
CP/M ver 1.4 & 2.x Programmer's Reference Guide
=== =====

BUILT-IN COMMANDS
=================

DIR Display file directory, current drive
DIR d: Display file directory, designated drive
DIR filename.typ Search for file name, c urrent drive
DIR *.typ Display all files of na med type, curr drive
DIR filename.* Display all types of de signated filename
DIR x????.* Display all filenames 5 characters long and
 starting with letter x

TYPE filename.typ Display ASCII file, cur rent drive
TYPE d:filename.typ Display ASCII file, des ignated drive

ERA filename.typ Erase named file, curre nt drive
ERA *.* Erase all files, curr d rv, ver 2.x curr user
ERA *.typ Erase all files, curren t drive
ERA d:filename.typ Erase named file, desig nated drive
ERA filename.* Erase all types of name d file, current drive

REN nuname.typ=olname.typ Rename file, current dr ive
REN d:nuname.typ=olname.typ Rename file, designated drive

SAVE n filename.typ Save as named file, cur rent drive
SAVE n d:filename.typ Save as named file, des ignated drive
 n pages (page = 256 b ytes) starting at 100H

d: Switch to designated dr ive, making it current drive
 V 1.4: A-D V 2.x: A-P

USER n Change user area (n=0 t o 15) (ver 2.x)

TRANSIENT COMMANDS
==================

DDT Initiate Dynamic Debugg ing Tool
DDT filename.typ Initiate DDT and load n amed file

ASM filename Assemble named ASM file on current drive
ASM d:filename Assemble named ASM file on designated drive
ASM filename.abc Assemble named ASM file :
 a = source file drive
 b = HEX file destinat ion drive (Z=skip)
 c = PRN file destinat ion drive (X=console,Z=skip)

LOAD filename Make COM file from name d HEX file on current drive
LOAD d:filename Make COM file from name d HEX file on design. drive

DUMP filename.typ Display file in hex, cu rrent drive
DUMP d:filename.typ Display file in hex, de signated drive

MOVCPM Relocate and execute (m ax) KByte CP/M system
MOVCPM n Relocate and execute n KByte CP/M system
MOVCPM n * Create relocated image in RAM of n Kbyte
 CP/M system, ready fo r SYSGEN or SAVE

http://stjarnhimlen.se/apple2/CPM.ref.txt

1 of 18 10/24/2015 7:19 AM

MOVCPM * * Create relocated image in RAM of (max) Kbyte
 CP/M system, ready fo r SYSGEN or SAVE

SYSGEN Initiate SYStem GENerat e program

SUBMIT filename parameters Execute SUB file using optional parameter(s)

XSUB Execute eXtended SUBmit program (V2.x)

ED filename.typ Execute EDitor to creat e or edit named file
ED d:filename.typ Execute EDitor to creat e or edit named file

STAT Display STATus (R/W or R/O) \/ current drive
STAT d: and available disk sp ace /\ design. drive
STAT DEV: Display DEVice assignme nts
STAT VAL: Display VALid device as signments
STAT DSK: Display DISK characteri stics (V2.x)
STAT USR: Display current USeR ar eas (V2.x)
STAT filename.typ $S Display size of file (V 2.x)
STAT fiename.typ Display file characteri stics, current drive
STAT d:filename.typ Display file characteri stics, designated drive
STAT d:=R/O Change designated drive to Read-Only
STAT filename.typ $R/O Change named file to Re ad-Only (V2.x)
STAT filename.typ $R/W Change named file to Re ad-Write (V2.x)
STAT filename.COM $SYS Change named file to Sy stem file (V2.x)
STAT filename.COM $DIR Change named file to Di rectory file (V2.x)
STAT gd:=pd: Change general device (CON:,LST:,PUN:,RDR:)
 assignment of physica l device (IOBYTE)

PIP
===

Commands

PIP Initiate Peripheral Int erchange Program
*d:=s:filename.typ Copy named file from so urce drive to dest drive
d:nuname.=s:olname.typ Copy & rename from sour ce drive to dest drive
PIP d:=s:filename.typ Initiate PIP and copy n amed file
PIP d:=s:*.* from source drive \/ all files
PIP d:=s:filename.* to || all named files
PIP d:=s:*.typ destination drive /\ all files named type
PIP LST:=filename.typ Send named file to list device
PIP PUN:=filename.typ Send named file to punc h device
PIP CON:=filename.typ Send named file to cons ole device
PIP filename.typ=RDR: Copy data from reader d evice to named file

*nuname.typ=aname.typ,bname.typ,cname.typ ASCI I copy & concatenate
*nuname.typ=aname.typ,bname.typ ASCI I copy & concatenate
*nuname.typ=aname.typ[X],bname.typ[X] bina ry copy & concatenate

PIP LST:=aname.typ,bname.typ Send files in se quence to list device
PIP LST:=s:aname.typ,s:bname.typ Send files in se quence to list device

PIP allows access to any logical and physical devic es defined in the
CP/M system. Logical devices: CON: RDR: PUN: LST:
Physical devices: TTY: CRT: PTR: UR1: UR2: PTP: UP 1: UP2: LPT: UL1:

