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Preface

* Have you ever wanted to know how the CP/M® operating system really
works?

* Would you like to use CP/M’s hidden power in your own BASIC or
assembly language programs?

* Are you a BASIC programmer who would like to learn assembly lan-
guage, but have been told that it’s too complicated?

* Do you need to modify CP/M to work with a particular printer or some
other I/0 device?

* Do you want to write programs that will work with any version of
CP/M?

If the answer to any of these questions is yes, then this book, with its
unique approach to teaching both CP/M systems calls and 8080 assembly
language programming, is for you. Starting with simple three- and four-line
programs, we ease you into the “soul” of CP/M: the universal system calls
that make CP/M the world’s most popular microcomputer operating system.
Gradually and easily, you’ll learn how to write programs to control all your
I/0 devices, including the disk system, and, also, perform a variety of other
functions.

Remember, you don’t need to know how to program in assembly language
to understand this book! We’ll teach you all the 8080 assembly language that
you will need to know and, since you’ll be learning the system calls at the
same time, your programs will be able to perform powerful functions from
the very beginning.

CP/M is the registered trademark of Digital Research, Inc., Pacific Grove, CA
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You’ll also learn how to use these powerful system calls in your BASIC
programs, how CP/M manages disk files, and how to modify CP/M’s
“BIOS” (Basic Input/Output System) to work with different I/0 devices, so
that you can customize CP/M for a particular printer or other device.

All in all, if you want to do more with your CP/M system than simply run
applications programs, then this book is for you!

MITCHELL WAITE
AND ROBERT LAFORE
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Introduction

SOUL OF CP/M®

What do we mean by the “Soul” of CP/M? One of CP/M’s most pleasant
features is its ease of use. The loading of applications programs, the use of
such CP/M functions as DIR, STAT, and PIP, and the use of higher-level
languages such as BASIC or FORTRAN, are all simple and straightforward
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in the CP/M environment. In fact, this efficient facade is all that many users
will ever know about CP/M. And yet, below this smooth and easy-going sur-
face, CP/M has a whole different level; a powerful inner structure that is
easily used if you know how, which can control your computer’s input and
output devices, including the disk drives, with a precision and a versatility
that is impossible to obtain from a higher-level language. We call this deeper
and more powerful level the “Soul” of CP/M and, in this book, you will learn
all about it.

WHO IS THIS BOOK FOR?

This book is aimed primarily at BASIC or other high-level language pro-
grammers who are working with a CP/M system and need to do more than
they can with their higher-level language. If you need to write custom I7/0
routines, handle disk records in a way not accessible to your high-level lan-
guage, or use an assembly language routine to add more power or speed to
your programs, this book will teach you how to do it.

This book is also aimed at the assembly language programmer who is
either not familiar with 8080 assembly language, or who needs to know more
about how to program in the CP/M environment.

WHAT THIS BOOK WILL TEACH YOU

12

First, this book teaches how to use CP/M’s built-in system calls. These
system calls are the key to programming in a CP/M system, since they allow
your program to communicate with a wide variety of I/0 devices, using a
universal format that works on any CP/M system. Once you've learned how
to use these calls, you are freed of the restraints imposed by BASIC or what-
ever other high-level language you are using. You can directly access the
video screen, the keyboard, the disk system, and other 170 devices, so that
they respond the way you want them to, not the way the designers of your
particular language decided they should.

Second, you will learn all about the CP/M disk system. You will learn how
it is organized, and how you can take control of it for use in your own pro-
grams.

Third, you will learn how to “customize” CP/M to work with different I/0
devices. Since there is no universally accepted format for the communication
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between /0 devices and computers, it is almost always necessary to write a
special program called a “driver” in order to make your computer work with
a new 170 device. CP/M’s solid, well-organized, 1/0 system makes this easy,
and we teach you how to do it.

Fourth, and this is thrown in as a sort of fringe benefit, you will learn 8080
assembly language. (If you already know it, that’s fine too. We’ve placed all
the descriptive text about assembly language in distinctive boxes, which are
easy to skip over if you wish.) As you learn assembly language, you will also
be learning the use of the CP/M programs DDT, LOAD, and ASM.

8080, 8080A, 8085, Z-80: WHAT’S THE DIFFERENCE?

A “chip” is the tiny slice of silicon which contains the thousands of transis-
tors that make up a microprocessor. The exact design of this chip determines
the “instruction set” of the computer; that is, it determines what commands
you have to give it to make it work. Different chips are given different names.
One of the most famous is the “8080”" chip manufactured by Intel Corpora-
tion. After this chip had been in production for a time, Intel improved it by
coming out with a faster version called the 8080A. Later, Intel added the
8085 chip, which is very similar to the 8080 and 8080A, except for some
improvements in the way that it handles interrupts.

Throughout this book, when we refer to the “8080” microprocessor chip,
we are also referring to the 8080A and the 8085. The differences are relatively
minor and, in any case, only apply to the interrupt system which we will not
be concerned with.

Also, this family of chips is “upward compatible.” This means that any
program written for an earlier chip (the 8080, say) will run on any later chips
(the 8080A and the 8085). Thus, even if we used the interrupt system, by
programming for the 8080, we ensure that our programs will run not only on
the 8080 but, also, on the 8080A and the 8085 as well.

The Z-80 is a chip manufactured by Zilog. Although it is also upward
compatible with the 8080, it has a considerably enlarged instruction set.
Generally speaking, programs written for the 8080 will run on the Z-80 as
well, although there are exceptions.

What it comes down to is this. The programs that you learn to write for the
8080 microprocessor will also run on the 8080A, the 8085, and (usually) on
the Z-80. So, no matter which of these chips is used in your CP/M system,
this book will tell you what you need to know to write working programs.

13
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WHAT YOU NEED TO KNOW TO GET THE MOST OUT OF
THIS BOOK

Before you start this book, you should have some minimal experience with
a CP/M system, including the use of DIR, PIP, and STAT. (If you need to
learn CP/M from the ground up, consult CP/M Primer, by Stephen Murtha
and Mitchell Waite, and CP/M Bible, by Mitchell Waite and John
Angermeyer.) You should also have at least a nodding acquaintance with a
text-editor of some sort, either the ED program that comes with CP/M or
another of the many popular text-editors, such as WordStar®.

Also, of course, you need access to a CP/M system, with the programs
ASM, DDT, LOAD, and your word-processing program.

This book will not teach you all of the bells and whistles of 8080 assembly
language programming. Since our emphasis is on CP/M, we will teach you
only enough assembly language to handle the examples in the book.
Although this is actually a fairly large chunk of assembly language, if you
want to go on and write your own complex applications programs, you
should read a good 8080 assembly language primer, such as 80804-8085
Assembly Language Programming, by Lance A. Leventhal.

You should probably also have some experience with some programming
language, such as BASIC, FORTRAN, or Pascal, before you start this book,
so that you are familiar with fundamental programming concepts.

HOW THIS BOOK IS ORGANIZED

14

Chapter 1 is an introduction to CP/ M’s organization. You’ll learn why
CP/M can run on many different computers and why many different pro-
grams can run on CP/M. The way CP/M fits into memory will also be
explained. Also, we'll talk a little about how 8080 assembly language works,
and how DDT can be used to write simple programs.

In Chapter 2, we'll start by writing some very short routines to access the
simplest of the systems calls, starting with outputting a single character to the
video screen. At the end of the chapter, we’ll write an actual program which
can be executed directly from CP/M, like any other program. Every step of
everything you need to do will be explained in detail, so that no matter how
new all this is to you, you can’t go wrong!

WordStar is the registered trademark of MicroPro™ International Corp., San Rafael, CA
94901
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Chapter 3 will advance further into the realm of system calls and you’ll
learn how to handle strings of text, both for input from the keyboard and
output to the screen. Throughout Chapters 2 and 3, you’ll also be learning
the rudiments of assembly language, using DDT as a fast and easy way to try
out the small programs needed for the examples.

In Chapter 4, we’ll introduce you to ASM, the CP/M assembler, which
simplifies the writing of larger assembly language programs. You’ll also write
and operate a useful program—one which translates hexadecimal numbers
(the kind the computer uses) to decimal numbers (the kind humans use) and
makes use of the system calls you’ve been learning. (In case you’re not famil-
iar with the hexadecimal numbering system, it’s described in detail in Appen-
dix A.)

Chapters 5 and 6 cover the disk system. You’ll learn about the fundamen-
tal building blocks of disk storage: records and files, and how to manage
them. You’ll also write a variety of programs making use of the disk system
calls. These programs will be used to write files and retrieve them from the
disk in both sequential and random format, and there will even be a program
to count the number of lines and pages in a file. As a bonus, we’ll delve into
the mysterious world of CP/M file directories and you’ll learn how to “res-
cue” a file which has been mistakenly erased!

Chapter 7 covers a larger program in detail. This is “WORDS”, which
counts the number of words in a text file. This program will make use of
“wildcards” (the use of * and ? in a program name to represent unknown
characters). It will also introduce the idea of “stack management,” so that
you can avoid a variety of pitfalls in your programming.

Chapter 8 deals with how to use system calls and assembly language from
BASIC. You’ll learn how to “call” assembly language routines from BASIC,
how to pass numbers back and forth between BASIC and your assembly
language routine, and where to put all these routines in memory. As exam-
ples, we’ll use routines that allow you to use hexadecimal numbers in BASIC
and allow you to convert BASIC string variables from lowercase to uppercase
letters. Although BASIC is used as the example language here, many of the
techniques described are applicable to other high-level languages as well.

In Chapter 9, we explain how to go about modifying your CP/M to use
different I/0 devices. A specific example—writing a driver for a particular
printer—will be described in detail.

Finally, a number of appendices are given that cover hexadecimal notation
and provide summaries of all CP/M system calls, 8080 instructions, and
DDT commands. They also include some useful and entertaining programs
which make use of the material covered in the book.

15
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HOW TO ENJOY THIS BOOK

16

This book starts out easily and teaches you more and more as it goes along.
For this reason, don’t try to understand it by starting in the middle some-
where (unless you’re already a hot 8080 and CP/M programmer). Start at the
beginning, take it easy, and before you know it, you’ll be doing things with
your computer that you never dreamed were possible!




CHAPTER 1

The Big Picture

How CP/M Is Organized

In this chapter, we’re going to talk, in very general terms, about CP/M
itself—how it does what it does and why it’s such a popular operating system.
Then, we’ll present a few fundamental facts about how the 8080 microproces-
sor works to prepare you for the introduction to 8080 instructions in the next

OPERATING
SYSTEMS :

17
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chapter. And, finally, we’ll briefly discuss DDT, a program that lets you write
short assembly language programs quickly and easily.

The idea of this chapter is to provide you with a sort of aerial view of the
terrain we’re going to cover. Don’t worry about specific details yet. What
we're interested in here is concepts: what an operating system is, how it does
what it does, how the computer itself operates, and why we need a program
like DDT. In the next chapter, we’ll get down to specific examples and, then,
the broad outlines described in this chapter will become clearer.

WHAT IS AN OPERATING SYSTEM, ANYWAY?

If you are using a small microcomputer with only a cassette system to store
your programs, you probably don’t even need an operating system. Generally
speaking, a language like BASIC is built into these small computers, and by
using BASIC’s CSAVE AND CLOAD commands or their equivalent, you
can save and load programs from cassettes in much the same way that you
would record and play back a musical selection on a tape recorder.

However, when you add a disk system to your computer, things get a little
more complicated. Now you can have dozens or even hundreds of programs
sitting on a diskette, and you need a way to load a particular one, or list what
they all are, or delete one, or rename it. Operating systems were originally
devised to handle these kinds of housekeeping chores, and that is all many
operating systems do. CP/M, however, goes beyond these simple tasks.

WHAT’S SO GREAT ABOUT CP/M?

18

CP/M is by far the most popular operating system ever devised for
microcomputers. Why is this? One of the main reasons can be summed up in
a single word: transportability. “Transportability” means that something can
be moved somewhere else and still work in the same way. CP/M has two
kinds of transportability, both of which contribute to its popularity.

Program Transportability

An analogy may make clearer what we mean by “program transportabil-
ity.” Imagine an international chain of hotels, scattered across the globe in
the major cities of the world. In order that the typical American traveler will
feel at home in all of these hotels, they are all constructed and operated so as
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to be as similar to one another as possible. Thus, the furnishings, the interior
decorations, and the food are the same in any city.

For example, if you’re staying at one of these hotels in Hong Kong and
you order a chicken sandwich, you get a chicken sandwich that is identical,
as far as you can tell, to the one you would get if you ordered it in San
Francisco, or Madrid, or Bangkok. Of course, even though the sandwich is
the same, the way that it is made may vary a great deal from one city to the
next. In San Francisco, the hotel employees get their chicken from a restau-
rant supply house. In Madrid, they get it from a man who drives up to the
hotel with a truck full of chickens. And, in some cities, the hotel employees
have to run out into the street and catch a chicken to make the sandwich.

