SECTION 21: COLOR, GRAPHICS, AND SPRITES

The TI Home Computer gives you the capability of displaying a wide variety of
colored graphics and sprites, enabling you to make your programs lively and
interesting. You can place the screen in one of four modes: text, graphics,
multicolor, and bit-map (available only on the TI-99/4A).

In graphics mode, you can use the standard ASCII characters and define new
characters. You can make characters and their backgrounds a variety of colors.

The screen is 32 columns by 24 lines. This is the mode used by the Editor/Assembler
except when editing, TI BASIC, and most applications.

In multicolor mode, you can set the colors of a number of small boxes. The screen
is 64 columns by 48 lines.

In text mode, you can use the standard ASCII characters and define new characters.
All characters are one color, and the background is one color. The screen is 40
columns by 24 lines. This is the mode used by the Editor.

In bit-map mode (available only on the TI-99/4A because of its use of the TMS5991BA
video processor instead of the TMS59918 video processor), you can set any pixel {the
smallest dot on the screen) on or off and make the pixels and the background a
variety of colors. The screen is 256 columns by 192 lines.

In all modes except text, up to 32 sprites (moving graphics) can be created and set in
motion without further program control.

EDITOR/ASSEMBLER
Page 325

COLOR, GRAPHICS, AND SPRITES

21.1 VDP WRITE-ONLY REGISTERS

Before using the different modes, certain preliminary information is necessary. The
following describes the eight VDP write-only registers.

VDP Reqgister 0 The default for Register 0 is >00 for the Editor/Assembler, TI
BASIC, and TI Extended BASIC,

Bits 0 - 5 Reserved. Must be D0000C.

Bit 6 Mode bit 3, called M3. If this bit is set, the display
is in bit-map mode.

Bit 7 External video enable/disable. A value of 1 enables
video input and a value of 0 disables video input.

VDP Register 1 The default for Register 1 is >ED in the Editor/Assembler, TI
BASIC, and TI Extended BASIC. Note: Before changing this
Register, put a copy of the new value you wish it to have at
address >83D4. When a key is pressed, a copy of the value at this
address is placed in Register 1.

Bit O 4/16K selection. A value of 0 selects 4K RAM
operation, and a value of 1 selects 16K RAM
operation.

Bit 1 Blank enable/disable. A value of 0 causes the active

display (the entire screen) to be blank, and a value of
1 allows display on the screen. With a value of 0,
the screen only shows the border color.

Bit 2 Interrupt enable/disable. A value of 0 disables VDP
interrupt, and a value of 1 enables VDP interrupt.

Bit 3 Mode bit 1, called M1, If this bit is set, the display
is in text mode.

Bit 4 Mode bit 2, called M2, If this bit is set, the display
is in multicolor mode.

Bit 5 Reserved., Must be 0.

EDITOR/ASSEMBLER
Page 326

VDP Register 2

VDP Register 3

VDP Register 4

VDP Register 5

COLOR, GRAPHICS, AND SPRITES

Bit 6 Sprite size selection. A value of 0 selects standard
size sprites, and a value of 1 selects double-size
sprites.

Bit 7 Sprite magnification selection. A value of 0 selects

unmagnified sprites, and a value of 1 selects
magnified sprites.

The default for Register 2 is >00 in the Editor/Assembler, TI
BASIC, and Tl Extended BASIC.

Defines the base address of the Screen Image Table. The Screen
Image Table base address is equal to the value of this register
times >400.

The default for Register 3 is »0E in the Editor/Assembler, >0C in
TI BASIC, and >20 in TI Extended BASIC,

Defines the base address of the Color Table. The Color Table
base address is equal to the value of this register times >40.

The default for Register 4 is >01 in the Editor/Assembler and >00
in TI BASIC and TI Extended BASIC,

Defines the base address of the Pattern Descriptor Table. The
Pattern Descriptor Table base address is equal to the value of this
register times >800.

The default for Register 5 is >06 in the Editor/Assembler, TI
BASIC, and TI Extended BASIC,

Defines the base address of the Sprite Attribute List. The Sprite
Attribute List base address is equal to the value of this register
times >80.

EDITOR/ASSEMBLER
Page 327

COLOR, GRAPHICS, AND SPRITES

VDP Register 6 The defauit for Register 6 is >00 in the Editor/Assembler, TI
BASIC, and TI Extended BASIC.

Defines the base address of the Sprite Descriptor Table. The
Sprite Descriptor Table base address is equal to the value of this
register times >800.