Special PIP devices (locations 109H to 1FFH are not used in the PIP
image and can be replaced by used drivers using DDT)
 NUL: Send 40 NUL's (ASCII 00H) to the device
 (can be issued at the end of punched ou tput)
 EOF: Send a CP/M EOF (ASCII Ctrl-Z=1AH) to d est device
 (sent automatically at end of ASCII tra nsfers thru PIP)

http://stjarnhimlen.se/apple2/CPM.ref.txt

2 of 18 10/24/2015 7:19 AM

 INP: Special PIP input source which can be p atched into PIP:
 PIP gets input from here by calling 103 H, with data
 returned at 109H)
 OUT: Special PIP output destination which ca n be patched into PIP:
 PIP calls 106H with data to be output i n C for each char.
 PRN: Same as LST: except that tabbs are expa nded to every 8th
 column, lines are numbered, and page ej ects are inserted
 every 60 lines with an initial eject (s ame as PIP options [t8np])

Parameters

example *filename.typ=RDR:[B]

[B] - read data block until ^S (ctrl-S) cha racter
[Dn] - delete characters past column n
[E] - echo all copy operations to console
[F] - remove form feeds
[Gn] - get file from user area n (V2.x)
[H] - check for proper HEX format
[I] - same as H plus ignores ":00"
[L] - change all upper case characters to l ower case
[N] - add line numbers without leading zero s
[N2] - same as N plus leading zeros and a TA B after number
[O] - object file transfer; ignore end-of-f ile (Ctrl-Z)
[P] - insert form feed every 60 lines
[Pn] - insert form feed every n lines
[Qstring^Z] - Quit copying after string is found
[R] - read SYS file (V2.x)
[Sstring^Z] - Start copying when string is found
[Tn] - expand tab space to every n columns
[U] - change all lower case characters to u pper case
[V] - verify copied data (destination must be disk file)
[W] - delete R/O files at destination (V2.x)
[X] - copy non-ACII files
[Z] - zero parity bit (hi bit) on all chara cters in file

Keywords

CON: CONsole device (defined in BIOS)
EOF: send End-of-File (ASCII ^Z) to device
INP: INPut source (pathced in PIP)
LST: LiST device (defined in BIOS)
NUL: send 40 NUL's to device
OUT: OUTput destination (pathced in PIP)
PRN: same as LST:; tabs every 8th char, number line s & page
 ejects every 60 lines with initial eject
PUN: PUNch device (defined in BIOS)
RDR: ReaDeR device (defined in BIOS)

COMMAND CONTROL CHARACTERS
==========================

Control char ASCII code Function

 C 03h Reboot - CP/M warm boot
 E 05h Start new line
 H 08h Backspace and delete (V 2.x)
 I 09h Tab 8 columns

http://stjarnhimlen.se/apple2/CPM.ref.txt

3 of 18 10/24/2015 7:19 AM

 J 0Ah Line feed
 M 0Dh Carriage return
 P 10h Printer on/Printer off
 R 12h Retype current line
 S 13h Stop display outout (an y char except ^C restarts)
 U 15h Delete line
 X 18h Same as Û (V1.4)
 Z 1Ah End of console input (E D & PIP)
delete/rubout 7Fh Delete and display char acter (tape only)

ASM
===

Conventions

line# label operation operant ;comment

labels followed by colon 1-16 alphanumeric cha racters
symbol (eq. EQU) no colon first must be alpha, ? or .
 labels are case insen sitive (treated as uppercase)
 $ is insignificant an d can be inserted
 anywhere for readabil ity

Assembly Program Format (space separates fields)

[line#] label: opcode oerand(s) ;comme nt

Constants
A number of digits with a suffix:
 B binary
 O or Q octal
 D decimal (default)
 H hexadecimal

Reserved words in operand fields

The names of the 8080 registers are reserved, and p roduce the
following values if encountered in the operand fiel d:

 A 7
 B 0
 C 1
 D 2
 E 3
 H 4
 L 5
 M 6
 SP 6
 PSW 6

Mnemonics for machine instructions are reserved and evaluate to
their internal codes. Instructions which require o perands will
get zeroes in their operand fields, e.g. MOV will p roduce 40H

The symbol $ in the operand field evaulates to the address of
the next instruction to generate, not including the instruction
within the current logical line

String constants are delimieted by an apostrophe ('), and a
double apostrophe ('') will produce one apostrophe

http://stjarnhimlen.se/apple2/CPM.ref.txt

4 of 18 10/24/2015 7:19 AM

Operators (unsigned)

a+b a added to b
a-b difference between a and b
 +b 0+b (unary addition)
 -b 0-b (unary subtraction)
a*b a multiplied by b
a/b a divided by b (integer)
a MOD b remainder after a/b
 NOT b complement all b-bits
a AND b bit-by-bit AND of a and b
a OR b bit-by-bit OR of a and b
a XOR b bit-by-bit XOR of a and b
a SHL b shift a left b bits, end off, zero fill
a SHR b shift a right b bits, end off, zero fil l

Hierarcy of operations

highest: * / MOD SHL SHR
 - +
 NOT
 AND
 OR XOR

Pseudo-ops

ORG const Set program or data origin (Def ault=0)
END start End program, optional address w here excution begins

EQU const Define symbol value (may not be changed)
SET const Define symbol value (may be cha nged later)