We can think of these hotels as having two levels: the guest’s level, where a
chicken sandwich is always the same, and the hotel employee’s level, where
the making of the sandwich may be very different, depending on the location
of the hotel.

A program running on a CP/M system is like a guest staying at one of our
hotels. The program “thinks” that it is operating in the same environment,
even though it may be runnning one day on one computer and the next day
on a very different computer. It’s the job of the operating system, as it is the
job of the hotel employees, to make the program “feel at home” (that is,
operate correctly), wherever it is. One way that CP/M does this is through
the use of “system calls.”

System Calls

The “system call” is the connection between a program operating in a
CP/M environment and the I/0 devices that the program wants to use. It is
analogous to the hotel guest picking up his phone and calling room service.
The system call is essentially a CALL instruction to a subroutine in the
input/output section of the operating system. (CALL means “execute sub-
routine” and is similar to a GOSUB in BASIC.) Since these CALLs are all
made in exactly the same way, no matter what machine a program happens
to be operating on, the program thinks it is operating in the same environ-
ment and will work on many different computers. This is what we mean by
program transportability.

System calls do such things as printing a single character on the screen,
reading a character from the keyboard, and reading and writing records
to disks. In fact, system calls can handle all the input and output in the
CP/M system. Since these calls must be made using instructions in 8080
assembly language, they are usually used in assembly language programs,

19



Soul of CP/M®

but they can also be used from BASIC or other higher-level language pro-
grams if you know how. (We’ll cover the use of system calls from BASIC
in Chapter 8.)

Machine Transportability

The subroutine that a particular program calls will be different, depend-
ing on the actual physical characteristics of the 1/0 device the program
wants to use, just as the hotel employees and their particular method of
obtaining a chicken will be different in different cities. This brings us to the
second kind of transportability that makes CP/M so versatile: machine
transportability.

The only part of the CP/ M operating system that actually interracts with
physical input/output devices is called the BIOS, for “Basic Input/Output
System.” It consists of a number of short separate subroutines, each of which
performs an input or output operation on a specific device. These subrou-
tines are easy to modify if a particular piece of 1/0 equipment (such as a
printer or video display) is changed. Thus, it is easy to reconfigure CP/M to
make it work with different equipment and on different computers. We'll talk
more about the BIOS later.

The diagram shown in Fig. 1-1 illustrates symbolically the relationship of

CP/M to its programs and to its operating environment.

‘ User’s Program '4—— Interchangeable with
§ other user’s programs.

System -<+—— System calls are always
calls. the same.
}4———— This part of CP/IM is always
BDOS the same.
Computer
BIOS This part of CP/M changes
to match particular 1/O

devices.

T

Interchangeable
with many
different
computers.

<«—— Interchangeable with many
different brands of
1/0 devices.

1/0 Devices
(tape, keyboard, etc.)

Fig. 1-1. How CP/M is organized.
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CP/M’s Golden Rule

The preceding ideas can be summarized in what is sometimes called
CP/M’s Golden Rule: “A call to BDOS on one machine is a call to BDOS on
all machines.” Or, using our hotel analogy, “A chicken sandwich in one city
is a chicken sandwich in all cities.” (We’ll explain what “BDOS” means in
the next section.)

THE PARTS OF CP/M

The CP/M operating system is divided into several parts, each of which
occupies a different area of memory. In this section, we’ll briefly review these
different parts, what they do, and where they’re located in memory. The dia-
gram in Fig. 1-2 shows the various parts of the software of a CP/M system,
and where they fit in the computer’s memory.

First, let’s talk about the TPA, or transient program area. This is the part
of memory where the user’s program goes. This program could be a language
interpreter, like BASIC, or it could be an assembly language program written
by a user, or it could be one of the utility programs that are part of the CP/M
system, like PIP or STAT.

On most CP/M machines, the TPA starts at location 100H, meaning 100
in hexadecimal notation, which is 256 in decimal. (If you don’t know any-

MEMORY ORGANIZATION—64K SYSTEM

(Addresses may be different
in different systems)

Top of memory

FFFF hex
BIOS
F200 hex FDOS
BDOS
E400 hex
CCP
DCO00 hex
T
TPA User’s
program
0100 hex
Zero page
0000 hex

Fig. 1-2. The parts of CP/M.
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thing about the hexadecimal numbering system, now is the time to become
familiar with it by reading Appendix A.) The size of the TPA is dependent on
how much memory your machine has. In a 64K system (the maximum for
most systems running CP/M), the TPA will be about 56,000 (decimal) bytes
long. (It will probably be a day or two until you are writing programs that
large!)

The next part of the CP/M system is called the CCP, for Console Com-
mand Processor. This does just what the name says. It deals with commands
typed in by the user from the console keyboard. Thus, every time you see the
“A>” prompt, it is the CCP that printed it and the CCP is waiting for you to
type something in on the keyboard. When you do type something in, the CCP
will either deal with your command itself, if it is a “resident command” like
DIR or TYPE, or it will call another program if it is a “transient command”
like STAT or PIP. The CCP might start at around DCOO hex, in a 64K sys-
tem, and will occupy about 2000 (decimal) bytes.

Although the CCP must listen to your commands that are typed at the
keyboard, read and write files to the disk system, and send messages to the
screen, it doesn’t carry out these actual input/output operations itself. For
that, it must call on the next part of the CP/M operating system, the BDOS.

The BDOS, for “Basic Disk Operating System,” is located just above the
CCP in memory. BDOS handles all requests for input and output made by
your program. This includes the reading and writing of information from and
to disks, the maintaining of a directory of disk files, and the allocation of the
space that these files occupy on the disk.

BDOS also acts as a sort of intermediary for system calls that you make to
nondisk devices such as the keyboard and the video console. Sometimes
BDOS does not do very much with these calls itself, but merely passes them
along to the BIOS portion of CP/M (which we’ll describe next). Other times,
it needs to do considerable work to prepare data for the BIOS. For instance,
if you tell BDOS to print a string of characters on the video screen (the “Print
String” system call), BDOS will break the string up into individual characters
before sending it on to the BIOS, since the BIOS driver routine only deals
with one character at a time.

Like the CCP, BDOS is entirely independent of the particular computer or
disk-system it is being run on, so it does not have to be changed when it is
moved to a different system.

Finally, we come to the part of CP/M which actually communicates with
the outside world: the BIOS (for Basic Input/Output System). The BIOS, as
we’ve mentioned before, contains the subroutines that actually communicate
with 1/0 devices like the disk drives and the console and the printer. It is
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these subroutines which must be modified when the hardware is changed in a
particular system. BIOS reaches all the way to the top of memory: FFFF
(hex), or 65535 (decimal), in a 64K system.

Since the BIOS is the only part of the CP/M system that communicates
with the physical devices in the outside world, it’s the only part that has to be
changed if the devices are changed. The systems calls, by which a program
communicates with BDOS, are always the same, no matter how BIOS must
be rewritten to accommodate some strange new printer or disk drive.

BDOS and BIOS together are sometimes called “FDOS.” This stands for
“Full Disk Operating System.” When you do a “cold boot”—by hitting the
reset switch on your computer, for example—both the CCP and FDOS are
loaded into the computer’s memory from the disk. When you do a “warm
boot”—by hitting the control-c key—only the CCP is loaded in.

These various parts of CP/M can also be thought of as being arranged in
layers, like an onion (Fig. 1-3). On the outside is the user, who communicates
with the CCP. Or, there is the user’s program. Either the CCP or the user’s
program communicates with the BDOS. BDOS, in turn, communicates with
BIOS. And the BIOS, finally, communicates with the actual 170 devices, like
the disk drives and the console.

There is another section of memory which, although small, is very impor-
tant in the operation of the CP/M. This is the so-called “page zero”, or those
addresses from 0 to FF (hex) that are located just below the start of the TPA.
The CP/M uses this area mainly for passing information of various kinds
back and forth between the CP/M system and the user’s program. For
instance, locations 6 and 7 contain the lowest address used by the CCP. This
lets a program figure out just how much room it has for itself in memory.

THE USER USER’S

CCP PROGRAM
BDOS
BIOS
driver
routines = » Direct connection
to 1/O devices.

Fig. 1-3. CP/M is like an onion.
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(For example, BASIC can look at these locations and determine how large a
user program it can accept). We'll cover other uses of page zero as we explore
the workings of the disk system.

8080 ARCHITECTURE
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In this section, we’re going to describe a few fundamentals about how com-
puters work on the assembly language level. (If you’re already familiar with
assembly language, you can skip to the next section.)

For a programmer, a computer can be thought of as consisting of two
parts: the memory and the CPU. The CPU, or Central Processing Unit, con-
tains a number of registers. We'll talk about memory first and, then, describe
what registers are and what they do.

Memory

As you already know, a computer’s memory consists of a large number of
things called “bytes” (65,536 of them in a 64K system). On the kind of com-
puters that we will be talking about (those that run standard CP/M), each of
these bytes consists of 8 bits, where each bit is represented by either a binary
digit 1 or 0. All computer programs, and much of the data they operate on,
are stored in memory; that is, they occupy a number of these memory loca-
tions. You can think of these memory locations as little boxes, each with an
“address” ( a number between 0 and FFFF hex) to identify it, that are capa-
ble of holding one 8-bit byte.

Fig. 1-4 shows how a section of memory might look if the word “CAT”
was stored in it in ASCII characters. This section of memory may look
“upside down” to you, with the low numbers above the high numbers. Unfor-
tunately, there are two more or less standard ways of showing memory. Big
blocks of memory are shown with the high numbers on top, as in the diagram
of BIOS, TPA, etc., that is given in Fig. 1-2. But when small sections of mem-
ory are shown, the small numbers are at the top because that’s the way they
appear on program listings (the same as do the line numbers in a BASIC
program).

What do the numbers 43, 41, and 54, stored in the memory locations,
mean? If you look at the table of ASCII values given in the Appendix D,
you’ll see that 43 hex is the ASCII value for “C,” 41 is the value for “A,” and
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(Memory continues on down to 0000 hex)

|

( 2000 hex
2001 hex
43
Memory 2002 hex
locations ) 4
2003 hex
54
2004 hex
.
Addresses of
memory
locations.

(Memory continues up to FFFF hex.)

Fig.1-4. Memory.

54 is the value for “T.” The ASCII code is simply the way that the computer
stores characters. (It stands for “American Standard Code for Information
Interchange.”) Since the computer must always think in terms of numbers, it
translates all characters (letters, punctuation, etc.) into two-digit hex num-
bers.

Numbers that aren’t ASCII characters can also be stored in memory. One
byte (one memory location) can hold a number between 0 and 255 decimal (0
to FF hexadecimal). Two bytes (two memory locations) used together can
hold numbers from 0 to 65535 decimal (0 to FFFF hex.)

One of the important differences between assembly language (we’ll abbre-
viate it A-L from now on) and a high-level language, such as BASIC, is that
when you program in the higher-level language, you don’t need to know
exactly where in memory a particular program or variable is stored. The lan-
guage processing program (such as the BASIC interpreter) takes care of
deciding where to put the program and its variables. In A-L, on the other
hand, the programmer must decide himself where to put everything—this
instruction will go in this memory location, that variable will go in that mem-
ory location, and so on. For this reason, all the addresses (which is the same
as saying memory locations) are numbered, starting at 0 and going up to
FFFF (hex).
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The program, which consists of a list of instructions, each of which is rep-
resented by one or more two-digit hexadecimal numbers, goes in specific
memory locations just as numbers and ASCII characters do. The instructions
in the 8080 instruction set will occupy either one, two, or three memory loca-
tions, depending on what instruction it is.

The drawing in Fig. 1-5 shows three instructions stored in memory.
They’re part of a program, but you can’t see the rest of the program because
we’re only looking at a very small section of memory. The instructions are
MOV E,A, CALL 5, and POP D. Don’t worry if they don’t mean anything to
you at this point; we’ll be describing some actual instructions in detail in the
next chapter. There are two things to notice here. First, each instruction is
represented by one or more hex numbers (MOV E,A is represented by the
number 5F, CALL 5 by the three numbers CD, 05, 00, and POP D by the
number D1). Second, these numbers occupy specific places in memory; MOV
E,A occupies location 018E, and so on. MOV E,A and POP D each occupy
one memory location, while CALL 5 occupies three locations.

Registers

There is another place a program can store data; it is in special hardware
devices called “registers.” A register is something like a memory location, but
it is part of the microprocessor “chip,” and can therefore be operated on

(Memory continues down to 0000 hex.)

T instructions
0192 hex 1_‘

1
2 POP D
0191 hex
CcD
0190 hex
Memory | 5 CALL S
locations
018F hex
00
018E hex MOV E,A
HF
L
Addresses
of memory
locations.

(Memory continues up to FFFF hex.)

Fig. 1-5. Three instructions stored in memory.
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faster than a memory location, which is on a separate memory chip located
some distance from the microprocessor. A register also usually has some spe-
cial attributes that memory locations don’t have.