VDP Register 7 The default for Register 7 is >F5 in the Editor/Assembler and >17
in TI BASIC and TI Extended BASIC,

Bits 0 - 3 The color code of the fareground color in text mode.
Bits 4 - 7 The color code for the background color in all modes.

The maode bits, M1, M2, and M3, are in bits 3 and 4 of Register 1 and bit 6 of
Register 0. They determine the mode of the display. If they are all reset, the
display is in graphics mode. If M1, in bit 3 of Reqgister 1, is set, the display is in
text mode, If M2, in bit 4 of Register 1, is set, the display is in muliticolor mode.
If M3, in bit 6 of Register 0, is set, the display is in bit~map mode, available only on
the TI-99/4A.

EDITOR/ASSEMBLER
Page 328

COLOR, GRAPHICS, AND SPRITES

21.2 GRAPHICS MODE

In graphics mode, you can use the standard ASCII characters and define patterns or

characters and their foreground and background colors. The display is 32 columns by
24 lines. You can use sprites. Color and graphics are available by defining each of
the 256 characters and setting their foreground and background colors. The standard
ASCII characters are predefined by the system software.

21.2.1 Pattern Descriptor Tabie

The Pattern Descriptor Table contains descriptions of the 256 patterns or characters.
By changing these descriptions, you can alter the appearance of the character on the
screen. The description of each of the 256 patterns or characters takes eight bytes
of information. The description of the subprogram CTHAR in the User's Reference
Guide discusses character definition.

In the Editor/Assembler, the Pattern Description Table starts at address >0800.
Thus, the description of character >00 occupies addresses >0800 through >0807,
character >01 occupies addresses >0808 through >080F, and character >FF occupies
addresses >0FF8 through >0FFF.

21.2.2 Color Table

The Color Table contains the descriptions of the foreground and background colors of
the characters. The most-significant four bits of the byte specify the foreground
color and the least-significant four bits specify the background color. Each byte
specifies the color for a group of eight characters. The 16 colors available on the TI
Home Computer and their hexadecimal codes are listed on the next page.

EDITOR/ASSEMBLER
Page 329

COLOR, GRAPHICS, AND SPRITES

Hexadecimal Hexadecimal
Color Code Color Code
Transparent 0 Mediurn red 8
Black 1 Light red 9
Mediumn green 2 Dark yellow A
l_ight green 3 L-ight vellow B
Dark blue 4 Dark green &
Light blue 5 Magenta D
Dark red 6 Gray E
Cyan 7 White F

In the Editor/Assembler, the Color Table starts at address >0380. Thus, the byte at
address »0380 specifies the colors of characters >00 through >07, the byte at address
>0381 specifies the colors of characters >08 through >0F, and the byte at address
>039F specifies the caolors of characters >F8 through >FF.

For example, placing a value of >17 at address >0384 sets the colors of characters
>20 through >27 to black on cyan.

21.2.3 Screen Image Table

The Screen Image Table specifies the characters that occupy each of the screen
positions, Each byte specifies the character at one screen position. The 768 screen
positions are arranged on the screen in 24 rows of 32 columns.

In the Editor/Assembler, the Screen Image Table starts at address >0000. The first
32 addresses (>0000 through >001F) contain the characters for the first row, the
second 32 addresses (>0020 through >003F)} contain the characters for the second row,
and so on,

For example, if the value >41 (normally the code for the ASCII character A) is at
address >0022, the character described at addresses >0A0B through >0ADF of the
Pattern Descriptor Table appears in the third column of the second row, assuming the
Pattern Descriptor Table starts at address >0800.

EDITOR/ASSEMBLER
Page 330

COLOR, GRAPHICS, AND SPRITES

21.3 MULTICOLOR MODE

In multicolor mode, the display is divided into 48 rows, each containing 64 "boxes"
that are four pixels by four pixels. Each of the 3072 boxes thus defined can be one
of the 16 colors available. You can use sprites in multicolor mode.

You should initialize the Screen Image Table so that the first >80 bytes contain >00
through >1F repeated four times, the next >80 bytes contain >20 though >3F repeated
four times, and so on, so that the last >80 bytes contain >AD through >BF repeated

four times.

The Pattern Descriptor Table, instead of containing patterns, contains colors. Each
pattern in the Pattern Descriptor Table contains eight bytes. In multicolor mode,
each group of eight bytes contains 16 color descriptions, each giving the color of one
box. The colors are as given in Section 21.2,2, The left four bits of each byte
describe the color of one box and the right four bits describe the color of the next
box on the same row.