IF const Assemble block conditionally un til ENDIF
ENDIF Terminate conditionala ssembly block

DS const Define storage sace for later u se
DB byte[,byte...] Define bytes as numeric or ASCI I constants
DW word[,word...] Define words (two bytes)

 const=constant (true if bit 0 is 1, otherwise false)

Error codes

D Data error (element cannot be placed in data ar ea)
E Expression error (ill-formed expression)
L Label error
N Not implemented
O Overflow (expression too complicated to compute)
P Phase error (label has different values on each pass)
R register error (specified value not compatible with op code)
U Undefined label (label does not exist)
V Vaue error (operand improper)

Fatal errors

NO SOURCE FILE PRESENT
NO DIRECTORY SPACE
SOURCE FILE NAME ERROR

http://stjarnhimlen.se/apple2/CPM.ref.txt

5 of 18 10/24/2015 7:19 AM

SOURCE FILE READ ERROR
OUTPUT FILE WRITE ERROR
CANNOT CLOSE FILE

FILE TYPES
==========

ASC ASCII text file, usually Basic source
ASM ASseMbly langaige file (source for ASM progra m)
BAK BAcKup copy file (created by editor)
BAS BASic source program file, usually tokenized
COM COMmand file (transient exeuctable program)
DAT DATa file
DOC DOCument file
FOR FORtran source program file
INT INTermediate Basic program file (executable)
HEX HEXadecimal format file (for LOAD program)
LIB Library file used by macro assembler
PLI PL/I source file
PRN PRiNt file (source and object produced by ASM)
REL RELocatable file
SAV System file (V2.x)
SUB SUBmit text file executed by SUBMIT program
SYM SID symbol file
TEX TEXt formatter source file
XRF Cross reference file
$$$ Temporary file

Filename - 8 characters maximum
Filetype - 3 characters maximum

Invalid filename and filetype characters
 < > . , ; : = ? []

DDT COMMANDS
============

DDT
DDT filename.HEX
DDT filename.COM

A sad Assemble symbolic code; start a t sad

D Dump RAM to console from cad, 1 6 lines
D sad Dump RAM to console from sad, 1 6 lines
D sad,ead Dump RAM to console from sad th ru ead

F sad,ead,const Fill RAM from sad thru ead with const

G Start program exec. at saved PC
G sad Start program exec. at sad
G sad,bp1 Start program exec. at sad and stop at bp1
G sad,bp1,bp2 Start program exec. at sad and stop at bp1 or bp2
G,bp1,bp2 Start program exec. at cad and stop at bp1 or bp2
G0 Jump to 0000H ==> exits DDT (eq uivalent to Ctrl-C)

H a,b Display hex a+b and a-b

I filename Set up FCB at 5CH for user code
I filename.typ Set up FCB at 5CH for R-command (HEX or COM file)

L Disassemble RAM from cad, 12 li nes

http://stjarnhimlen.se/apple2/CPM.ref.txt

6 of 18 10/24/2015 7:19 AM

L sad Disassemble RAM from sad, 12 li nes
L sad,ead Disassemble RAM from sad thru e ad

M sad,ead,nad Move RAM block from sad thru ea d to nad

R Read file specified by I comman d to RAM
R offset at normal address + optional offset
 The R command requires a previo s I command
 There is no W (write file) comm and, instead
 exit DDT (by G0 or Ctrl-C) and then use SAVE

S sad Examine and optionally alter RA M, byte by byte,
 starting at sad

T Trace: execute 1 instruction w ith register dump
T n Trace: Execute n instructions w ith register dump

U Untrace: same as T except that intermediate
U n steps are not displayed

X Examine register or flags, disp lay format:
 CfZfMfEfIf A=bb B=dddd D=dddd H=dddd S=dddd P=dddd inst
Xr Examine/change registers or fla gs
 C Carry flag (0/1)
 Z Zero flag (0/1)
 M Sign flag (0/1)
 E Parity flag (0/1)
 I Aux Carry flag (0/1)
 A Accumulator (0-FF)
 B BC reg pair (0-FFFF)
 D DE reg pair (0-FFFF)
 H HL reg pair (0-FFFF)
 S Stack Pointer (0-FFFF)
 P Program Counter (0-FFFF)

 cad = current address
 nad = new address
 sad = start address
 ead = end address

 ? = error, can mean:
 file cannot be opened
 checksum error in HEX file
 assembler(disassembler overlayed

ED COMMANDS
===========

nA Append n lines to buffer (n=0 - use haf of buffer)
B Move pointer to beginning of file
-B Move pointer to end of file
nC Move pointer forward n characters
nD Delete n characters forward
E End edit, close file, return to CP/M
nFs Find n'th occurence of string 's'
H End edit, move pointer to beginning of file
I Insert text at pointer until ^Z typed
Is Insert string at pointer
nK Kill n lines starting at pointer
nL Move pointer n lines
nMx Execute command string 'x' n times

http://stjarnhimlen.se/apple2/CPM.ref.txt

7 of 18 10/24/2015 7:19 AM

nNs Global F-command - until end of file
O Abort ED, start over with original file
nP List next n pages of 23 lines (n=0 - curren t page)
Q Quit without changing input file
Rfn Read fn.LIB into buffer at current pointer
nSx^Zy Substitute string 'y for next n forward occ urrences of string 'x'
nT Type n lines
U Change lower case to upper case (next entry)
V Enable internal line number generation
nW Write n lines to output file, start at begi nning of buffer
nX Write next n lines to file 'X$$$$$$$.LIB'
nZ Pause n/2 seconds (2 MHz)
n Move forward n lines
<CR> Move forward one line and type one line
 - Move backward
n:x Move to n line number and perform 'x' comma nd
:mx Perform command 'x' from current line to li ne m
n::mx Move to n line number and perform command ' x' from
 current line to line m

note: "-" valid on all positioning and display com mands
 for backward movement (e.g. -nC)