A microprocessor “chip,” such as an 8080, consists mainly of registers and
the instruction-decoding circuits that let the chip know what we want to do
when we execute a specific instruction.

You can think of registers as the work areas where data are processed.
Data are stored in the memory, and the instructions for handling the data—
the program—are also stored in the memory. We execute the instructions in
the program one after the other, like items on a list. Suppose we want, for
example, to add together two numbers that are stored in memory. Our pro-
gram will contain an instruction that will take the first number out of mem-
ory and will put it in one of the registers. The next instruction will take the
second number from memory and add it to the contents of the register. The
third instruction in our program might cause the result of the addition to be
put back into yet another memory location or, perhaps, it might send it to an
output device like the video screen. The point is that the addition operation
was carried out in a register, not in memory.

In the 8080 chip, there are 7 main registers for handling data. (There are a
few others, but we’ll ignore them for the moment.) These 7 registers are called
the A, B, C, D, E, H, and L registers.

Of these, the most important is the A-register. The “A” stands for “accu-
mulator.” In the early days of computing, many computers had only one
register. This was used to hold the results of all arithmetic calculations, in the
same way that your pocket calculator keeps its arithmetic results in a single
register (whose contents you can see in the little window). Since this register
“accumulates” the results of previous arithmetic calculations, it was called
the accumulator. The A-register in the 8080 still handles all of the 8-bit arith-
metic (that is, numbers up to FF hex or 255 decimal), such as addition and
subtraction, as well as logical ANDs, ORs, shifts, and the like.

Bytes of data can be moved from the A-register to memory and back, and
also between the A-register and the other 8-bit registers.

The other registers, B, C, D, E, H, and L, can function as temporary stor-
age places for 8-bit (one byte) quantities. They can also be used in a different
way—as register pairs to hold 16-bit (two-byte) data quantities. When used in
this way, the B and C registers are placed together to form the BC register,
the D and E registers are placed together to form the DE register, and the H
and L registers are placed together to form the HL register. The 16-bit data,
which are numbers from 0 up to FFFF hex (65535 decimal), can be trans-
ferred between these register pairs, or between specific register pairs and
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pairs of memory locations. The diagram given in Fig. 1-6 shows the principle
8080 registers.

Don’t worry if all this talk about registers seems a bit obscure at this point.
In the next chapter, we’ll introduce you to some specific operations with reg-
isters and their uses will become clearer. For a more complete picture of the
registers, look in Appendix C for a “Summary of 8080 Instructions.”

To summarize, the principal parts of the 8080 MiCroprocessor are seven
registers and a large number (up to 65536) of memory locations. This is
shown in Fig. 1-7.

Fig. 1-6. The principal 8080 registers.

Il

< 8 bits wide »|= 8 bits wide >

e 16: DIt WidE: >

Continues
down to 0000.

Registers

Memory

Continues up to FFFF.
Fig. 1-7. The principal parts of the 8080 microprocessor.
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DDT-THE PROGRAMMER'’S X RAY AND PROBE

All right, you say, I’ve got this computer sitting on my desk, and you tell
me there are things called registers inside it. And, something called memory.
Well, I can’t see them and I can’t touch them. How am I supposed to do
anything with them? How can I find out how they work?

Good questions. What we need are a set of tools. We need the program-
mer’s equivalent of an x-ray machine and of some long probes, so we can
examine the registers and the memory and also manipulate them; so we can
change their contents. Fortunately, the kind folks at Digital Research (the
makers of CP/M) have provided just such a set of tools; it’s a program called
DDT. (They also make a similar program called SID. You can use that too,
if you like, but our discussion is geared to DDT.)

DDT (for “Dynamic Debugging Program”) is one of the “transient com-
mands” (programs not built into CP/M but provided with it as a separate
program). This program was devised to make it easier to work with the com-
puter on a very fundamental level. DDT is able to examine and modify the
contents of both particular memory locations and of the various registers in
the 8080.

For example, if you are using DDT and you type “d100”, DDT will print
out the contents of all the memory locations from 100 (hex) to 1FF (hex) (or
256 locations). You can change the contents of a memory location by typing,
say, “s100” to alter the contents of location 100. And, you can examine and
modify the contents of registers; typing “xa” will permit you to examine and
modify the contents of the A-register.

DDT has another important ability—one which we will make use of exten-
sively in this book. That is, you can type in a program in symbolic assembly
language and DDT will assemble the symbolic instructions into a program
which can be executed directly.

Here’s why we need this ability to handle symbolic programs. The instruc-
tions for the 8080, like those for all computers, take the form of lots of binary
numbers when they are in the machine. (Of course, these aren’t abstract
binary numbers, but groups of transistors being set to either the “on” or
“off” states. For our purposes, it amounts to the same thing.) Again, read
Appendix A on hexadecimal notation if you are not familiar with binary
numbers or their relationship to hexadecimal numbers.

As an example, the instruction to subtract the contents of the C-register
from the contents of the A-register is the binary number 10010001. Now
binary numbers are hard to read and to remember, so we usually write the
instruction in its hexadecimal form of 91. (See the table of binary to hex-
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adecimal conversions in Appendix A.) However, even this is hard to remem-
ber. What the “symbolic assembler” function of DDT lets us do is write this
number as “sub ¢”. It’s much easier to see that this means “subtract the con-
tents of the C-register from the contents of the A-register” than it does when
you look at the number F9LY

It wouldn’t hurt at this point to look over the DDT commands in Appen-
dix F, or even the section on DDT in the CP/M documentation provided
with your computer, just to get a rough idea of everything that DDT is capa-
ble of. Don’t worry if you don’t understand every detail; we’ll explain how it
all works as we go along.

Instruction stored

as a binary number Hexadecimal Symbolic
in the computer’s memory. representation representation
of the instruction. of the instruction.

| 10010001 ' 91 SuB C

Fig. 1-8. Number conversion.

BACK DOWN TO EARTH
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Now that you’ve gotten a fast aerial overview of the various major aspects
of the terrain, it’s time to land and take a close-up look at a specific area.
we'll do this in the next chapter, on Console System Calls. If you feel you’re
not quite sure of what’s happening and where all these concepts are leading,
read on. The specific examples that we’ll cover next should help to pull every-
thing together.



CHAPTER 2

One Toe in the Water

Console System Calls

In this chapter, you’re going to begin your journey into the mysterious and
exciting world of CP/M system calls. System calls, as we mentioned in the
last chapter, are links between your program and BDOS, CP/M’s Basic Disk
Operating System. BDOS examines your system call and then uses one of the
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routines in BIOS (the Basic Input/Output section of CP/M) to communicate
with a specific device, such as the video screen, keyboard, or disk drive.
Understanding how to use these calls is the key to programming in the CP/M
environment, since by using the calls, you can create programs that are effi-
cient to write and are easily transportable from one computer to another.
There is a complete list of system calls in Appendix E. You might want to
glance over these calls at this point, just to get an idea of the kinds of things
they do.

Our first programs will be very short, and will introduce the simplest of
system calls at the same time that you're learning just enough assembly lan-
guage to use the call. For simplicity and ease of operation, we’ll use DDT to
create the examples. By the end of the chapter, you'll be well on your way to
understanding both system calls and 8080 assembly language.

we'll introduce each system call with a box containing the important facts
about how to use it. Don’t worry if you don’t understand what we mean by
“REG C = 27, and so on, in the following explanation box; we’ll get to that
soon.

CONSOLE OUTPUT SYSTEM CALL

32

CONSOLE OUTPUT FUNCTION 2 (dec) = 2 (hex)

Enter with: REG C = 2
REG E = ASCII character to be displayed

The first system call that we’ll learn is a simple one called “Console Out-
put.” This call is nothing more than a way to send a single character from
your program to the CP/M display screen. It's like a one-character-at-a-time
version of the PRINT statement in BASIC. We'll describe how the call is
used, then write a program that makes use of the call, and, finally, show you
how to type the program into the computer’s memory and execute it using
DDT.

In order to execute this system call, your assembly language program must
do three things:

1. Put the number 2 in the C-register.
2. Put the ASCII character you want to print in the E-register.
3. Execute a CALL instruction to memory location 5.
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That’s all there is to it! If you do these three things, a character will be
printed on the screen. You don’t need to understand anything about the
actual instructions that CP/M uses to send the character to a particular
kind of terminal or crt screen, since the routine in BIOS takes care of that
for you.

Briefly, here’s what each step does. First, the number “2” is the number
of the system call in hex. CP/M uses the C-register as the “mail-box” for a
program to tell CP/M what systems call it wants to use. Second, the ASCII
code for any character can be looked up in Appendix D found at the back
of this book. In this system call, CP/M gets the ASCII value of the charac-
ter that is to be displayed from the E-register. And, finally, all system calls,
no matter what they are, use a CALL to location 5 in order to enter BDOS,
where the BIOS and BDOS routines will do whatever input or output func-
tion has been requested; in this case, printing a character on the screen.

Your First Program

All right, you ask, how do I actually go about writing down these steps in a
form that the computer can understand? Let’s look at a program that does
just what we want:

mvi c,2
mvi e,48
call 5

Well, it’s short enough, but what does it all mean? Easy. The first instruc-
tion puts the number 2 in the C-register. The second instruction puts the
number 48 in the E-register. And the third instruction causes the program to
“call” or jump to the entry point of BDOS, which is at memory location
0005.

All the numbers used in programs in this chapter are in hexadecimal, so
the 2, the 48, and the 5 are all hexadecimal numbers. (The 2 and 5 are the
same as their decimal equivalents, but the 48 is equal to 72 decimal.)

Statement “Fields”

Each of the three lines in the preceding program is called a “statement.” As
you can see, each of these statements consists of two parts separated by a
space. These parts are called “fields.”
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The first field shown is the “operation” field. The instruction, or what
you're going to do goes in this field; “mvi” and “call” are instructions. (To
confuse the issue, the word “instruction” is also used to refer to the entire
statement.)

Following the space (which could be several spaces, or a tab) comes the
“operand” field. This field contains the thing you’re going to do it to. Thus, in
the first line, “mvi” is the instruction or operand. It operates on the operand
field, which contains “c,2”, and causes the number 2 to be placed in the C-
register. In the third line, CALL is the instruction, and it operates on the
operand 5, causing the program to jump to location 5. Later, we’ll learn
about other fields in the instruction line, but for the time being these two will
keep us busy.

Something to notice here is that the order in which things are written in the
operand field may seem backwards. In the example, “MVI C,2”, it’s the 2
that is placed into the C-register, not the other way around. It’s like the state-
ment “LET C=2” in BASIC, where the variable C is given the value 2.

The MVI Instruction

“MVI” is an instruction that means “move immediate.” The word “imme-
diate” means that the data to be moved immediately follows the instruction in
memory. (Later, we’ll look at instructions that can take a constant from other
places in memory and put it in a register.)

As we mentioned before, the memory locations in these drawings start at
the top and go downward. This may seem strange at first, but you’ll get used
to it.

The number to be moved using MVI can be any 1-byte number—that is,
any number from 0 to FF hex (0 to 255 decimal). Also, the register that the
number is moved to can be any of the seven main registers: A, B, C, D, E, H,
or L. In the diagram of Fig. 2-1, the number is moved to the C-register. The
second time that the MVI instruction is used in our example program, the
number 48 is moved to the E-register.

The use of a constant as part of an instruction can be confusing. Some com-
puters require that constants be stored in a different part of memory from the
program. However, in the “immediate” instructions used in the 8080 micro-
processor, constants actually become a closely connected part of some
instructions, such as MVI. Notice how the instruction occupies two bytes of
memory. The first byte, at location 100, is the code that tells what the instruc-
tion is going to be: OE. This means the instruction is going to transfer a
constant into the C-register; in other words, it’s the code for the “MVI C”
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Before MVI C,2 is executed:

Section of memory where
the program is located

This is where
: the MVI C,2
C-register instruction
is in memory.
Memory
address.
After MVI C,2 is executed:
00FF
0100
0E MOV C,2
C-register
0101
e 02
02 0102
The number
2 is moved

from memory
to the C-register.

Fig. 2-1. The MVI instruction.

part of the instruction. This number will vary, depending on which of the
seven registers the constant is to be placed in. The constant itself is given in
the second byte of the instruction, at location 101; it’s the hexadecimal
number 02.

We’re not going to be too concerned with the exact hexadecimal codes for
the instructions we learn, but it’s important to understand the relationship of
the codes to the symbolic instructions that we’ll be typing in using DDT.
We'll type in a symbolic instruction, like “mvi ¢,2”, and DDT will take care
of the dirty work of figuring out the corresponding hexadecimal code and
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placing it in memory. We'll talk more about this process later, when we show
you how to type in the program.

Examples:

mvi c,2
mvi h,ff
mvi ¢,20

So the instruction “mvi c,2” means “take the number 2 and put it in the C
register.” This 2 in the C-register tells BDOS that we want to execute Func-
tion 2, which is Console Out.