The first byte in the Pattern Descriptor Table defines the colors of the first two
boxes in the first row. The second byte defines the colors of the first two boxes in
the second row. The third byte defines the colors of the first two boxes in the third
row. This continues until the colors of the first two boxes in each of the first eight
rows have been defined.

The next eight-byte segment similarly defines the colors of the third and fourth boxes
in each of the first eight rows. This definition continues until the first 32 eight-byte
segments have described all the boxes in the first eight rows. Subsequent groups of
eight rows are described in a similar manner by subsequent groups of 32 eight-byte
segments.

The following diagram represents the screen and how it is divided in multicolor mode.
The Screen Image Table address is the offset from the beginning. The Screen Image
Table value is what you should insert in the memory location.

EDITOR/ASSEMBLER
Page 331

COLOR, GRAPHICS, AND SPRITES

Screen Image Columns Screen Image
Table Address Row 1 2 3 4 ... 63 64 Table Value
>0000 - >001F 1 | | | | I . |] >00 - >1F
>0000 - >001F 2 I | I I f I I |

»>0020 - >003F 3 | I | i [. | I | >00 - »IF
>0020 - >D03F 4 |] I |] .]]

>0040 - >005F 5 | I I I | | | | »08 - BIF
>0040 - >005F 6 I I | | | - I |

>0060 - >007F 7 | | | I | i | | I >00 - >1F
>0060 - >007F 8 | | | | | . | |

>0080 - >009F 9 | | | [| ol | . ¥28 - BEF
>0080 - »009F 10 I | | f [evee.] | I

>02EQ - >02FF 47 | | | I | oo | | | >AD - >BF

>02E0 - >02FF 48 [] E | f swe | | |

The following table shows the Screen Image Table character code, the addresses in
the Pattern Descriptor Table, assuming that it starts at address >0800, and the
portions of the screen that those characters and addresses describe.

Screen Image Table Pattern Descriptor Row and Columns Described
Character Code Table Address Row Columns
>00 >0800 1 1 and 2
>00 >0801 2 1 and 2
>00 >0802 3 1 and 2
>00 >0803 4 1l and 2
>00 >0804 5 1 and 2
>00 >0805 6 1l and 2
>00 >0806 7 1 and 2
>00 >0807 8 1 and 2
>01 >0808 1 3 and 4
>01 >080A 2 3 and 4
>BF >0DFF 48 63 and 64
EDITOR/ASSEMBLER

Page 332

COLOR, GRAPHICS, AND SPRITES

21.4 TEXT MODE

In text mode, the display is 40 columns by 24 lines, You cannot use sprites. The
tables used to generate the patterns are the same as the Screen Image Table and
Pattern Descriptor Table used in graphics mode. However, since 960 screen positions
are used instead of 768, the Screen Image Table is longer. The definitions ignore the
last two bits in each entry so that each character has a 6-by-B pixel definition. The
Editor is in text mode.

The two colors available in text mode are defined in VDP write-only Reqgister 7. The
leftmast four bits describe the color of the pixels that are on and the rightmost four
bits describe the color of the pixels that are off.

For example, if the Screen Image Table starts at address >0000 and >41 is at address
>0202, the ASCII symbol A is placed on the 35th column of the 13th row. In
graphics mode, however, this address and value would place the A on the third column
aof the 17th row.

EDITOR/ASSEMBLER
Page 333

COLOR, GRAPHICS, AND SPRITES

21.5 BIT-MAP MODE

In the TI-99/4A Home Computer, the bit-map mode is available for defining the

display. In bit-map mode, you can independently define each of the 768 (32-by-24)
positions of the screen. Additionally, maore color information is available for each
8-by-8 pixel pattern. You can use sprites, but not their automatic motion feature.

In the bit-map mode, the patterns that occupy screen positions are described in the
Screen Image Table, the pattern descriptions are in the Pattern Descriptor Table, and
the colors of the characters are described in the Color Table,

21.5.1 Screen Image Table

The Screen Image Table lists the names of the patterns, from the Pattern Descriptor
Table, that are to be generated. Each name is a single byte from >00 to >FF.

The table is divided into three sections, with each section describing 256 entries.