HOW TO OPEN UP A NEW USER AREA
==============================

Enter PIP wait for the * prompt. Hit Return to go back to exit PIP.
Now, enter the user area, say USER 1. Type SAVE 28 PIP.COM and hit
Return (SAVE 30 PIP.COM in CP/M 3).

Now, PIP.COM is in your new user area, and you can copy any file
into your area from area 0 by typing PIP A:=<ufn>[G0] and Return.

PATCHING THE CCP TO PERFORM ONE COMMAND AT EVERY WARM BOOT
=== =======

The CCP stars with the instructions:

 JMP CCPSTART ; Start the console processor
 JMP CCPCLEAR ; Clear the initial command
 DB 127 ; Maximum command l ength
CL: DB 0 ; Current command l ength
 DB ' ' ; 8 spaces
 DB ' ' ; 8 more spaces
 DB 'COPYRIGHT... ; Copyright notice

Starting at CL, patch in the command, e.g.:

CL: DB 3 ; Current command l ength
 DB 'DIR',0 ; DIR command, NUL terminated
 DB ' ' ; 4 spaces
 DB ' ' ; 8 more spaces
 DB 'COPYRIGHT... ; Copyright notice

and add this to the CCP image on the system tracks of your disk
(using MOVCPM, DDT and SYSTEM on most CP/M systems, or DDT amd
CPM56K.COM or CPM60K.COM on Apple CP/M). Now, afte r every warm boot
the CCP will execute this command (in this example a 'DIR' command)

http://stjarnhimlen.se/apple2/CPM.ref.txt

8 of 18 10/24/2015 7:19 AM

BDOS FUNCTION CALLS
===================

Function no Value passed to BDOS Value returned in
 in C reg in DE (or E) re gs A or HL regs

 Dec Hex

 0 00 System reset -- --
 1 01 Console read -- A = char
 2 02 Console write E = char --
 3 03 Reader read -- A = char
 4 04 Punch write E = char --
 5 05 List write E = char --
 6 06 Direct console I/O E = FFh (input) A = char
 (V2.x) E = char (outpu t) --
 7 07 Get IOBYTE -- A = IOBYTE
 8 08 Set IOBYTE E = IOBYTE --
 9 09 Print string DE = string add r --
 string terminated by $, tabs are ex panded as in func 2
 10 0A Read console buffer DE = buffer add r A = #chars in buffer
 buffer: 1st byte = bufsize, 2nd byt e = chars input
 11 0B Get console status -- A = 00(not rdy)/FF(rdy)
 12 0C Lift head (V1.x) -- --
 Get version (V2.x) -- HL = version no
 H: 0=CP/M, 1=MP/M
 L: 0=v1.4
 20H-22H=v2.x
 13 0D Reset disk** -- --
 14 0E Select disk E = drive no --
 0=A, 1=B, ... 0FH=P
 15 0F Open file DE = FCB addr A = dir code
 16 10 Close file DE = FCB addr A = dir code
 17 11 Search for first DE = FCB addr A = dir code
 18 12 Search for next -- A = dir code
 19 13 Delete file DE = FCB addr A = dir code
 20 14 Read sequential DE = FCB addr A = ret code
 21 15 Write sequential DE = FCB addr A = ret code
 22 16 Create file DE = FCB addr A = dir code
 23 17 Rename file DE = old FCB ad dr A = dir code
 24 18 Get login vector -- (V1.4) HL = drive code
 25 19 Get disk no -- A = curr disk no
 (0-15 for A-P)
 26 1A Set DMA addr DE = DMA addr --
 27 1B Get alloc vector -- HL = ava
 28 1C Write protect disk -- --
 29 1D Get R/O vector -- HL = R/O vect
 30 1E Set file attrib DE = FCB addr A = dir code
 31 1F Get addr disk params -- HL = dpba
 32 20 Set user code E = user code --
 32 20 Get user code E = FFh A = curr user code
 33 21 Read random DE = ext. FCB a ddr A = ret code ***
 34 22 Write random DE = ext. FCB a ddr A = ret code ***
 35 23 Compute file size DE = ext. FCB a ddr A = ret code
 36 24 Set random record DE = ext. FCB a ddr A = ret code
 37 25 Reset drive DE = drive vect or A = 0
 38 26 (unused) -- --
 39 27 (unused) -- --
 40 28 Write random DE = FCB addr A = ret code ***
 with zero fill

http://stjarnhimlen.se/apple2/CPM.ref.txt

9 of 18 10/24/2015 7:19 AM

dir code: directory code:
 0FFH=failed (e.g. file not found, direct ory full)
 0,1,2,3 = success: offset into current D MA buffer, which
 contains a directory sector, where the F CB can be found

ret code: return code -- 0=success, non-zero=faile d

 * V1.4 none
 ** V1.4 initializes system and selects A: drive
*** ret codes:
 00 - no error
 01 - reading unwritten data
 03 - cannot close current extent
 04 - seek to unwritten extent
 05 - directory overflow (write only)
 06 - seek past physical end of disk

char = ASCII character
addr = address
dir = directory code
cdn = current drive number (A=0, B=1, etc)
dpba = disk parameter block address in CBIOS