The number 48 (hex) is the ASCII value of the letter “H” (you can check
this in the table of ASCII values in Appendix D). So the instruction “mvi
e,48” means “take the ASCII value of ‘H’ and put it in the E register.” Note
that not all hex values represent printable characters. If you put a 0 in the E
register, for example, nothing would happen when you tried to print it,
because 0 is the ASCII code for a “null,” which is a nonprintable character.
Also, remember that this number must be the hex representation of the char-
acter and not the decimal representation.

The CALL Instruction

CALL means “execute” or “call” a subroutine. It’s equivalent to a GOSUB
in BASIC. When this instruction is executed, the program jumps to the mem-
ory address in the operand field of the instruction. Also, the instruction
stores the “return address” so that it can get back to the proper place in the
calling program when the subroutine is completed. The place that the pro-
gram wants to return to in the program—the return address—is simply the
location following the CALL instruction. The place where the CALL instruc-
tion saves the return address is called the “stack.” We’ll learn more about the
stack later. For now, think of it as a handy place for the program to save an
address until it’s needed again.

Fig. 2-2 is a diagram of how CALL operates. In this case, when the call
instruction is executed, program control will go to location 02C0, and loca-
tion 107 will be stored on the stack. When the subroutine, which starts at
location 02C0, is completed, program control will resume at location 107.
(This is done using the RET instruction, which we’ll cover later in this
chapter.)
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0103
0104 00 >
The return CALL 02C0
address, 107, 0105 Co :
will be placed When this
on the stack instruction
0106 02 is executed,
3 the program
will go to
: 0107 location 02CO.
The “Stack”
02BF
02C0 >
02C1

Fig. 2-2. Operation of the CALL instruction.

Examples:

call 5
call 100
call bfOO

So, in our little program, the “call 5” means “execute the subroutine at
memory location 5 hex” and 5 hex turns out to be the entry point for all
system calls. What really happens is that locations 5, 6, and 7 contain a jump
instruction to the actual BDOS entry point in high memory. We’ll talk more
about that later in the book. But for now, all you need to know is that in
order to do a system call, you execute a CALL 5 instruction.

So there it is, your first CP/M system call, a simple 3-instruction program,
written in assembly language. But, how do we get it to do what it’s supposed
to do—put a character on the screen? In other words, how do we put the
program into the computer’s memory and execute it?

We could actually write the program in “official” assembly language, using
the ASM assembler program that comes with CP/M, and, then, execute it as
a COM file (the same way systems programs are executed). But if we did
that, we would have to add other instructions to the program to make it work
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and we also would have to use several different programs to convert it to an
executable routine. Why go to all that trouble? Instead, we simply take
advantage of DDT, which has a built-in mini-assembler, and which can exe-
cute its own programs with no trouble at all. (For longer programs involving
lots of jumps and subroutines, this DDT approach will begin to hold us back
and we’ll graduate to using ASM, but for the moment, DDT is just what the
doctor ordered.)

Just for fun, let’s make the program slightly more complicated before we
type it in with DDT. Instead of a single letter, we’ll send the word “HI” to
the console screen. Here’s the program to do that:

mvi c,2 Put 2 in the C-register for Console Out.
mvi e,48 48 hex is ASCII “H”.

call B Jump-to-subroutine (BDOS) at location 5.
mvi c¢,2 Put 2 in C-register for Console Out.

mvi e,49 49 hexis ASCII “T".

call 5 Jump-to-subroutine (BDOS) at location 5.
gt | Return to DDT.

This program is very much like the last one, except that we print two letters
instead of one. In other words, we use the Console Out system call twice,
once with “H” and once with “L.”

Something to note here is that we have to restore the “2” in the C-register
(as well as putting the new character in the E-register) before we can “call 5%
the second time. This is because the system call itself trashes the contents of
the C-register. (“Trash” is a programmer’s word meaning to change some-
thing, usually with disastrous results.)

Also, we’ve added comments to each line, to make the program clearer
(although you can’t actually type in such comments in DDT). And, there is a
final addition to the program—the “rst 7” instruction at the end.

The RST Instruction

This instruction was actually designed to be used with the interrupt system
of the 8080 chip. Since this book does not cover the interrupt system, we
won’t say anything further about RST, except to note that, since DDT uses
the interrupt system, this instruction must be used to terminate programs
when they are being executed under DDT. When used in DDT, RST returns
control from the program to the DDT monitor. It’s a little like the STOP or
END instruction in BASIC. Without the rst 7, the computer would just keep
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on executing all the instructions in memory that happened to follow the end
of the program.

Example:
rst 7

Typing in the Program Using DDT

The first step in writing our program is to load and get into DDT. (Notice
that our typed input will be in lowercase letters, while CP/M’s output is in
uppercase letters. Don’t worry about this. CP/M is good at translating the
lowercase input to uppercase.) After you load DDT by typing “ddt” follow-
ing the “A>" prompt, DDT will print a “sign-on” message and then print a
dash (“-”) and will wait for your command. (The dash “-” is the DDT
prompt character.)

A>ddt Call up DDT.
DDT VERS 2.2  DDT sign-on message.
- DDT’s prompt character.

You can now type “al00”, which means “start assemblying a program at
location 100 (hex).” DDT will respond to this command by printing 100,
which is the location where the next instruction will go in memory. Each time
that we type in an instruction and hit the carriage return, DDT will reply
with the next available memory location. Here’s how our program will look
when typed in using DDT:

A>ddt

DDT VERS 2.2

-a100 Assemble code at 100 hex. (Type each instruction, followed by a
0100 mvi £, 0 return.)

0102 mvi e, 48

0104 call 5

0107 mvi c,2

0109 mvi e,49

010B call 5
010E rst 7
010F Press return to end assembly.

5 1

You type the program in this column.

DDT types these addresses.
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We began at 100 hex because that’s the standard beginning address for all
CP/M programs and that is where the SAVE utility looks for code to save.
(We'll talk about that later.) Notice how different instructions take up differ-
ent amounts of memory: mvi takes two bytes, call takes 3, and rst only needs
1. When we’ve typed the last instruction, we type a carriage return instead of
another instruction to let DDT know that we’re done.

Let’s make sure the code is set up right by using the “I” (lowercase 1. )11
command. The “I” command prints out or “lists” a program in the same
format that we typed it in.

(This is a lowercase “L”.)

(This is the number 100.)

r

e e

-1100 List the code to see that it’s all right.
0100 MvI ¢,02

0102 MVI E,48

0104 CALL 0005

0107 Mvl ¢,02

0109 MVI E, 49

010B CALL 0005

010E RST 07

Looks great. If you made any errors in entering your code, use the “A”
(assemble) command again to reenter the correct code. For example, if you
mistakenly typed CALL 6 at line 104, you would change it by typing: “al04”
(return). The address 0104 would appear. Then, you would simply type “call
5. hit return twice, and you’re finished:

-1100

0100 mvI (02

0102 MVI E,48

0104 CALL 0006 Woops—typed the wrong thing.
0107 mMmvi ¢,02

0109 MVI E,49

010B CALL 0005

010E RST 07

-a104 Start at the offending instruction. Type the right thing,
010& call 5 another carriage return, and it’s fixed!
0107
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Now that our little program is entered into the computer’s memory, it’s

time to actually execute it, using DDT. We use the “go do it” command “g”,
followed by the address where our program starts (100 hex).

-g100 Run the program at address 100 hex.

HI*010E Program prints HI and the last address preceded by a “*”.

Wow! It actually printed what it was supposed to! The asterisk tells us that
the program is finished, and the O10E tells us that the last instruction to be
executed was a “rst 7 at location 010E. The HI, of course, stands for “High-
ly Ingenious.”

To reward yourself for successfully writing and executing your first CP/M
program, why not take the rest of the day off? Or, at least treat yourself to a
beer!

Saving the Program

Now that you’ve written the program, you will want to be able to save it
onto disk so that you can use it later. Here’s how to do it:

1. Type “g0” to take you out of DDT and back into CP/M.
2. Following the “A>" prompt, type “save 1 test.ddt”.

|

-g0 Leave DDT.
A> Get the A> prompt back.

(This is the number “zero,” not the letter *Oh)

A>save 1 test.ddt Save the program.

Since 0 is where the computer automatically goes to do a warm boot, typ-
ing “g0” from DDT takes you back to CP/ M. (It actually loads the CCP
back into memory and executes it. You could also have typed a control—c,
which has the same effect.) “SAVE” is a “resident command” that automati-
cally writes to the disk the program that is occupying the TPA, starting at 100
hex. It saves the program using the name that you type in; in this case,
“test.ddt”. The “1” tells SAVE how many 256-byte “pages” of memory we
want to save; in this case, just one page, since our program is less than 256
bytes long.
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If you want to reload the program, you can do it at the same time that
you’re loading DDT:

A>ddt test.ddt

Then, to execute the program, type:
-g100

Don’t try to execute the program directly from CP/M by typing
A>test.ddt. For one thing, only files with an extension of “COM?” can be
executed this way and, for another, the fact that the program ends with “rst
7” (instead of “ret”) will cause problems if you do change the extension to
COM and try to execute it. This is because RST takes you to an address that
DDT is able to deal with but which CP/M is not expecting at all. Later, we’ll
learn how to execute programs directly from CP/M.

Using the “Control-S” Feature

There is more you should know about the way CP/M handles the Console
Output function. As we mentioned earlier, BDOS does not simply pass the
request for output along to the input/output routine in BIOS—it does some
interpretation of its own. This gives it the opportunity to add some useful
features to the input/output routines that can be used by any program run-
ning in the CP/M environment.

For example, when you use the Console Output system call, BDOS checks
to see if you've typed a “control-s”, which has the effect of starting and stop-
ping the scrolling of material displayed on the screen. (Control-s is the char-
acter generated when you hold down the “control” or “alt” key, and type “s”.
You’ve probably used it in such CP/M utilities as “TYPE”.) So if you press
control-s as the program is running, CP/M will freeze your output on the
screen—that is, stop running—until you press another control-s.

Want to see control—s work on our sample program? Unfortunately, the
program prints “HI” and returns to DDT so fast that you don’t have time to
type anything. The solution to this is to replace the “return to DDT” instruc-
tion—*“rst 7”—with a jump to the beginning of the program, so that we have
an endless loop printing the word HI. Then, you can try the control-s and
verify that it freezes the program, and restarts it as well.
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The JMP Instruction

A JMP instruction is just like a GOTO in BASIC. When the program exe-
cutes it, control goes to the address specified in the operand field of the
instruction. Of course, in assembly language, the address is an actual memory
location, not a line number as in BASIC. JMP differs from a CALL instruc-
tion in that no return address is stored; the program doesn’t remember where
you were before you executed the jump. :

0110
JMP 0100
0111 causes the
program to
jump to 1D2
0112
TLLLLELELLELL L il
Fig. 2-3. The JMP instruction. T
01D1
01D2
01D3
01D4

Examples:

jmp 100
jmp bf00

Which Half Comes First?

You may have noticed something a little strange if you’ve been examining
the diagrams of the programs carefully. Whenever there’s an address in a
program listing or diagram, it seems to be backwards. An address consists of
two bytes. For instance, 01D2 is stored in the computer’s memory as the two
bytes 01 and D2. However, the makers of the 8080 (and the 8085, Z-80, and
so forth), for reasons best known to themselves, chose to put the least-signifi-
cant byte first, followed by the most-significant byte. That is, if you have the
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instruction “JMP 01D2” in a program, the JMP will come first (represented
by the number C3), then the D2, and then the 01. This makes listings and
diagrams confusing to read, until you get used to the procedure. Of course,
you can simply ignore the hexadecimal values that the “a” function of DDT
puts in memory and just look at the symbolic instructions.

To check the control-s feature, type the following:

A>ddt test.ddt
DDT VER 2.2
NEXT PC

0200 0100
-1100 List the code to see that it’s all right.
0100 MvI c,02

0102 MVI E,48

0104 CALL 0005

0107 mvi c¢,02

0109 MVI E,49

010B CALL 0005

010E RST 7

Bring up DDT and our previous program.

Notice the NEXT and PC headings that DDT prints when you load a pro-
gram. NEXT means the next memory location after the one loaded in. Since
we SAVEd one 256-byte page when we saved our program, 256 decimal bytes
(which is 100 hex bytes) are loaded in along with DDT. This fills memory
locations from 100 to 1FF, so the next available one is 200 hex. PC means
Program Counter. This is DDT’s way of keeping track of where it is in a
program, and it is always at 100 when a program is first loaded.

We want to change the last instruction in the program, RST 7, to a JMP
100. So we type:

-a10e Change the rst 7 to a JMP 100.
010E JMP 100

0110 Carriage return.

-g0 Now return to the CCP.