The first section of 256 entries uses descriptions taken from the first 256 entries in
the Pattern Generator Table and the Color Table. The second section of 256 entries
uses descriptions taken from the second 256 entries in the Pattern Generator Table
and the Color Table, and the third section of 256 entries uses descriptions taken from
the third 256 entries in the Pattern Generator Table and the Cclor Table.

The first 32 entries describe the patterns that are placed on the first row of the
screen, the second 32 entries describe the patterns on the second row of the screen,
and so on. The Screen Image Table should usually be placed starting at address
>1800 by setting VDP write-only Register 2 to >06.

21.5.2 Pattern Descriptor Table

The Pattern Descriptor Table is divided into three sections of 256 entries each and
thus contains the 768 possible patterns. Each description is eight bytes long. The
description of the subprogram CHAR in the User's Reference Guide discusses
character definition,

EDITOR/ASSEMBLER
Page 334

COLOR, GRAPHICS, AND SPRITES

The descriptions in the first third of the table, 256 entries or 2048 bytes, describe the
characters in the first third of the screen. The descriptions in the second third of
the table describe the characters in the second third of the screen and the
descriptions in the last third of the table describe the characters in the last third of

the screen.

The Pattern Descriptor Table is >1800 bytes long. You must start it either at
address >0000 or »2000 by placing either >00 or >04 in VDP write-only Register 4. If
the Pattern Descriptor Table starts at address >0000, the Color Table must start at
address >2000, and vice versa.

73..5.3 Calor Table

The Color Table contains the descriptions of the colors of the characters in the
“attern Descriptor Table. The color codes are as described in Section 21.2.2. Eight
bbytes ere used to describe the colors of each character., The first nybble of each
hyte describes the color of the pixels that are on in one row of eight pixels, and the
second nybble describes the color of the pixels that are off in the same row of eight

pixels.

The color descriptions in the first third of the table, 256 entries or 2048 bytes,
describe the colors of the characters in the first third of the screen. The
deszcriptions in the second third of the table describe the colors of the characters in
the second third of the screen and the descriptions in the last third of the table
describe the colors of the characters in the last third of the screen.

The Color Table is >1800 bytes long. You must start it either at address >G000 or
>2000 by placing either >00 or >04 in VDP write-only Register 3. If the Color Table
starts st address »>0000, the Pattern Descriptor Table must start at address >2000,

and vice versa,
21.5.4 Bit-Map Mode Discussion
I using the bit-map mode, it is usually easiest to initialize the Screen Image Table

to »00 through >FF repeated three times, and then alter the entries in the Pattern
Descriptor Table and the Color Table.

EDITOR/ASSEMBLER
Page 335

COLOR, GRAPHICS, AND SPRITES

To alter a pixel on the screen, you must calculate the byte and bit to be changed in
the Pattern Descriptor Table. To alter the foreground and background colors of a
row of eight pixels, you must calculate the byte that must be changed in the Color
Table. The following program segment allows you to find those values.

The program segment assumes that the X-value of the pixel is in Workspace Register
0 (RO) and the Y-value of the pixel is in Workspace Register 1 (R1). The offset of
the byte that you must change in the Pattern Generator Table is returned in
Workspace Register 4 (R4), and the bit that must be altered is returned in Workspace
Register 5 (R5). The offset of the byte that you must change in the Color Table is
also returned in Workspace Register 4.

MOV R1,R4 R1 is the Y value.
SLA R4,5

sOC R1,R4

ANDI R4,>FFQ7

MOV RO,R5 RO is the X value.
ANDI R5,7

A RO,R4 R4 is the byte offset.
g RS5,R4 R5 is the bit offset.

21.5.5 Bit-Map Mode Example

Suppose the entry for a character in the Patiern Descriptor Table is
>FF9999FF182442C3, This defines the character shown below.

Character Pattern
P fefxfe]x]x|x] FF
je]] lei=] 1 %l 99
|#] | [=fe] | [#=*] 99
[% [*[*[x}®]%]|x] FF
I T T T Tl O O O 18
T O T Y 24
L d2E 1 L] 1% 1] 42
PEER 40 0 J2d B!
EDITOR/ASSEMBLER

Page 336

COLOR, GRAPHICS, AND SPRITES

If the entry in the Color Table is >464646464D4D4D4D, the pattern is as follows,
with B representing dark blue (>4), R representing dark red (>6), and M representing
magenta (>D).