Function 9: string is terminated with '$'

Function 10: Console buffer: 1st byte = max # char s in buffer (input)
 2nd byte = actual # c hars in buffer (output)
 remaining bytes = buf fer

Function 12: CP/M version number: H=00 CP/M, H=01 M P/M
 L=00 ver prior to 2.0
 L=20,21,22... sub sequent versions

Function 13: Resets DMS address to BOOT+0080h

Function 23: renames file in first 16 bytes of FCB to name in second
 16 bytes in FCB

Function 24: Returns a 16-bit value in HL - a 16-bi t bit map where
 the lowest bit represents A: and the h ighest bit P:
 If the bit is set, that drive is prese nt in the CP/M system

Function 29: Returns a similar bit map as func 24, except that a set
 bit marks a drive which is Read/Only.

Function 33,34: the rn (Random Record No) must be s et in the FCB prior to call

Function 35: fills in the file size in rn. If foll owed by a random write,
 the file will be extended in length. Not that the "file size"
 merely is the last record # - "hole" i n sparse files are not
 accounted for

Function 36: same as function 35 except that the cu rrent random record
 position is stored in rn in FCB.

Function 37: this function is buggy - avoid using i t

IOBYTE (0003H)
==============

http://stjarnhimlen.se/apple2/CPM.ref.txt

10 of 18 10/24/2015 7:19 AM

 Device LST: PUN: RDR: CON:
Bit position 7 6 5 4 3 2 1 0

Dec Binary

 0 00 TTY: TTY: TTY: TTY:
 1 01 CRT: PTP: PTR: CRT:
 2 02 LPT: UP1: UR1: BAT:
 3 03 UL1: UP2: UR2: UC1:

TTY: TeleTYpe
CRT: Cathode Ray Tube type terminal
BAT: BATch process (RDR=inut, LST=output)
UC1: User defined Console
LPT: Line Printer
UL1: User defined List device
PTR: Paper Tape Reader
UR1: User defined Reader device 1
UR2: User defined Reader device 2
PTP: Paper Tape Punch
UP1: User defined Punch device 1
UP2: User defined Punch device 2

LOGIN BYTE (0004H)
==================

low nibble = current drive (0=A, 1=B, etc)
high nibble = current user (V2.x only)

BIOS ENTRY POINTS
=================

 Hex Vector Function Valu e Value
 addr name pass ed returned

4A00H+b BOOT Cold start entry point - C=0
4A03H+b WBOOT Warm start entry point - C=drv no
4A06H+b CONST Check for console ready - A=const
4A09H+b CONIN Read from console - A=char
4A0CH+b CONOUT Write to console C=ch ar -
4A0FH+b LIST Write to list device C=ch ar -
4A12H+b PUNCH Write to punch device C=ch ar -
4A15H+b READER Read from reader device - A=char
4A18H+b HOME Move head to track 0 - -
4A1BH+b SELDSK Select drive C=dr v no HL=dph*, HL=0 for error
4A1EH+b SETTRK Set track number BC=t rk no -
4A21H+b SETSEC Set sector number BC=s ec no -
4A24H+b SETDMA Set DMA address BC=D MA -
4A27H+b READ Read selected sector - A=dskst
4A2AH+b WRITE Write selected sector - A=dskst
4A2DH+b* LOSTST Get list status - A=lstst
4A30H+b* SECTRAN Sector translate BC=l secno HL=physec
 DE=smap

BOOT: gets control after the cold start loader
 Basic system initalization
 Send sign-on message
 Set IOBYTE
 Set the WBOOT parameters
 Jump to CCP at its entry point (at its firs t address 3400H+b)

http://stjarnhimlen.se/apple2/CPM.ref.txt

11 of 18 10/24/2015 7:19 AM

WBOOT: gets control after Ctrl-C or JP 0000 or CPU reset
 Reload CP/M CCP and BDOS
 Setup JMP WBOOT at 0000H-0002H (JMP 4A03H+b)
 Set inital value of IOBYTE at 0003H
 Set 0004H hi nibble = current user no, lo n ibble = current drive no
 Setup JMP BDOS at 0005H-0007H (JMP 3C06H+b)
 Set C=current drive, then branch to CCP at 3400H+b

const = console status: 00=idle, FF=data avail

dph = disk parameter/header address

dskst = disk status: 00=OK, 01=error

lstst = list status: 00=busy, FF=ready

lsecno = logical sector number \
physec = physical sector number | (standard sk ew factor = 6)
smap = sector interlace map address /

char = 7-bit ASCII char with parity bit (=hi bit) z ero

drv no = drive number: 0=A, 1=B, etc, max 15=P
trk no = track number (0-76 std CP/M floppy, 0-6553 5 non-standard)
sec no = sector number (1-25 std CP/M floppy, 1-655 35 non-standard)
DMA = DMA address (default 0080H)