A>save 1 testl1.ddt

Save the program as TESTI.
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A>ddt test1.ddt Go back to DDT.
-g100 Execute the program.
HIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHI--=-~--~- ety

A huge amount of HIs are sent to the screen, quickly filling it up. The pro-
gram will continue to send HIs until the control-s key is pressed; at which
point, the display will freeze. Pressing another control-s will allow it to restart.

But how do you stop the entire program, so you can get back to DDT or
CP/M? Unfortunately, you’re in big trouble in this regard. The only way to
regain control of the computer is to hit the reset button. That will cause a
“cold boot,” and you’ll be back in CP/M. The moral of this is to avoid writ-
ing assembly language programs with loops that never terminate. In BASIC
you can always hit the Break key but, in assembly language, you need to
write an escape route into your program. In the next section, we’ll show you
how to modify your program so that it can be interrupted from the keyboard.

So, you’re now an expert on the CP/M function call “Console Output.”
The nice thing about this is, as we mentioned earlier, that what you’ve
learned is applicable to any machine running CP/M, whether it has an 8080
chip, an 8085, a Z-80, or whatever. It’s also applicable to any sort of display
terminal, whether it’s from TeleVideo, IBM, Amdek, or any of the dozens of
other manufacturers.

There are many other nondisk CP/M system calls, some of which are more
powerful than this one, and some of which are pretty mundane. Understand-
ing them all will help you discover how CP/M works and how to write pro-
grams that make use of CP/M’s full capabilities.

The next CP/M function call that we will study is a simple but important
one that is used by almost all of the CP/M utilities.

GET CONSOLE STATUS

GET CONSOLE STATUS FUNCTION 11 (dec), 0B (hex)

0B
0 if no key pressed
non-0 if key is pressed

Enter with: REG C
On return: REG A
REG A
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Get Console Status (sometimes called Interrogate Console Ready) is used
mainly for signaling to your program that the user has pressed a key. It
doesn’t tell what character was typed, only that some key was pressed. What
good is that? Well, remember the last program example of sending continu-
ous HIs to the screen? We had to press the reset button on the computer to
stop the display. The program was locked into a tight loop, continuously
using the “Console Out” routine, and there was no way we¢ could stop 1it.

Let’s fix this problem. We'll change our program so that every time we
print “HI” on the screen, we also use “Get Console Status” to check if the
user has pressed a key. If he has, we’ll have the program end itself and return
to DDT.

First, bring in the old testl.ddt program with DDT:

Y

SRl
4
RIERTE:

;,!.-.

Iy

A>ddt test1.ddt

NEXT PC

0200 0100

-1100 List the code to see if it’s all right.
0100 MvI (,02

0102 MVI E,48

0104 CALL 0005

0107 MvI (C,02
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0109

MVI

E, 49

010B CALL 0005
JMP 0100

010E

Looks fine—an endless loop that prints HI on the screen forever, or at least
until RESET is pressed causing a cold boot of CP/M. Not the most elegant
way to end the program.

Change your code as follows:

-a10e
010E
0110
0113
0114
0117
0118

mvi c,b
L e
ora a
jz 100
et 7

Put OB hex in C register.

Call BDOS.

OR A with itself—to set zero flag.
Go do HI again if no key pressed.
Back to DDT if key is pressed.

Now list the whole thing:

-1100
0100
0102
0104
0107
0109
0108
010E
0110
0113
0114
0117
0118

MVI
MVI
CALL
MVI
MVI
CALL

c,02
E,48
0005
c,02
E,49
0005
MVI C,0B
CALL 0005
ORA A

JZ 0100
RST 7

You can save this program as “test2.ddt” and then bring it back into mem-
ory with DDT in the usual way:

_go

A>save 1 test2.ddt

A>ddt test2.ddt
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What do these new instructions do? Let’s explain. What’s basically
changed here is that, in line 10E, we don’t simply jump back and repeat
the loop. Instead, we put OB hex in C-register to set up the Get Console
Status system call. Then, we do a call to BDOS with CALL 5. This will
make CP/M go and check the keyboard to see if a key has been pressed.

This system call is a little different from the last one, in that our pro-
gram is trying to find out something from CP/M (namely whether a key
was pressed) rather than trying to tell CP/M something. Thus, we don’t
need to put anything in the E-register before we do our “call 5.” But we
do want to know what CP/M has to tell us, so after the “call 5 is exe-
cuted, we want to find out if the A-register contains a 0 (which would
mean that no key was pressed) or if it contains something else (which
would mean that a key was pressed). To do this, we need to use something
called the “zero flag.”

The Zero Flag

We've already mentioned that arithmetic and logical operations involving
8-bit quantities are always carried out in the A-register. Often, after perform-
ing such an operation, our program needs to know what the results of the
operation were. For instance, if we do an addition, we might like to know if
the result is zero. The 8080 does this through what’s called the “zero flag,”
which is simply a switch in the CPU that is set to “1” whenever the results of
an arithmetic or logical operation are zero, and set to “0” when they’re not.
(This might seem backwards, setting the flag to 0 when the result is nonzero,
but remember, it’s called the “zero flag.” It gets sez, meaning “set to 1,” when
the result is 0.)

Once this “zero flag” switch is set, it can be used to affect the results of
other instructions, such as jumps, in much the same way that a BASIC state-
ment, such as “IF A=0 THEN GOTO 1000”, is used.

When we use the “Get Console Status” system call, the A-register comes
back with an 8-bit quantity in it, and we want to find out if it’s zero or not.
The way to do this is to test the zero flag, but (remember this!) the zero flag is
not set until we perform an arithmetic operation. So we need to do some arith-
metic on the A-register which will set the zero flag if the A-register is zero. An
old programming trick here is to OR the A-register with itself.



One Toe in the Water

The “ORA” Instruction

“OR” means to take the bits in the A-register and OR them with the corre-
sponding bits in some other register. This is illustrated in Fig. 2-4. Either the
BCDEHO®GO L register will work fine. As you no doubt recall from
BASIC:

0 ored with 0 is O
0 Oored with 1is 1
1 ored with 0 is 1
1 ored with 11s 1
A-register Some other register

| 01001100 ' | 00001111 '

01001100
00001111 - Contents of
- A-register ORed
01001111 with contents of
another register.
A-register
e . | Result is placed back in A-register.

Fig. 2-4. The ORA instruction.

Examples:

ora b
ora h

In our particular program, instead of ORing the A-register with some other
register (B or C, or whatever), we OR it with ‘tself. And, as you can see from
the above definition, if we OR anything with itself, all we’ll get back is itself
again! While this may sound like an exercise in futility, it’s important because
when we perform an OR operation, the zero flag is set. That’s the only reason
for the ORA instruction: to set the zero flag.

Following the “ora a” instruction, we know that the zero flag is set (=1) if
the A-register came back from the “Get Console Status” system call set to
zero, and cleared (=0) if the A-register came back with some nonzero quanti-

ty. How does our program make use of this information? The “jump-on-
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zero” (jz) instruction takes care of it nicely by doing just what its name
implies.

The JZ Instruction

This instruction is a special case of a regular jump (JMP) instruction. If the
zero flag is set, this instruction will act like a jump and go to the address
given in the operand field of the instruction. However, if the zero flag is not
set, nothing at all will happen. No jump will occur and the program will just
go on to the instruction following the JZ just as if the JZ hadn’t even been
there. The 8080 instruction “JZ 100” is very similar in function to the BASIC
statement of “IF Z=1 THEN GOTO 100”.

This instruction, and similar ones that we’ll learn later, give our program
the opportunity to branch or head in different directions, depending on
something that’s happened in the program.

0100
0101

0102

Goes back to 100
LEELEEEEEEET T L] if zero flag set.

I Fig. 2-5. The JZ instruction.

0114
JZ 100 —
0115
Goes on to 0117
0116 if zero flag
not set.
0117 P
Examples:
jz 100
jz bfoo

In our case, if the A-register returns with zero, it means no key was pressed,
so the zero flag will be set to 1, the jz 100 instruction will cause program con-
trol to go back to 100, and the program will continue to print “HI” on the



One Toe in the Water

screen. However, if a key is pressed, the A-register will return with nonzero,
the zero flag will be cleared (set to 0), and when we execute the jz 100 instruc-
tion, we won’t jump at all but, instead, will go to the last instruction in the
program (the “rst 7” instruction) which will return us to DDT.

So, does all this actually work?

-g100 Execute the program.

HIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHI
HIHIHIHIHIHIH... etc.

Watch the “HI’s” fill up the screen.

Try pressing control-s. The display should freeze. Press control-s again to
unfreeze the display.

Now for the big test. Try pressing any key—for instance, the “z”. The pro-
gram should come back to DDT, like this:

««=HIHIHIHIHIHIHIHIH*(0117)
5
£

A
= B

We pressed a key here and the program stopped.

Here we are, back in DDT! Lo and behold, our modified program works
too! It’s not perfect, because the letter we pressed gets passed along to DDT.
That’s the “z” you see printed out following the DDT prompt. If we type a
carriage return, DDT will think the “z” is input and will output a question
mark when it can’t understand it. Aside from this minor glitch, the program
is certainly very successful in getting us out of the endless loop.

Congratulations are again in order. You have just created your third
CP/M program and learned a new system call! At this rate, you’ll be writing
programs for mass consumption within days!

BARBER-POLE DISPLAY PROGRAM

Here’s a somewhat longer exercise that demonstrates the “Console Output”
and “Get Console Status” functions while showing how to program a loop
with a changing variable in 8080 code. The goal of the exercise is to write a
program that will display the entire ASCII set on the console, over and over
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again. We’'ll use “Console Output” to send the characters to the screen and the
“Get Console Status” to end the program if a key is pressed. (WARNING: Do
not turn on your printer while running this program as it does not send a
carriage return/linefeed to the screen, and it will, therefore, cause the printer
to go to the right edge of the paper and just sit there, typing over and over on
the same spot.) This program uses several new and interesting instructions and
it introduces you to that useful but mysterious device, the “stack.”

Again, get into DDT and enter this program with the A (assemble) com-
mand:

-a100

0100 mvi e,20  Set up E-register for first ASCII character.
0102 mvi ¢c,2 Ready for output.

0104 push d Save the DE register-pair (save E).
0105 . call . 5 Send character to the screen.

0108 pop d Get the DE pair back (E is restored).
0109 inr e Bump E by +1.

010A mov a,e Put the E-register in the A-register.
010B cpi 7f Is it the 127th character?

010D jnz 102 If result not zero, then no, so loop.
0110 mvi c,b Check console status.

0112 call 5 Call BDOS.

0115 ora a Set zero flag based on contents of A.
0116 i1z 0 If a=0, then no key pressed, so loop.
0119.:e8t. 7 Return to DDT.

You can save the program as “barber” by exiting DDT and typing:
A>save 1 barber.ddt

The program can be executed in the usual way by loading it along with DDT:
A>ddt barber.ddt

And, typing:
-g100

But, before you do that, take a minute to understand just what’s going on.
There are a lot of new instructions in the program that you need to learn.
(Too late, right? You already ran it. That’s all right, we admire impetuous
programmers.)
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Fig. 2-6 gives a flowchart of the program’s operation. You can refer to the
flowchart as you read about the new instructions the program uses.

A flowchart is simply a pictorial representation of the operation of a pro-
gram. Sometimes, certain conventions are followed in flowcharting. For
instance, actions which result in the program making a choice between two
different routes are placed in diamond-shaped boxes. Rectangular boxes
show actions which don’t result in a choice; there’s only one way out of a
rectangle. Circles show places where the program enters or leaves the chart.

Enter from
DDT.

/

Put the first
printable ASCII =
character in the

E-register.

Print character
on screen.

\

Increment the
E-register

Is the contents
of the E-register
equal to 7F?

Check console
status.

Any key
pressed on the
keyboard?

no

Exit to
DDT.

Fig. 2-6. Flowchart of the Barber-Pole Display program.
53



Soul of CP/M®

54

The Stack

The first unfamiliar instruction in the program is the “push d” at location
104. In order to understand this instruction and the one at location 108, “pop
d”, you need to know about a strange, wonderful, and, occasionally, infuriat-
ing thing called the stack.

We showed you earlier how the stack can be used as a convenient place to
store the return address when we call a subroutine. But the stack can store
more than one thing. It can be thought of as, well, a stack. A stack of dishes,
for example. When you’ve washed a dish, you put it on the top of the stack for
storage. If you need a dish, you take it off the top of the stack. (This kind of
stack is called LIFO, for “last in, first out.”) There is a stack in the memory of
your CP/M computer and it works in the same way except, of course, that it
doesn’t store dishes, it stores the contents of register pairs. The contents of a
register pair is two bytes long (which is 16 bits, or four hexadecimal digits).

There are two main instructions for manipulating the stack: PUSH (which
puts something on the stack), and POP (which takes it off). The operation of
these instructions is shown in the diagrams of Figs. 2-7 and 2-8. Notice that

PUSH ———»

-«——— Top of the stack.