Character Pattern Colors
IBiB|B|B|B|BIBIBI FF 46
|IBIRIRIBIBIRIR|B] 99 46
IBIRIRIBIBIR[R|B] 99 46
|IBIBIBIBIB|BI|B|B] FF 46
IMIMIMIB|B [M|M|M] 18 4D
IMIM|B |M|M| B [M|M|] 24 4D
IMIB IMIMIMIMIB [M] 42 4D
[BIBIMIM|IMIM|BIB| 3 40

On a magenta background, the magenta portions of the character blends with the
background. With the pixel markings removed, the character appears as follows, with
* representing dark blue (>4) and = representing dark red (>6).

* ¥ ¥ ¥ * X * ¥
¥ = = * * - . %
¥ = = ¥ * = - ¥
* * *
* ¥
* *
¥*
* * *
EDITOR/ASSEMBLER

Page 337

COLOR, GRAPHICS, AND S5PRITES

21.6 SPRITES

Sprites are moving graphics that can occupy space on the screen independently and in
addition ta the characters which normally make up the screen. You can dafine and
place in motion up to 32 sprites of any shape and several different sizes. After ynou
start sprites moving, their motion continues without further program control, Yo
can use sprites in graphics, multicolor, and bit-map mode. In bit-map maode,
however, automatic motion cannot be used. Sprites are defined by setting up tables

that indicate their position, their pattern, their color, their size, and their motion.

21.6.1 Sprite Attribute List

The Sprite Attribute List defines the position and color of each of the 32 possible
sprites, numbered 0 through 31. As sprites move, the entries in the Sprite Atfribute
List are changed.

For sprites, the screen is divided into 192 (>C0) rows of 256 (>100) columns, Fach of
these locations is called a pixel, the smallest dot that can be displayed on the screen.
The top row of pixels is designated >FF, followed by >00, >01, and so forth up to >BE.
The left column of pixels is designated >00, followed by >01, >02, and sc forth up to
>FF.

Each sprite definition takes up four bytes in the Sprite Attribute List. The first byte
is the vertical (Y) position of the sprite and starts at >FF, followed by >00 through
>BE. The second byte is the horizontal (X) position of the sprite, which can be from
>00 through >FF. The third byte is the pattern code, which can be from >00 through
>FF. The fourth byte is the early clock attribute, which cantrols the location of the
sprite, and color of the sprite.

Y-locations with values of >CO through >FE are effectively off the bottom of the
screen. However, a Y-location of >D0 causes that sprite and all following it in the
Sprite Attribute List to be undefined. For example, if the Sprite Attribute List
starts at address >0300 and no sprites are defined, the value >D0 should be placed at
address >0300. If the fifth sprite is the last one active, a value of >D0 should be
placed at address >0314. You can leave all 32 sprites active with the ones you do
not wish to appear located off the bottom of the screen. However, it is
recornmended that you cause the final unused sprites to be undefined with a
Y-location of >D0.

EDITOR/ASSEMBILER
Page 338

COLOR, GRAPHICS, AND SPRITES

The third byte of each entry of the Sprite Attribute Table defines the character
pattern to use for the sprite. The pattern can be from >00 to >FF and corresponds to
a character defined in the Sprite Descriptor Table. For example, in the
Editor/Assembler addresses >400 through >407 contain the entry for character »80.

The four most-significant bits in the fourth byte control the early clock of the sprite.
If the last of these four bits is 0, the early clock is off. Then the sprite's location is
its upper left-hand corner, and it fades in and out on the right edge of the screen.

If the last of these four bits is 1, the early clock is on. Then the sprite's location is
shifted 32 pixels to the left, allowing it to fade in and out on the left edge of the
screen,

The color of the sprite is specified in the four least-significant bits of the fourth byte
of the sprite description. The values used are the same as those given in Section
v

In the Editor/Assembler, the Sprite Attribute List starts at address >0300. If you
wish to use automatic motion, the Sprite Attribute L ist must start at that address.
If you put the default base address (>0000) in VDP Register 6, the Sprite Descriptor
Table {described in Section 21.6.2) starts at address >0000. Since the area >0000
through >03FF is used for the Screen Image Table, Color Table, and Sprite Attribute
List, character codes starting at >80, at address >0400, are then normally used for
sprites. When you use sprite motion, only the character codes from >80 through >EF
can be used because the Sprite Motion Table starts at address >0780.

21.6.2 Sprite Descriptor Table

The Sprite Descriptor Table describes the sprites' patterns in the same way as in the
Pattern Descriptor Table. However, sprites can be double-size or magnified by
writing a value to the two least-significant bits in VDP Register 1. The following
description tells the different sizes and magnifications possible.