* = not used in V1.4
** = contents of location 0002Hz

FILE CONTROL BLOCK (FCB)
========================

Byte Function
offset

 0 dr Drive code (0=current, 1=A, 2=B,, 16=P)
 1-8 f1-f8 File name, hi but = 0
 9-11 t1-t3 File type + status (hi bits)
 t1: 1=R/O t2: 1=SYS t3: 1=arc hived
 12 ex Current extent number
 13 s1 reserved (V1.4: not used)
 14 s2 =0 on BDOS call to Open/Make/Searc h (v1.4: always 0)
 16 rc extent record count: 0-127
 16-31 d0-dn Disk map
 32 cr Current record for R/W
 33-35 rn Random record number, 0-65535, ove rflow into 3rd byte

MEMORY ALLOCATION
=================

V1.4: b = memsize-16K
0000 - 00FF System scratch area
0100 - 28FF+b TPA (Transient Program Area) - CO M file area
2900+b - 30FF+b CCP - Console COmmand Processor
3100+b - 3DFF+b BDOS
3E00+b - 3FFF+b CBIOS

V2.2: b = memsize-20K
0000 - 00FF System scratch area

http://stjarnhimlen.se/apple2/CPM.ref.txt

12 of 18 10/24/2015 7:19 AM

0100 - 33FF+b TPA (Transient Program Area) - CO M file area
3400+b - 3BFF+b CCP - Console COmmand Processor
3C00+b - 49FF+b BDOS
4A00+b - 4FFF+b CBIOS

System scratch area, "page zero":

00 - 02 Jump to BIOS warm start entry point
03 IOBYTE
04 Login byte: Login drive number, current user number
05 - 07 Jump to BDOS
08 - 37 Reserved; interrupt vectors & future us e
38 - 3A RST7 - used by DDT and SID programs, co ntains JMP into DDT/SID
3B - 3F Reserved for interrupt vector
40 - 4F Scratch area for CBIOS; unused by distr ibution version of CP/M
50 - 5B Not used, reserved
5C - 7C Default FCB (File Control Block) area
7D - 7F Optional Default Random Record Position (V2.x)
80 - FF Default DMA buffer area (128 bytes) for disk I/O
 Also filled with CCP commandline at the start of a program

CP/M STANDARD DISK FORMAT (8" SSSD)
===================================

Media: 8" soft-sectored floppy-disk single density (IBM 3740 standard)
Tracks: 77, numbered 0 thru 76
Sectors/track: 26 (numbered 1 thru 26)
Bytes/sector: 128 data bytes (one logical record)
Storage/disk: 256256 bytes (77*26*128)
File size: any number of sectors from zero to capac ity of disk
Extent: 1 kBytes - 8 sectors (smallest file space a llocated)
Skew: 6 sectors standard (space between consecutiv e physical sectors
 on track):
 1-7-13-19-25-5-11-17-23-3-9-15-21-2-8-14-20- 26-6-12-18-24-4-10-16-22

System: Track 0 & 1 (optional)
 Track 0 sector 1: boot loader
 Track 0 sectors 2-26: CCP & BDOS
 Track 1 sectors 1-17: CCP & BDOS
 Track 1 sectors 18-26: CBIOS

Directory: Track 2:
 16 sectors typical
 32 bytes/entry
 64 entries typical
 extents 0 and 1

User file area: Remaining sectors on Track 2 and 3 to 76, extents 2
and above

A Standard CP/M 8" SSSD floppy contains:

Track# Sector# Page# Mem address CP/M module name

 00 01 (boot addr) Cold start loader

 00 02 00 3400H+b CCP
 00 03 . 3480H+b CCP
 00 04 01 3500H+b CCP
 00 05 . 3580H+b CCP
 00 06 02 3600H+b CCP
 00 07 . 3680H+b CCP

http://stjarnhimlen.se/apple2/CPM.ref.txt

13 of 18 10/24/2015 7:19 AM

 00 08 03 3700H+b CCP
 00 09 . 3780H+b CCP
 00 10 04 3800H+b CCP
 00 11 . 3880H+b CCP
 00 12 05 3900H+b CCP
 00 13 . 3980H+b CCP
 00 14 06 3A00H+b CCP
 00 15 . 3A80H+b CCP
 00 16 07 3B00H+b CCP
 00 17 . 3B80H+b CCP

 00 18 08 3C00H+b BDOS
 00 19 . 3C80H+b BDOS
 00 20 09 3D00H+b BDOS
 00 21 . 3D80H+b BDOS
 00 22 10 3E00H+b BDOS
 00 23 . 3E80H+b BDOS
 00 24 11 3F00H+b BDOS
 00 25 . 3F80H+b BDOS
 00 26 12 4000H+b BDOS
 01 01 . 4080H+b BDOS
 01 02 13 4100H+b BDOS
 01 03 . 4180H+b BDOS
 01 04 14 4200H+b BDOS
 01 05 . 4280H+b BDOS
 01 06 15 4300H+b BDOS
 01 07 . 4380H+b BDOS
 01 08 16 4400H+b BDOS
 01 09 . 4480H+b BDOS
 01 10 17 4500H+b BDOS
 01 11 . 4580H+b BDOS
 01 12 18 4600H+b BDOS
 01 13 . 4680H+b BDOS
 01 14 19 4700H+b BDOS
 01 15 . 4780H+b BDOS
 01 16 20 4800H+b BDOS
 01 17 . 4880H+b BDOS
 01 18 21 4900H+b BDOS
 01 19 . 4980H+b BDOS