A register pair.

A new number (9E03)
is placed on the
stack with a PUSH
instruction.

Now the stack looks like this:

<«—— Top of the stack.

Fig. 2-7. Using the PUSH to manipulate the stack.
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POP <——

A register pair. ~¢————— Top of the stack.

The number 9EO3 is
removed from the top
of the stack with a
POP instruction.

POP <+——

A register pair ~+——— Top of the stack.

FCO00

0200

Then, the 1020 is removed. 40E0

POP ——-—

A register pair. -<«+——— Top of the stack.

0200

40EO0

Finally, we can take off the FC0O.

Fig. 2-8. Using the POP to manipulate the stack.

each box in the diagrams stands for rwo memory locations, since each is hold-
ing a two-byte quantity.

We can’t take a number out of the middle of the stack. If we want the
number FCO00, for example, we must first remove the 9E03, then the 1020,
and finally the FCO00. This is illustrated in Fig. 2-8.

Remember how, in the last chapter, we mentioned that the B and C regis-
ters, the D and E registers, and the H and L registers could be put together to
form the BC, DE, and HL register-pairs? It’s the contents of these 16-bit
register-pairs that are stored on our stack. Sometimes these 16-bit quantities
are simply numbers that we want to save, other times they are addresses.

What does the stack consist of? It’s just a series of memory locations,
somewhere in your computer’s memory. Often the program you’re using,
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such as DDT, or CP/M itself, takes care of figuring out what memory loca-
tions are to be used for the stack, and we’ll assume that’s true for the time
being. Later, we’ll find that this can sometimes be a dangerous assumption,
and we’ll figure out ways to deal with the stack more directly.

How does the CPU know where in memory to put whatever is supposed to
go on the top of the stack? Well, there’s actually another register, which we
haven’t mentioned yet, called the “stack pointer,” which keeps track of where
the top of the stack is. For the moment, we won’t need to know too much
about this register since the common instructions for putting things on the
stack and taking them off —-PUSH and POP—handle the stack pointer auto-
matically.

Something strange to notice about the stack is that it grows downward in
memory. That is, if the “top” of the stack happens to be at location 1000
hex and you add something to the stack, it will go into locations FFF and
FFE, just below 1000. The next thing you put on the stack will go in loca-
tions FFD and FFC, and so on. Likewise, if the top of the stack is at 1000
and you take off the first item, it will come from locations 1000 and 1001.
The next item will come from locations 1002 and 1003, and so on. There’s a
reason for this seemingly backwards behavior, and we’ll discuss it later in
the book.

The PUSH Instruction

To store the contents of a register-pair on the stack, we use the PUSH
instruction. It has the format:

push x

where the x can stand for either “b”, “d”, or “h”. In this case, “b” stands for
the BC-register, “d” stands for the DE-register, and “h” stands for the HL-
register. When this instruction is executed, the 16-bit (two bytes, four hex
digits) contents of the register-pair x are copied into the vacant memory loca-
tion at the top of the stack.

This is the memory location pointed to by the stack pointer register. Once
the quantity is written into this location, PUSH takes care of changing the
stack pointer register so that it points to the new top of the stack—the next
available place where a quantity can go.

Examples:

push b
push h
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Before the PUSH Instruction:

A register pair.
OFFD

OFFE

OFFF

1000

After the PUSH Instruction:

—> OFFB
PUSH
> OFFC

OFFD

A register pair.

OFFE

OFFF

1000

Fig.

The POP Instruction

POP is simply the opposite of PUSH. It takes thin
stack. The 16-bit quantity
written into the register-pair specified in the operand field of the instruction:

PUSH put them on the

pop X

where x can be either
registers.

POP takes care of incrementing the stack pointer so that it points to the

next free memory location.

————— Stack pointer points here.

~<«——————— Top of the stack.

T

OE

D9

T

The Stack.

-«+——— Stack pointer.

98 ~¢————— Top of memory.

DE

90
77
OE

D9

T

The Stack.

2.9. The PUSH instruction.

“W2 9, or 'Y and stands for the BC, DE, or HL

gs off the stack, from where
removed from the stack is
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Before the POP Instruction:

P Stack pointer:
OFFB 98 4 Top of memory
OFFC DE
OFFD 90
A register pair.
OFFE 77
OFFF OE
1000 D9

The Stack

After the POP Instruction:

<¢—————— Stack pointer
points here.

- Top of the stack.

OFFD 90
A register pair.

: OFFE 77
98 DE OFFF 0E
1000 D9

The Stack

Fig. 2-10. The POP instruction.

Examples:

pop d
pop h

In our “barber-pole” program, we need to save the E-register each time
that we call the “Console Output” routine. Why? Because we’re going to use
the E-register to hold the ASCII value of the character that we want to print.
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And, every time we call the Console Out routine, we want to increase the
ASCII value of the contents of the E-register by one, so as to print the next
character. Unfortunately, however, the Console Out routine trashes
(destroys) the contents of the E-register when it is called. To prevent this
unfortunate occurrence, we save the E-register on the stack with a “push d”
instruction before calling “Console Output,” and restore it afterwards with a
“pop d.” Notice that, even though it’s the E-register we want to save, we use
“d” in the PUSH and POP instructions, because it is the first letter in the
register-pair “DE.” The instruction saves both the “D” and “E” registers but,
in our case, the “D” register is just along for the ride.

We mentioned that we wanted to increment the ASCII value in the E-
register each time that we call the Console Out routine, so that we will print
all the ASCII characters in order. How do we go about incrementing (adding
1 to the contents) a register?

The INR Instruction

This instruction is simply a way to add the quantitiy 1 to the contents of a
register (see Fig. 2-11). It works on any of the registers A, B, C, D, E, H, and
L. (It doesn’t work on register-pairs—there’s another instruction for that,
which we’ll get to later.)

This instruction adds 1 to whatever is in the register. If the number in the
register is FF, adding 1 will change it to 00, and the zero flag will be set. (This
instruction will also set other flags, which we’ll discuss later.)

Register Before INR Instruction:

'

Register After INR Instruction:

Fig. 2-11. The INR instruction.

Examples:

Inr e
inr a
inr h
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The MOV Instruction

You've already learned that the MVI instruction will take a fixed 8-bit
number from memory (from the location immediately following the instruction)
and put it in a register. The MOV instruction, on the other hand, takes the 8-bit
contents of a register and puts it in another register. MOV can be used to MOVe
data from any 8-bit register to any other 8-bit register. The format is:

mov X,y

where the contents of register “y” is moved into register “x.” (As we men-
tioned before, this may seem backwards, or at least a little arbitrary, but
you’ll get used to it. Think of the data as going from right to left in the
instruction. All the 8080 instructions do things from right to left in this way.)

In the diagram of Fig. 2-12, the contents of the B-register are copied into
the E-register by the MOV instruction. The contents of the B-register are not
changed.

This instruction does not cause any flags to be set. Thus, if you MOV zero
into a register, the zero flag will not be set.

Before the MOV Instruction:

B-register E-register

Y 29

A O Lot Fig. 2-12. The MOV instruction.

B-register E-register

Examples:

MOV E,B

mov e,a
mov h,]
mov d,b

We mentioned earlier that not all hex numbers are printable as ASCII
codes. In fact, the printable ASCII codes run from 20 (hex), which is a space,
to 7F (hex), which is the rubout. Sending numbers greater or less than these
to your console device or printer is likely to cause strange and unpredictable
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results. Thus, we want to start our program by sending 20 (hex) to the con-
sole, and when we’ve sent 21, 22, and so on up to 7F, we want to start over
again with 20. The first instruction in the program, “mvi e,20”, starts us off
with 20, but how will we know when we get to E?

The CPI Instruction

The answer is the CPI instruction, which stands for “Compare Immedi-
ate.” CPI performs a comparison between the number in the A-register and
the number in memory immediately following the CPI instruction. The result
of the comparison is used to set the various flags, including the zero flag.
How do we know what flags will be set? The idea here is to think of this
instruction as a sort of “phantom” subtraction of a fixed 8-bit quantity from
the A-register. Why isn’t it a “real” subtraction? Because the quantity in the
A-register is not actually changed; nothing is subtracted from it. However,
the zero flag (and the various other flags that we will learn about later) act as
if the subtraction had been carried out.

This is easy to understand in the case of the zero flag: if the two numbers
are equal, the zero flag is set. Why? Because when you subtract a number from
the same number, the result is zero.

Section of memory where
the program is located.

Zr fag ‘

00FF
0100
FE CPI 7F
A-register 0101
e —— 7F
| 0102
The number 7F [}
is compared
Memory

with the contents

of the A-register. address.

In this case, they are not the same,
so the zero flag is not set.

Fig. 2-13. The CPI instruction.

Examples:
cpi 7f
cpi 2
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In our case, the “cpi 7f” instruction compares the contents of the A-regis-
ter with 7F hex. The first time through the loop, the A-register will contain
20, because the E-register contains 70. So the result of the subtraction will
NOT be zero. The next time, the A-register will contain 21, because the E-
register contains 21, because we incremented it with the INR instruction. The
next time it will contain 22, and so on, until we’ve counted up to 7F. When
the A-register is 7F, the results of the comparison will be 0, and the zero flag
will be set. What use will we make of the zero flag?

The JNZ (jump-on-not-zero) Instruction

As you can guess, this instruction is similar to the JZ instruction that
you’ve already encountered, except that it jumps if the zero flag is NOT set.
Otherwise, it goes on to the next instruction in the program.

0100  ——————————
0101

0102

UL

(L

0114 c2 Goes back to 0100

if zero flag is NOT set.
dNZ 100 ——
0115 00
0116 01 Goes on to 0117

if zero flag is set.

0117 -

Fig. 2-14. The JNZ instruction.

Examples:

jnz 100
jnz bf00

In the case of our barber-pole program, the CPI instruction will result in
the zero flag not being set until all the ASCII characters from 20 to 7F have
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been printed. So each time the JNZ instruction will take us back to the sec-
ond instruction in the program—at location 102. When we’ve printed all the
ASCII characters, the program will go on to location 110, where it will per-
form the “Get Console Status” system call to see if any key of the keyboard
has been pressed. If not, it will start the program over. If so, it will return to
DDT, as in the example shown in our previous program.

Running the Program

When you run the program, you should get something like this display:
A>ddt barber.ddt
-g100

INES788 1 ()*+"'-./01234567890: ;<=>?ABCDEFGHIJKLOMNOPQRSTUVWXYZL
\JA_‘abcdefghijklmn opgrstuvwxyz{i}~ !"#$%&!()*+’-./01234567890
:;,<=>?ABCDEFGHIJKLOMNOPQRSTUVWXYZ[\1A_‘abcdefghijklmn opqrstuvw
xyz{i}~!"'#8%8&$1()*+’-./01234567890: ;<=>?ABCDEFGHIJKLOMNOPQRSTUVW
XYZLi1A_‘abcdefghijklmn opgrstuvwxyz{i}~ !"#$78&$!()*+’-./0123456
7890: ;<=>?ABCDEFGHIJKLOMNOPQRSTUVWXYZ[\]A_‘abcdefghijklmn opqgrs
tuvwxyz{i}~...[etc. until you press any key]

This is a good program to keep in your wallet and memorize for when
you’re at a party or at a new friend’s house and you want to impress them
with your knowledge of CP/M and 8080 code.

CONSOLE INPUT

' CONSOLE INPUT FUNCTION 1 (dec) = 1 (hex)

. Enter with: REG C
On return: REG A

1
ASCII character from keyboard

Console Input is perhaps the most-often used CP/M function call. Its pur-
pose is to get a character from the keyboard into your program. Console
Input is used by almost all programs that run under CP/M which request
user input from the keyboard. For example, all text editors for CP/M use the
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console input function to get an ASCII value from the keyboard. It works
much like the GET statement in BASIC. When Console Input is called, it
reads the next console character into the A-register of the 8080. It will “echo”
your character to the screen as well. It will not echo control characters but
will react to many of them. If no key is pressed, the function will hang, wait-
ing until a key is pressed, and, thus, suspending execution if a character is not
ready.

There are some special features of the Console Input function that you
should be aware of. Most important is the way it responds to CP/M control
characters. It does not respond to a warm boot (control—c), or to the printer
stop/start toggle (control-p). This makes complete sense, as you often
DON’T want the user to be able to warm-boot the system or turn on the
printer from inside your program. When you DO wish the user to have such
control, you can use another CP/M console function called “Read Console
Buffer.” This call, which we will describe shortly, is the one that comes with a
complete set of editing commands, and is used by many of the CP/M utili-
ties. You’ll hear more about “Read Console Buffer” later.

Beep Program

Let’s do a simple exercise program with the Console Input system call.
This program will cause CP/M to echo everything typed in at the keyboard
onto the screen, accompanied with a little beep that is provided by your con-
sole’s “beep” or “bell” sound.

Bring up DDT and enter this short program.