EDITOR/ASSEMBLER
Page 339

COLOR, GRAPHICS, AND SPRITES

Value Description
oo Standard size sprites. Each sprite is 8 by 8 pixels, the same as a

standard character on the screen.

(131 Magnified sprites. FEach sprite is 16 by 16 pixels, equal to four standard
characters on the screen. The pattern definition is the same as for
standard size sprites, but each pixel occupies four pixels on the screen.

10 Double-size sprites, Each sprite is 16 by 16 pixels, equal to four
standard characters on the screen. FEach sprite is defined by four
consecutive patterns from the Sprite Descriptor Table. For example,
each of the character codes >80, >81, >82, or >83 causes a double-size
sprite to use characters >80, >81, >82, and >83 for the sprite. The first
of these characters is the upper left-hand corner of the sprite, the second
is the lower left-hand corner, the third is the upper right-band ccener,
and the fourth is the lower right-hand corner.

11 Double-size magnified sprites. Each sprite is 32 by 32 pixels, egual to 16
standard characters on the screen. Sprites are defined as described under
double-size sprites, and each pixel occupies four pixels on the screen,

In the Editor/Assembler, the Sprite Descriptor Table starts at address >0000 for
pattern code >00. However, addresses >0400 and above are usually used for the block
because the lower addresses are used for the Screen Image Table, Color Table, and
Sprite Attribute List. The pattern defined starting at address >0400 is referred to as
pattern code »80 in the Sprite Attribute Table.

21.6.3 Sprite Motion Table

The Sprite Motion Table defines the motion of sprites, [t must start at address
>0780. In order to move sprites, you must set up a number of cenditiors.

First, interrupts must be enablied during the execution of the program. Therefore,
every time the program accesses the VDP RAM, interrupt handling must he disabled,
which is the default. If you have enabled interrupt handling with the |11 2
instruction, you must disable it with a LIMI 0 instruction so that ths interrupt
handling routine does not alter the VDP write address.

Second, an indication of the number of sprites which have motion must be put in CRU
RAM address >837A. fFor example, if sprites 2 and 4 are moving, the number 5 must
be put at that address to allow for the motion of sprites 0, 1, 2, 3, and 4.

EDITOR/ASSEMBLER
Page 340

COLOR, GRAPHICS, AND SPRITES

Third, descriptions of the maotion of the sprite must be put in the Sprite Motion Table
which always starts at VDP address >0780. Each sprite's motion takes up four bytes
in the table. The first byte defines the vertical (Y) motion of the sprite. The
second byte defines the horizontal (X) motion of the sprite. The third and fourth
bytes are used by the interrupt routine.

The velocity in the first and second bytes can range from >00 to >FF. Velocities
from >00 to >7F are posi.tive velocities (down for vertical motion and right for
horizontal motion), and velocities from >FF to >80 are taken as two's-complement
negative velocities (up for vertical motion and left for horizontal motion).

A value of >01 causes the sprite to move one pixel every 16 VDP interrupts, or about
once every 16/60ths of a second.

Since sprites are set up by loading data into VDP RAM and the TI BASIC interpreter
allows interrupts, you can run sprites by successive use of the statement CALL
POKEV {see Section 17.1.6). However, caution must be taken not to interfere with
the TI BASIC interpreter, which does not recognize the existence of sprites. It is
possible that the sprites may cause the TI BASIC interpreter to stop functioning. In
TI Extended BASIC, this problem does not exist.

EDITOR/ASSEMBLER
Page 341

COLOR, CRAPHICS, AND SPRITES

21.7 GRAPHICS AND SPRITE £EXAMPLES

The first two of the following three assembly language programs are similar in their
effect. The first places several bubble shapes on the screen and moves them up the
screen. It does not use sprites, so the motion is not smooth. The second program
defines the shapes as sprites, so the motion is quite smooth. In addition, pressing
any key toggles the sprites from standard size to magnified sprites and back. The
third program is a demonstration of automatic sprite motion.

Each of these programs must be assembled with the R option, which automatically
generates Workspace Registers, and run with the LOAD AND RUN option of the
Editor/Assembler.