 01 20 22 4A00H+b BIOS
 01 21 . 4A80H+b BIOS
 01 22 23 4B00H+b BIOS
 01 23 . 4B80H+b BIOS
 01 24 24 4C00H+b BIOS
 01 25 . 4C80H+b BIOS
 01 26 25 4D00H+b BIOS

 02 01-08 Directory bl ock 1
 02 09-16 Directory bl ock 2
 02 17-26 Data
03-76 01-26 Data

DISK PARAMETER TABLES
=====================

Each disk drive has an associated 16-byte (8-word) DPH - Disk Parameter
Header, containing:

Offset Contents
------ --------
 00H XLT Addr of logical-to-physical sector translation vector

http://stjarnhimlen.se/apple2/CPM.ref.txt

14 of 18 10/24/2015 7:19 AM

 or 0000H of no translation (i.e. they are the same)
 Disk drives with identical sector skew factors
 share the same table
 02H 0000H \
 04H 0000H | Scratchpad values for us e within BDOS
 06H 0000H / (initial value unimport ant)
 08H DIRBUF Addr of scratchpad 128-byte directory buffer.
 All DPH's share the same DI RBUF.
 0AH DPB Addr of Disk Parameter Bloc k for this drive
 0CH CSV Addr of scratchpad area use d for software check for
 changed disks. Each DPH has its own CSV.
 0EH ALV Addr of scratchpad area use d for disk storage
 allocation information. Eac h DPH has its own ALV.

If the system has n disk drives, the n DPH's are ar ranged one after
another, from drive 0 to drive n-1, starting at DPB ASE:

DPBASE:
 +--------+------+------+------+--------+------- -+--------+--------+
 00 | XLT 00 | 0000 | 0000 | 0000 | DIRBUF | DPB 00 | CSV 00 | ALV 00 |
 +--------+------+------+------+--------+------- -+--------+--------+
 01 | XLT 01 | 0000 | 0000 | 0000 | DIRBUF | DPB 01 | CSV 01 | ALV 01 |
 +--------+------+------+------+--------+------- -+--------+--------+

 +--------+------+------+------+--------+------- -+--------+--------+
n-1 | XLTn-1 | 0000 | 0000 | 0000 | DIRBUF | DPBn-1 | CSVn-1 | ALVn-1 |
 +--------+------+------+------+--------+------- -+--------+--------+

The SELDSK subroutine is responsible for returning the base address
of the DPH for the selected drive, or 0000H if ther e is no such drive:

NDISKS EQU 4 ; Number of disk dr ives
.........
SELDSK: ; Select disk given by BC
 LXI H,0000H ; Error return
 MOV A,C ; Drive OK?
 CPI NDISK ; Carry if so
 RNC ; Return if error
 ; No error, continue
 MOV L,C ; Low (disk)
 MOV H,B ; Hi (disk)
 DAD H ; *2
 DAD H ; *4
 DAD H ; *8
 DAD H ; *16
 LXI D,DPBASE ; First DPH
 DAD D ; DPH(disk)
 RET

The translation vectors (XLT 00 thru XLTn-1) are lo cated elswehere in
the BIOS and simply correspond one-for-one with the logical sector number
zero through the sector count.

The Disk Parameter Block (DPB) for each drive type contains:

Offset Contents
------ --------
 00H SPT 16b Total number of sectors per track
 02H BSH 8b Data allocation block s hift factor, determined
 by the data block alloc ation size
 03H BLM 8b Data allocation block m ask (2[BSH-1])
 04H EXM 8b Extent mask, determined by data block allocation
 size and number of disk blocks
 05H DSM 16b Total storage capacity of disk drive

http://stjarnhimlen.se/apple2/CPM.ref.txt

15 of 18 10/24/2015 7:19 AM

 07H DRM 16b Total number of directo ry entries minus one
 09H AL0 8b Determines reserved dir ectory blocks
 0AH AL1 8b Determines reserved dir ectory blocks
 0BH CKS 16b Size of directory check vector
 0DH OFF 16b No of reserved tracks a t beginning of logical disk
 0FH (end of table)

BSH and BLM are determined by BLS, the block size o r data allocation size

 BLS BSH BLM EXM
 ----- --- --- DSM<256 DSM>=256
 1024 3 7 0 n/a
 2048 4 15 1 0
 4096 5 31 3 1
 8192 6 63 7 3
 16384 7 127 15 7

i.e. BLS = 2**n where n = 10 to 14
 BSH = n-7
 BLM = 2**BSH - 1
 EXM = 2**(BHS-2) - 1 if DSM<256
 EXM = 2**(BHS-3) - 1 if DSM>=256

DSM = maximum data block number supported by this p articular drive, measured
in BLS (BLock Size) units, or simply "number of all ocation blocks on drive".
Blocks are counted from 0 to DSM, and thus BLS*(DSM +1) = the number of bytes
on the drive (excluding the system tracks). If DSM <256, the disk map in
the directory entry of the file will be 1 byte/bloc k. If DSM>=256 it will
be 2 bytes/block.