-a100

0100 mvi c,2 Set up for console output.
0102 mvi e,7 ASCII 7 = bell.

0104 call 5

0107 mvi c,1 Set up for console input.
0109 call 5

010C jmp 100 Loop forever getting key and echoing it.
Save it with:

_go
A>save 1 test3.ddt

Now, run it by typing:
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A>ddt test3.ddt

and
-g100

Try it out. Each time you press a key, the console beeps and the character
is printed on the screen. Neat. But if you try to press control-c to reboot,
nothing happens. Great Scott, we’re caught in a deadly endless loop. .. ;
we’ll have to press reset to escape. But first, while you have your program
running, try a few of these keys and verify what happens on your system. All
should cause a beep.

AC Nothing happens and nothing gets displayed.
AP Same as above.

N Causes a line feed to occur.

AM  Causes a carriage return to occur.

NS Nothing happens (or seems to happen).

NG  Nothing happens.

"H Backspaces the cursor.

What this tells us is that the Console Input function does not respond to all
the normal CP/M control-key conventions. If you wanted it to respond, for
instance, to the control-c key, you would have to write a special part of your
program yourself, to do just that.

Also, you can see that our program has a “bug” in it, in that the only way
we can turn it off is to do a cold boot by resetting the system. This, again, is
less than elegant. Can you think of a way out of this problem? Could you
rewrite the program so that it looks for the control-c and causes the program
to end if it sees one? Yes, Watson, and here’s how to do it!

Take our old code:

0100 mvi c,2 Set up for console output.
0102 mvi e,7 ASCII 7 = bell

0104 call 5

0107 mvi c 1 Set up for console input.
0109 call 5

010C 3mp-4B88  (Replaced with cpi 3.)

Enter this new code:
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-a10C

010C cpi 3 Check if A=3.
010E jnz 100 If not, repeat loop.
0111.e8t.1 Yes, it was a 3, so end.

You can save the program as “test4.ddt”.

What do these new instructions do? The ASCII code for a control—c is 3
(hex), so we now check each character typed in to see if it has a value of 3,
using the cpi instruction as in the previous example. If it does, we go back to
DDT with the “rst 7 instruction. Otherwise, we keep looping.

Run the program from DDT with g100 and see if you can stop the pro-
gram by pressing a control—c.

As an exercise, you could try modifying this program by having the cap-
tured character do something other than end the program. Perhaps it could
cause a warm boot when a control— is typed. The next function call (system
reset) explains how that is done. But first, we need to learn how to execute
programs directly from CP/M.

EXECUTING PROGRAMS FROM CP/M

66

So far we have executed all our programs from DDT by typing g100. This
is fine for short exercises, but many times we want to be able to execute a
program directly from CP/M without calling up DDT at all, simply by typ-
ing the name of the program following the CP/M prompt A>.

In theory, this is simple. We write the program in DDT, then SAVE it as a
COM file, and, then, execute it directly from CP/ M. However, in practice,
there’s a problem, and it’s this: if our program contains a “rst 77 instruction,
and we attempt to execute it directly from CP/M, we’ll probably “crash the
system” (cause error messages followed by a cold boot), because CP/M does
not respond to “rst 77 the same way that DDT does. “rst 7" can be used only
to return to DDT. To return to CP/M, we use another instruction—‘ret”.

The RET Instruction

RET is usually used in connection with the CALL instruction. CALL takes
you from your main program to a subroutine, and RET takes you back again.
Remember how, in the CALL instruction, the address immediately following
the CALL was placed on the stack? Well, the RET instruction takes this
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address off the stack and transfers control back to this address in the main
program.

The CALL instruction

MAIN PROGRAM transfers control to SUBROUTINE
the subroutine.

0200
0100 I
0201
0101
0202
0102
CALL 200 — 0203
0103
0204
0104 02
0205
0105
0206
0106 RET 2o (0]
0207
010s The RET instruction

transfers control
back to the main
program.

Fig. 2-15. The RET instruction.

Example:

ret

RET is ordinarily used to return us to the calling program from a subrou-
tine. Now, the way CP/M is set up, applications programs—that is, programs
we want to execute directly from CP/M—are treated as subroutines by the
CP/M operating system. This makes it easy to leave a program and go back
to CP/M. All we have to do is execute a RET instruction and, presto, we’re
back in the monitor with the A> prompt.

However, if we attempt to execute a program directly in CP/M that doesn’t
use RET to return to the monitor, then we can be in big trouble. Specifically,
if we attempt to execute a program in CP/M that ends with RST 7, disaster
will probably result.

So, before we can use any of the programs we’ve written so far in a direct
CP/M mode, we need to go through them and change any “rst 77 instruc-
tions we find to “ret” instructions. Let’s do that on the last example, which
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beeped when we typed in characters, but which went back to DDT when we
typed a control—c. Simply change the last instruction in the program, rst 7, to
ret. Here’s the resulting code:

0100 mvi c,2 Set up for console output.
0102 mvi e,7  ASCII 7 = bell.

0104 call 5

0107 mvi c,1 Set up for console input.
0109 call 5

010C cpi 3 Check if A-register = 3.
010E jnz 100 If not, repeat loop.
0111 ret Yes, it was a 3, so end.

Go back to CP/M and save this program as a .COM file by typing:
A>save 1 testé.com

Now you can execute the program directly from CP/M, simply by typing its
name:

A>testé

Type in some stuff. Listen to the beeps. What happens when you type a
control—c? You’re back in CP/M again! This is just how programs are exe-
cuted in the big leagues.

SYSTEM RESET—A WARM BOOT

aeen
|

SYSTEM RESET FUNCTION 0 (dec) = 0 (hex) i

Enter with: REGC =0 é
3

The System Reset system call is used for causing a warm boot from your
program. The warm boot, as you recall, causes the CCP part of the CP/M
operating system to be reloaded. Also, several locations in FDOS (BDOS
plus BIOS) are reset to their initial values.

The reason that you need to know how to do a warm boot is simple. Some-
times you will need as much memory space in the TPA as you can get. As you
know, BIOS, BDOS, and CCP take up room in the top of RAM. It turns out
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that you can remove the entire CCP from RAM and still use all of the system
calls, provided you don’t wipe out FDOS. When you want to return to
CP/M, you do a “System Reset” and the CCP will be reloaded and FDOS
reinitialized. System reset works just as if you pressed control-c¢ from the
keyboard. You'll hear the disk click as the CCP is read off the disk into
memory.

Here’s a little program that will cause a warm boot (system reset). But,
look out! You can’t test it from DDT because it will wipe itself out in the
process of resetting the system, thus, resulting in error messages and trouble!

-a100

0100 mvi ¢,0 Set up for system reset.
0102 call 5 Call BDOS.

0105 ret Return to CP/M.

Enter the program from DDT, exit DDT with a g0 (which also causes a
warm boot and replaces DDT with the CCP), and do a:

A>save 1 test5.com
Now, you can execute the program directly from CP/M:

A>test5 Test the program.
A> Hear disk click, new prompt.

Now you know how to make your program go back and reinitialize CP/M
whenever you want. That means that you can run programs that use the
memory space usually occupied by the CCP and can be assured that you can
reinitialize the system later.

SO LONG, CHAPTER 2, IT’S BEEN GOOD TO KNOW YOU

By this time, you know more about CP/M and 8080 programming than
you ever expected to. You've learned the Console Out, Get Console Status,
Console Input, and System Reset systems calls. And, you've learned a whole
batch of 8080 instructions: MVI, CALL, RST, JMP, ORA, JZ, PUSH, POP,
INR, MOV, CPI, JNZ, and RET.
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That’s enough 8080 instructions to write some pretty complicated code.
And, since you now know how to do input and output to your video screen
and keyboard, there’s really no limit to the programs you can write. However,
there are other, more powerful, systems calls that will give you greater flexi-
bility and will simplify your programming. Wwe’ll cover them in the next
chapter, so hang onto your hats!



CHAPTER 3

Getting in Deeper
Advanced Console System Calls

In this chapter, we’ll look at some console input/output system calls that
operate on whole groups of characters, rather than on one character at a time
as did the system calls in the last chapter. Then, we’ll introduce you to an
unusual display program which will act as a review of what you’ve learned so

B ~
"

IF YOU DON'T GET
ME THE BEST
COMPUTER PAPER
ON THE MARKET---
You'LL NEVER SEE

THOSE FIVE 7
N cHapTERs AcaN ! )
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far. We’ll describe “Direct Console 170,” which lets you interact much more
directly with the screen and the keyboard than have our previous system
calls. Finally, to wrap up our study of nondisk system calls, we'll cover a
number of functions which deal with nonstandard 170 equipment.

PRINT STRING

72

PRINT STRING FUNCTION 9 (dec) = 9 (hex)

Enter with: REG C = 9 hex
REGs DE = starting address of string
Comments: String must end in a “‘$” (24 hex)

Here’s the way to send complete words or even sentences to the screen
from inside CP/M. In the programming world, as you know, a series of char-
acters like a word or a sentence is called a “string” (it’s just a collection of
strung-out characters). In CP/M, a string may goeth and a string may
cometh, meaning that we can send strings to the screen and we can accept
strings from the keyboard. The Print String function is for making your
string goeth to the console display screen. It’s an advanced version of the
Console Out system call in the the last chapter, which only sent one character
to the screen at a time. Print String is sort of like the PRINT statement in
BASIC, except it is a bit more indirect to use, as you will see.

Print String expects that you have stored the string you want to send to the
screen in a continuous area of memory as a sequence of ASCII bytes. (We'll
show you how to do this presently.) You must end the string with hex 24, the
ASCII value for the “$” symbol. Then, to print the string, you put the
address where the string starts in the DE register-pair, put a 9 in your C REG
and do a BONSAI TO BDOS (a very excited call 5).

Of course, manually typing in and looking up the ASCII equivalents for all
of the characters in the message that you want to display can certainly be a
tedious process. Be patient! In the next chapter, we are going to show you
how to use ASM, the CP/M assembler, to simplify this process. When using
an assembler (as opposed to a miniassembler like that in DDT), you can
simply enter the letters for the string into the source listing directly from the
keyboard. So take heart, we'll eventually learn to do Print String the easy
way. In the meantime, using DDT will be a bit tedious, but it will give us a
better idea of what’s really going on.
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Typing in a Message With DDT

First use the DDT Set command “s” to put the hex values for the letters
“A B C D E” into memory starting at location 010A hex. The set command
first displays the current contents of the memory location that you are
about to type in to. In this case, these numbers are of no interest to us. Each
time you type a two-digit (one byte) value and hit the carriage return, your
number is stored in the memory location shown, overwriting the old value.

These are the old values.

' You type numbers in this column.
-s10a I

010A 5 DDT displays 010A 53 and you typed 41 (hit return after every value
0108B 49 42 you type in).

010C 47 43

010D 48 44

010E 54 45

010F 20 24 «<——— This is the $ to end the string.
0110 28 . «——— Type a period to end the Set command.

Now you can check that you have entered the string correctly, using the D
command:

-d10a,10f
010A 41 42 43 44 45 24 ABCDE$

As you can see, the numbers are just as we entered them, with the ASCII
letters that they represent shown in the right-hand display column. Now we
are ready to enter the program that will actually print the string:

-a100

0100 mvi ¢,9 Set up for Print String.

0102 Lxi d,10a We start our string at 10A hex.
0105 call 5 Our famous BDOS call.
0108 rst 7 Return to DDT.

Save it as test5.ddt.
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The LXI Instruction

As you recall from the last chapter, the mvi instruction took a one-byte
constant and placed it into the register indicated in the instruction. LXI is
similar, except that it puts a two-byte constant into the indicated register-
pair. This two-byte constant is stored in the program in the two bytes imme-
diately following the Ixi instruction in memory.

As in the MVI instruction, the “I” in LXI means that the constant to be
stored immediately follows the instruction in memory (as shown in the dia-
gram of Fig. 3-1). The “X” means that the instruction operates on a register
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Before LXI D,010A is executed:
Section of memory
containing program.

0100
DE register 0101
I ’ 0102
0103
0A
0104
01
After LXI D,010A is excuted:
0100
0101
DE register
0102
1
010A
0103 LXI D,010A
0A
0104
The constant in the instruction l 01
is moved into the DE register when
the instruction is executed.

Fig. 3-1. The LXI instruction.
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pair and not on a single 8-bit register. These are both conventions which
make it slightly easier to remember the mnemonics (abbreviations) for the
instructions.

Don’t forget when using LXI that you need to type in four hexadecimal
digits, not two as with MVI.

Examples

Ixi d,1234
Ixi h,01ff
Ixi b,bf00

Now try executing the “test5.ddt” program:

-g100
ABCDE*0108 Worked perfectly! ABCDE got printed.