21.7.1 Graphics Example

In the following program, several characters shaped like bubbles are placed on the
screen and moved up the screen. These characters are not sprites, so the motion is
not smooth. Run the program with the LOAD AND RUN option of the
Editar/Assembler, using the program name BUBBLE., To leave the program, the
computer must be turned off because no provision has been made for returning to the
Editor/Assembler,

DEF BUBBLE
REF VMBW,VMBR,VSBW
¥*
BBLE DATA >3C7E,>CFDF,>FFFF,>7E3C
COLOR DATA >F333

BBL. BYTE >AD
SPACE BYTE >AB
1L.OC DATA >01DA,>0200,>0271,>02A5,>02D6,>02E1,>0000
MYREG BSS >20

*

* Set up colors.

*

BUBBLE
L WPI MYREG
LI RO,>394 Color Table 20 and 21.
LI R1,COLOR Load eolors >F3 and >33,
LI Rz,2 Two bytes to load.
BLWP @vMBW Move to VDP RAM,

EDITOR/ASSEMBLER

Page 342

*

* Set up character definition.

*
LI
LI
LI
BLWP

*

* Clear screen

*

CLR
MOVB
BLWP
INC
CI
JNE

LOOP1

*

RO,>D00
R1,BBLE
R2,8

AVMBW

RO
BSPACE,R1
@VSBW

RO

RO,>300
LLOOP1

¥ Place bubbles on the screen.

*

MOvVB
LI
MOV
MOV
JEQ
BLWP
Jmp

L.0oaoP2

*

* Scroll Screen.
*

VDPBF1
VvDPBF2

*

5CROLL

BSS
BSS

CLR
Ll

Ll
BLWP

LI
Ll
LI

COLOR, GRAPHICS, AND SPRITES

Character >A0 location.
Definition of bubble character.
8 bytes to move.

Start at VDP RAM >0000.

Move space character.

Move one space at a time.
Points to next location on screen.
Out of screen.

@BBL,R1 Load character code for bubble.

R2,LOC Load pointer to address for bubble.

*R2+,R0 Load real address.

RO,RD Check if finished loading.

SCROLL Finished. Start scrolling the screen.

@BVSBW Write bubble on the screen.

LOOP2

>20

>20

RO VDP source address.

R1,VOPBFl1 CPU buffer address.

R2,>20 Number of bytes to move.

@BVMBR Move >20 from VDP RAM.

R0,>20 VDP address >20.

R1,VvDPBF2 CPU huffer address.

R2,>20 Number of bytes to move.
EDITOR/ASSEMBLER

Page 343

COLOR, GRAPHICS, AND SPRITES

LLOOP3 BLWP @VMBR Copy the line.
Al RGO, »>20 Mave to lower VDP memory.
BLWP @vMBW Write back to the lower line.
Al R0O,>40 Read next line.
Cl R0,>300 Check if end of screen.
JL LOOP3 If not, copy more.
»*
LI RO,>2E0 Write the last line,
LI RI1,VDPBF1 CPU buffer where the first line is.
BLWP @vMBw Move CPU to VDP.
%
IMP SCROILL Keep scrolling.
*
END

21.7.2 Sprite Example

In the following program, several sprites shaped like bubbles are placed on the screen
and moved up the screen. Because sprites are used, the motion is quite smooth,

Run the program with the LOAD AND RUN option of the Editor/Assembler, using the
program name SBBLE. To leave the program, the computer must be turned off
because no provision has been made for returning to the Editor/Assembler.

DEF SBBLE
REF VMBW,VMBR,VSBW,V5BR
REF VWTR,KSCAN

BBLE DATA >3C7E,>CFDF,>FFFF,>7E3C

BBL BYTE >80

SPACE BYTE >20

SLIST DATA >70D0,>800F,>8068,>800F,>9888,>800F
DATA >AB28,>800F,>B0B0,>800F,>B808,>800F
DATA >DU000

MYREG BSS >20

EDITOR/ASSEMBLER
Page 344

*

* Set up character definition.

*

SBBLE

*

LWPI
Ll

LI

L1
BLWP

* Define sprites.

#*

¥*

LI
LI
LI
BLWP

* Scroll screen.

*

KEYBRD EQU

STATUS

¥*

SET

*
SCROLL
LOOP

READ

MOVE

EQU

DATA

CLR

LI
BLWP
SRL
ClI
JEQ
DEC
JNE
LI
S5L.A
BLWP
Al
JMP

COLOR, GRAPHICS, AND SPRITES

MYREG

R0,>400 Sprite character >8{),

R1,BBLE Definition of character.

R2,8 8 bytes to move,

@avmMBw

R0,>300 Address of Sprite Attribute List.

RI,SLIST Pointer to the list.

