case. The variable name can not be exactly the
same as a statement or command word (i.e. plot is
not legal) but the names can contain letters that
are the same as a statement or command word (i.e.

plotter is letgal).

Integer variables are indicated by putting %
after the variable name (LET b%=2). Integer
variables can be as small as -32767 and as large
as 32767. Each integer variable takes up 5 bytes
of memory. Since they take up less room than
floating point variables, they are often used for
arrays. But they have limitations. They can only
be whole numbers. If a decimal number is assigned
to an integer variable, the decimal part is lost
(not rounded).

Floating point variables are the normal
numeric variables. They can be very large or very
small and keep the decimal parts of numbers. Each
floating point variable takes 10 bytes of memory.

String variables are used to store ASCII
characters, including letters, numbers,
punctuation marks, and control characters. String
variables are indicated by putting a $ after the
variable name. Each string variable takes up 8
bytes + 1 byte per character.

Any of these variables can be used as array
variables, and each is recognized separately.
That means that the variables x, x%, xS, x(0),
x3(0), and x$(0) are all different and can stand
for different things.

INDEX

ABORT (see EXIT, abnormal)

ABS

ANALYSIS

AND

Animation

APPEND

Arithmetic
E Notation
Multiplication Table
Series
Squares
Summing

Arrays
Multiple
String

ARRON KEYS

ASC

ASCII Character Codes

ASTERISK

AT

ATN

BACKSPACE

Basic Memory Map

Bell

BLOAD

Block Coloring

Bloopers

BRUN

BSAVE

CALL

Carriage Return

CATALOG

CHRS

CLEAR

CLOSE

Colon

COLOR=

COMMA

CONT

A-1
103
A-2
A-34
B-1
26-30
27
108
99
74
96
101
107
111

13-14, A-3

B-2

0=132+15
A-4, A-53

114
B-3

13, A-5

C-16
A-7
B-4
115
16
B-5
B~-6
B~7
A-7

46, A-6

A7
A-8
A-9

A-11
A-12
A-13

INDEX

%

vl OZ=20"30 0

Pt
|

CONTRCL: KEYS
Copies, Multiple
QoS

Counter

Counting

DASH

DATA/READ
Debugging
Decrement

DEF FN

DEL

DELETE

Digital Data Packs
Digital Data Pack Drives
DIM

Dollar Sign

DRAW

Editing

END

End Mark

ERRNUM

ERROR MESSAGES AND ONERR GOTO CODES
EXIT, Abnormal
EXP

FLASH
FOR. . . STEP/NEXT

21, 70
A=T7

14

14

A-14

14

14

14

A-14

14

14

14

A-14

11

B-8

81

90

A-15

60, A-16
55

89
82,A-17
A-18

46, A-19
45

C=5-6
100, A-20-22
34, A-23
B~9

13, 59
A~24

62

A-25
C-1-4
78

B-10
A-26
71, 79, A-27

INDEX

FN
FRE
GET

Glossary Of Terms

GOSUB
GOTO
GR

Graphics, Low Resolution

HCOOLOR=

HGR

HGR2

HIMEM:

HLIN

HOME

HOME (key)

HPLOT

HTAB

I/0 Statement

IF...GOTO

IF...THEN

TLLEGAL, COMMAND

Immediate Mode

Increment

Index

INIT

INPUT

INT

INVERSE

Keyboard

LEFTS

LEN

LET

Linefeed

Lines,
Horizontal
Vertical

LIST

LOAD

Loading Smart BASIC

A-28
B-11
A-29
C=49=31
A=30
21,A-31
112, A-32
112-116
A-33-34
A-35
A-36
B~12
113, A-37
A-38
A-39
A-40
A-41

38

A-42

48, A-43
15

26

g8l, 89
81

B-13
36,A-44
A-45
A-46

8

A-4]
A-48

31, A-49
A-7

113

114

10, A-50
46, A-51
9

INDEX

Finite
Infinite
Nested
Search

POKE

POP

POS

POSITION

PRINT

Print Zones
Program, Rearranging
Prompt

PR#

QUOTATION MARKS
QUESTION MARK

RAM Random Access Memory

RANDOM

8, 47, A-51
B-14
B-15

73

23

77

69

C-16
A-53
A-54

10, A-55
A-56
A-57
A-58
A-59
A-60
A-61
262
A-63

30, A-64
59

A-65
B-16
114, A-66
A-67
B-17
B-18
A-68
B-19

10, A-69
86

18

38

21, A-70
16, A-71
47

45, C-22
B-20

INDEX

Random Access Text Files

Random Numbers
RECOVER
Relative Operators
REM
RENAME
RESTORE
RESUME
RETURN
RETURN (key)
RIGHTS
RND
ROM Read Only Memory
ROT=
RUN
SAVE
SCALE=
SCRN
Seed
Semicolon
Sequential Text Files
SGN
Shape Table
SHIFT
SIN
SLASH
SmartBASIC Variables
Smar tWRITER
Spaces
SPC
SPEED=
SQR
STEP
STOP
STRS
Subscripts
Single
Double
System Variables
TAB

C-9-10
81

B-21
A-72
A-73
A-74

62, A-75
A-76
A-77

9, A-78
A-79
81,
C=22
B-22
45, A-82
B-23
115,
84
17; A‘B4
C=7~8
A-85
c=17=21

A-80

A-83

B-24
A-86
C=31
47
16
A-87
A-88
A-89
79
47,
A-91

A-90

100
107
C=23
A-92

INDEX

TAN

TEXT

T0

TRACE/NOTRACE

Turnkey System

UNLOCK

USR

VAL

Variable
Numeric
String

VLIN

VPOS

VTAB

WAIT

WRITE/READ

X/Y

XDRAW

B-25

116, A-93
71

57, A-94-95
Cll

A-96

B-26

A-97

31

34, A-23
114, A-98
A-99
A-100
B-27
A-101

115

B-28

e e e

-

:
-
-
:
:
f
:
f
s

|
L_
.‘t_
:
:
!

41607

COLECO Package, Program & Audiovisual © 1983 Coleco Industries, Inc., Amsterdam, New Yor': 12010. PrintedinU © +
)

G e = o