DRM = total number of directory entries minus one.

AL0/AL1 = the directory allocation vector. Conside r it a bit map of
bits 16 bits, bit 0-15, where 0=hi bit of AL0, 7=lo bit of AL0, 8=hi
bit of AL1, 15=lo bit of AL1. Bits are assigned st arting at bit 0 up
until bit 15. Suppose nbits is the number of bits seet to 1:

 BLS Directory entries
 --- -----------------
 1024 32 * nbits
 2048 64 * nbits
 4096 128 * nbits
 8192 256 * nbits
 16384 512 * nbits

Example: if DRM=127 (128 directory entries) and BLS =1024 bytes, there
are 32 directory entries per block, requiring 4 res erved blocks. Thus
the 4 hi bits if AL0 are set, and AL0=0FH, AL1=00H

CKS = size of directory check vector
If drive media is removable, then CKS = (DRM+1)/4
If drive media is fixed, then CKS=0 (no dir records checked)

OFF = number of reserved tracks. This value is aut omatically added
whenever SETTRK is called. It can be used to skip reserved system
tracks, or for partitioning a large disk into small er segmented
sections.

Several DPH's can address the same DPB if the drive characteristics
are identical. The DPB can be dynamically changed when a new drive
is addressed by simply changing the pointer in the DPH since the BDOS
copies the DPB values to a local area whenever the SELDKS function
is invoked.

The size of the CSV (scratchpad area to check chang ed disks) is CKS

http://stjarnhimlen.se/apple2/CPM.ref.txt

16 of 18 10/24/2015 7:19 AM

bytes. If CKS=(DRM+1)/4, this area must be reserve d. If CKS=0, no
storage is reserved.

The size of the ALV (scratchpad area for disk stora ge allocation info)
is (DSM/8)+1 bytes where DSM is the disk size in al location blocks.

DISK PARAMETER TABLES FOR SPECIFIC DISKS
==

Standard CP/M 8" SSSD disk

 128 bytes/sector
 26 sectors/track
 77 tracks - 2 system tracks
 75 used tracks ==> 243.75 user KBytes/disk
 1024 bytes/block ==> 243 blocks/disk ==> DSM=24 2
 Directory in 2 first blocks ==> 64 directory en tries ==> 241.75 KBytes data

Sector skew table (1 byte/sector):
 1, 7, 13, 19, 25, 5, 11, 17, 23, 3, 9, 15, 21,
 2, 8, 14, 20, 26, 6, 12, 18, 24, 4, 10, 16, 22

DPB

SPT 16b 26 Sectors per track
BSH 8b 3 Block shift factor
BLM 8b 7 Block shift mask
EXM 8b 0 Extent mask - null
DSM 16b 242 Disk size - 1 (in blocks)
DRM 16b 63 directory mask = dir entries - 1
AL0 8b 0C0H Dir Alloc 0
AL1 8b 0 Dir Alloc 1
CKS 16b 16 Directory check vector size
OFF 16b 2 Track offset: 2 system tracks

Dirbuf 128 bytes
ALV 31 bytes
CSV 16 bytes

Block size 1024 bytes ==> BSH=3, BLM=7

DSM = 242 blocks

Disk size: 243.75 KBytes excluding system tracks
 250.25 KBytes including system tracks

Apple CP/M 5.25" disks

Physical format: A B C

 ---- Standard ----- ----- S pecial ------
 13-sect 16-sect 80-trk/ 16-sec/2-side

Bytes/sector 256 256 256
Sectors/track 13 16 16
Tracks 35 35 80
Heads 1 1 2

Sector skew table (1 byte/sector): no sector skew in CP/M BIOS
13-sector disks: hard sector skew

http://stjarnhimlen.se/apple2/CPM.ref.txt

17 of 18 10/24/2015 7:19 AM

16-sector disks: soft sector skew in 6502 code (CP/ M RWTS)

DPB A B C

SPT 16b 26 32 32 Sectors per track
BSH 8b 3 3 4 Block shift factor
BLM 8b 7 7 15 Block shift mask
EXM 8b 0 0 0 Extent mask
DSM 16b 103 127 313 Disk size - 1 (in blocks)
DRM 16b 47 63 255 Directory m ask = dir entries - 1
AL0 8b 0C0H 0C0H 0F0H Dir Alloc 0
AL1 8b 0 0 0 Dir Alloc 1
CKS 16b 12 16 64 Directory c heck vector size
OFF 16b 3 3 3 Track offse t: 3 system tracks

Block size 1024 1024 2048
Dir entries 48 64 256
Dir blocks 2 2 4
DSM+1 104 128 314 blocks
Disk size 104 128 628 KBytes (excludin g system tracks)
 113.75 140 640 KBytes (includin g system tracks)

Dirbuf 128 128 128 bytes
ALV 14 17 40 bytes
CSV 12 16 64 bytes

http://stjarnhimlen.se/apple2/CPM.ref.txt

18 of 18 10/24/2015 7:19 AM