R2,26 Move 26 bytes to VDOP RAM at >300.

@vMBW Move the list.

>8375

>837C

>2000

R5 Counter for sprite size.

R0,>300 Pointer to the first Y-location.

@vsBR Read one byte into RI1.

R1,8 Make it a word operation.

RI1,>00D0 Check to see if it is finished.

KEY Check on key input.

R1 Decrement Y-location.

MOVE Move up one pixel.

R1,>00C8 Adjust the pointer.

R1,8 Change it back te byte operation.

@avsBw Write back to the list.

RO,>4 Points to the next location.

READ Read next Y-pointer,
EDITOR/ASSEMBLER

Page 345

COLOR, GRAPHICS, AND SPRITES

KEY
CLR
BLWP
MOV
coc
JEQ
IMP
*
CHANGE
MOV
JNE
LARGE
INC
LI
BLWP
IMP
SMALL
CLR
LI
BLWP
IMP

END

@KEYBRD
@KSCAN
@STATUS,R3
@SET,R3
CHANGE
LOOP

RS,R5
SMALL.

RS
RO,>01E1
AVWTR
LOOP

RS
RO,>01ED
@VWTR
LOOP

Clear keyboard.
Call key scan routine.

Move status byte.

Check for status bit.

Key pressed, change size of sprites.
Otherwise, keep scrolling.

Is R5 null?

Make sprites small.

Change R5.

Change R1 to >EL.
Madify VDP register.
Go back to loop.

Clear R5,

Change R1 to >EOQ.
Modify VDP register.
Go back to loop.

21.7.3 Automatic Sprite Motion Exampie

This program is an example of using automatic motion.

It places four magnified

sprites in the middle of the screen and maves them in different directions at

different speeds.
occur,.

Without interrupts, sprites cannat be maoved.

Note that the LIMI 2 instruction is given to allow interrupts to

Then, the LIMI 0 instruction is

given to prevent the rest of the program fram inadvertantly changing VDP RAM

registers which are being used by the sprites' motion.

Run the program with the LOAD AND RUN option of the Editor/Assembler, using the
To leave the program, the computer must be turned off
because no provision has been made for returning to the Editor/Assembler.

program name MOVE.

EDITOR/ASSEMBLER

Page 346

COLOR, GRAPHICS, AND SPRITES

DEF MOVE
REF VMBW,VWTR,VMBR,VSBW
*
NUM EQU >837A
SAL EQU >300
COLTAB EGQU >384
PATTN EQU >400
SPEED EQU >780
*
COLOR DATA >FF00
BALL DATA >3C7E,>FFFF,>FFFF,>7E3C
SDATA DATA >6178,>8006
DATA >6178,>8003
DATA »6178,>8004
DATA >6178,>800B,>D000
SPDATA DATA >0404,>0000,>F808,>0000
DATA >0CF4,>0000,5F0F0,>0000

MYREG BSS >20
*
MOVE
LWPI MYREG t.oad my own registers.
LI R0,COLTAB
MOVB @COLOR,R1
BLWP @VSBW Load background color as white.
k3
LI RO,PATTN
LI R1,BALL
LI R2,8
BLWP @VMBW L.oad ball pattern.
*
LI RO,SAL
LI R1,SDATA
LI R2,17
BLWP @vmMBw Load Sprite Attribute L ist.
#*
LI RO,SPEED
LI R1,SPDATA
LI RZ,16
BLWP avMBw Load speed of sprites.

EDITOR/ASSEMBLER
Page 347

COLOR, GRAPHICS, AND SPRITES

LI RO,>81E1
BLWP @VWTR Load VOP Register to magnify sprites.
*
LI R1,4
SLA R1,8
MOVB R1,gNuUM Specify number of sprites.
*
LOOP
LI RO,SAL
LI R3,4 Repeat 4 times.
L. R2,2
*
L.OOP2
LIMI z Enable interrupt.
LIMI 0 Disable interrupt.
+*
[R1,MYREG+14 Read it into Register 7.
BLWP @vVMBR
Al R7,-24
Cl R7,>B8CB Check if 0 <Y < 184, 24 < X < 224,
JH AD3UST
NEXT Al - RO ook at next sprite.
DEC R3
JEQ L OOP
JIMP LOOGRZ
ADJUST LI R1,SDATA Reload Sprite Attribute List,

L1 R2,2
BLWP @vMBw
JMP NEXT
END

EDITOR/ASSEMBLER
Page 348