There is almost no limit to the size of the string you can print. To see this,
use the “fill” command in DDT to put a large number of the same ASCII
letter after the ABCDE string. To use “fill,” type f, followed by the address
where you want to start filling, the address where you want to stop filling,
and the constant you want to fill in. For instance,

-f10£,400,41

will fill memory from 10f to 400 with ASCII “A’s”. Don’t forget to put the 24
hex at the end of the string, using the “s” function.

-s401
401 FD 24 This is the ASCII for “$”.
402 DO . Period used to terminate “s”.

Now try your program on this new string. The screen will simply fill with
the letter “A” continually until it reaches the end. DON'T TURN ON
YOUR PRINTER. There are no carriage returns at the end of every 80th
character of the string, so the printhead may go to the right side of the car-
riage and bang itself to death there.
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READ CONSOLE BUFFER
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READ CONSOLE BUFFER  FUNCTION 10 (dec) = OA (hex)

Enter with: REGC = 0A hex
REG DE Buffer address
DE+0 = Maximum number of characters

On return: DE+1 = Number of characters typed
DE + 2, etc. = Typed characters in buffer

Comments: Max length string = 255 characters
Responds to all CP/M line editing commands

Read Console Buffer is one of CP/ M’s most useful functions. Its purpose
is to accept a string of characters typed in at the console device (usually the
keyboard) and put them in a “buffer” area in memory so your program can
use them. Read Console Buffer is similar to the Console Input function we
covered earlier in that it accepts information typed at the keyboard. How-
ever, the similarity stops there, for the read buffer function allows the user to
type a complete string of up to 255 characters. It’s also a little more compli-
cated to set up than Console Input. We'll explain how to do it, and what
“DE+ 17 and similar notations mean, in a minute.

CP/M’s Built-in Editing Commands

One feature that makes Read Console Buffer especially useful is that it
responds to the set of CP/M control-character commands and, thus, per-
mits editing while you’re typing in the string. Perhaps the most important
of these commands is control-c. If this is typed at the beginning of the
string, CP/M does a warm boot. Thus, by using Read Console Buffer, you
allow your program user the opportunity to reboot the program during
input. This may be desirable or not, depending on the type of program
being used. Read Console Buffer offers a host of other useful line editing
features. The commands available to the lucky user of this function are
(press CONTROL with all these letters):

H backspaces one character position.
X backspaces to the beginning of the line and erases all characters

(start over, erase).
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moves cursor down to beginning of next line and IGNORES previ-

ous typed line (start over, still view old line).

retypes the current line after the new line. Useful when you over-

used the DEL key and can’t figure out what the line means.

causes “physical end of line,” meaning the cursor returns to the left
margin, one line down.

is a line-feed character, and terminates input line (as if a carriage

return was typed).

M is a carriage return, terminates input line.

DEL removes and echos the last character typed. An old-fashioned way
to remove characters, left over from the old days of hardcopy-only
teletypewriter machines.

C does a warm boot.

= s C

G

We don’t want to go too far off on a tangent at this point by getting too
involved in these editing features. You can practice them on the string that
we will be using in the next exercise. For now, here is a short way to remem-
ber the most important commands:

Hard left one space, no Hurt.
X out the whole line, start over.
yUck, start over next line.
Retype line, down one line.
End this line, go down a line.

X

You can copy this out and stick it up near your computer, or on the fore-
head of a passing co-worker.

How to Set Up Read Console Buffer

The Read Console Buffer system call “reads” a line of edited console input
into a buffer addressed by the contents of register-pair DE. You must set up
the buffer address in the DE-register before making the call. The LXI
instruction is used to do this, just as in the Print String function. In addition,
you must set up a number in the beginning of the buffer which represents the
maximum number of characters you want to accept. If you put a hex 20, for
example, in the buffer, then as soon as the user types more than 32 characters
(decimal), the function will terminate. We call this “ending by OVER-
FLOW.” The user can also terminate the string by typing a RETURN (or a
control-J or -M).
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DE +0 +1 F0tIEg: 344 +n—-1 +n

7

: 2 | 7
\\_:—Characters typed J\-Junk j

This is the number of characters typed.

This is the maximum characters allowed.

Fig. 3-2. Buffer address in the DE register.

The buffer that we set up looks like the diagram in Fig. 3-2.

This is what it means. “DE+0" is simply shorthand for the address sent to
the function in the DE-register. DE+ 1 is the next address after this, and so
on. Thus, if you put 400 in the DE-register when you call this function,
DE+ 1 will be at 401, DE+2 will be at 402, and so on up to DE+n, which
will depend on the length of your message.

The “mx” indicates the maximum number of characters that the function
will allow to be typed into the buffer, a number from 1 to FF hex (1 to 255
decimal). Your program must put this value in the first position in the buffer.
The “nc” is the number of characters actually typed by the user and this is set
by FDOS when the function returns to your program. This number is useful
for determining how long the input string actually is. It is found at DE+ 1.
Following “nc” are the actual characters read from the keyboard. If the
number of characters actually typed by the user is less than the number set
by mx (nc < mx), then the remaining positions in the buffer are whatever
they were before the function was called and have no meaning. These are
marked as ?? in Fig. 3-2.

Note that some control characters typed into the print buffer will get
stored in their proper ASCII codes. Tabs, for example, appear as 09 hex. A
control—c in the middle of a line will appear as a 03 hex.

Our Read Console Buffer example is really quite simple. Let’s assume that
we're going to start our buffer at 200 hex. Type the following in DDT:

-a100

0100 mvi a,20 Set max characters to 32 (dec)

0102 sta 200 and put in first buffer position.
0105 mvi c,a Set up REG C for Read Console Buffer.
0107 Lxi d,200 Load DE with location of buffer start.
010A call 5 Finally, call BDOS.

010D rst 7 Back to DDT.
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You can store this program as “test6.ddt”.
As you can see, there’s a new instruction listed: STA. Let’s see what it’s all
about.

The STA Instruction

This instruction will take the 8-bit value in the A-register and store it any-
place in memory. Where this value will be stored is determined by the
address in the operand field of the instruction. For instance:

sta 2000

will take the 8-bit value in the A-register, which might be anything from 00 to
FF, and store it in memory location 2000.

In DDT, this address is represented by a four-digit hexadecimal number.
In the next chapter, when you learn how to use the assembler, you will find
that this address can also be represented by a name.

Notice the difference between this instruction and others that we’ve
learned about earlier. For instance, MOV B,A takes an 8-bit value from the
A-register and stores it, not in memory as STA does, but in a register: the B-
register. An instruction like MVI A,7F is different from STA in two ways.
First, it’s loading an 8-bit value from memory into the A-register, not storing
it from the A-register into memory as STA does. Second, MVI A,7F refers to
a constant at a place in memory immediately following the MVI instruction,
while STA refers to a location in memory that can be located far away from
the STA instruction itself. For this reason, STA uses an address in the oper-
and field, while MVI uses the actual 8-bit value.

Examples

sta 2010
sta 0100
sta bf00

Our example program first puts a 20 (hex) into the A-register and stores
it at the beginning of our buffer at 200 (hex). This is “mx,” the maximum
number of characters. The program then calls Read Console Buffer, using
the address 200 as the start of the buffer. It then waits for you to type
something in.
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Before STA 2011 is executed:

A-register

After STA 2011 is executed:

A-register

[

et

Fig. 3-3. The STA instruction.
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-g100 <———— Start the program.
Now is the time. «——— Type this in.
*010D <«———— This will actually overwrite the first part of the input.

There is a small glitch in that the “*010D”, which DDT prints when the
program is over, overwrites part of the line that we typed in. This would be
easy to fix, as we’ll see in the next example, but for the time being we’ll live
with it.

Now you can dump (display) the buffer at 200 (hex) to see if what you
were supposed to put there has actually arrived.

-d200,21f

0200 20 10 4E 6F 77 20 69 73 20 74 68 65 20 74 69 6D .Now is the tim
B 65 2E CD 05 00 F5 79 CD 8F 06 F1 C9 FE 20 C8 FE e..... Yensonn s

There it is! The 20 at location 200 is the maximum number of characters
“mx,” which you put there with the STA instruction. The 10 in location 201
is the actual number of characters typed in (10 hex is 16 decimal). The rest of
the buffer from 212 on is still filled with whatever junk was in it before.

Let’s see what happens if we type in more characters than are specified by

(13 2

mx.
-g100

Now is the time for all good men, <« Type this in, keep typing.
*010D t—— At this point, the function took
= over and returned us to DDT.

Dump the buffer again and there’s our input, safely stored away. This time
the number of characters that were actually typed in is the same as the maxi-
mum “mx.”

-d200,22f

0200 20 20 4E 6F 77 20 69 73 20 74 68 65 20 74 69 6D Now is the tim
0210 65 20 66 6F 72 20 61 6C 6C 20 67 6F 6F 64 20 6D e for all good m
0220 65 6E FE 2C C8 FE OD €8 FE 7F CA 24 05 C9 OE OD en.,cuuu.c.. $icse

There it is again, just as you typed it. Later we’ll see how a program can
make use of this function to accomplish all sorts of useful and exciting things.
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Let’s put together the two string-handling system calls that you’ve just
learned—Print String and Read Console Buffer—into a single short program.

-a100

0100 mvi a,20 Put max characters at start of buffer.
0102 sta 1fe

0105 mvi c,0a Call Read Console Buffer.

0107 Lxi d,1fe

010A call 5

010D mvi c,2 Use Console Out to print linefeed.
010F mvi e,0Oa

Tyl Sl 3

0114 mvi c,9 Print String.

0116 Lxi d,200

0119 call 5

0%1C “psti? Back to DDT.

011D

You can save this as “test7.ddt”.

This program will accept the input that you type, store it in a buffer, and
then print it out on the screen, echoing what you typed in. There are several
things to notice. First, we had to add a section to the program to print a
linefeed. This keeps the Print String function from printing right over the
string that you typed in. To do this, we use the Console Output function to
print a 0A ASCII character, which is the linefeed.

The next thing to notice is that we tell the Read Console Buffer and the
Print String functions different addresses for the start of the buffer. Read
Console Buffer is told to start at 1FE, while Print String is told to start at
200. This is because Read Console Buffer needs two extra bytes at the start of
the buffer to enter the maximum number of characters “mx” and the number
of characters actually typed “nc.” These will go in 1FE and 1FF, respectively,
so that the actual typed characters will start at 200.

Try typing in some input. But, BE CAREFUL! Since Print String requires
that the string it prints be terminated with a dollar-sign character, you must
type a “‘$” at the end of your string. Otherwise, as we noted earlier, Print String
won’t know when to stop, and may end up printing a lot of weird characters
that will do strange things to your terminal. For this reason, you must also
make sure you don’t type any more than 32 decimal (20 hex) characters. If
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you do, Read Console Buffer will terminate itself before you have time to
type the dollar-sign character.

Don’t forget the $.
-g100

Now is the time.$ <——— You type this.
Now is the time.*011C «<——— Program types this.

NAME DISPLAY PROGRAM

The next program also makes use of the Read Console Buffer and Print
String functions. It’s a little more ambitious—which is to say longer and more
complicated—and is really included just to give you something a little frivo-
lous and amusing to play with. So don’t worry if every nuance of the pro-
gram’s operation isn’t clear to you. However, in addition to Print String and
Read Console Buffer, it also makes use of the Console Output and Get Con-
sole Status system calls and it uses most of the 8080 instructions we’ve cov-
ered so far. So it can serve as a review of what you’ve learned up to this point.
It also introduces the loop-within-a-loop, a concept that is good to get used
to, as we’ll be seeing it again later.

What exactly does the program do? Well, that’s a little hard to explain.
You start off by typing your name and the program then uses your name to
make some rather surprising patterns on the video screen. One picture, they
say, is worth a thousand words, so why not type in the program (very care-
fully) and see what happens?

-a100

0100 mvi a,20 Put max characters at start of buffer.
0102 sta o1fe

0105 mvi c,0a Set up to get input string,
oy ixd d,1fe store it at 1fe.

010A call 5 Call “‘Read Console Buffer.”’
010D mvi b,30 Set initial B-register value to 30
010F push b and save on stack.

0110 pop b Get B from stack,

0111  inr b increment it,

0112 mov c,b store it in C,

0113 mov a,b and in A,

0114 push b and put it back on stack.
8115: - epi 50 Is the B-register = 50 yet?
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0147 - jz2 100 Yes, so go reset it.

011A mvi £, 8 Set up to print a space,

011C  mvi e,20 (20 hex is a space),

011k - call=;3 call “Console Output.”
0121 pop b Get BC, to decrement C.
0122 dcr c Decrement C,

0123 push b save BC.

0124 jnz 115 If C-register not 0, go print space.
0127 mvi . Print the string;

0129 Lxi d,200 starts 2 bytes past 1fe.
012C call 5 Call ““Print String.”’

012F mvi L Keyboard character typed?
0131 call 5 Call ““Get Console Status.”
0134 ora a Is A-register still = 0?
0335:... i3 110 Yes, so do another line.
0138 rst 7 Back to DDT.

You can save this program as “namedisp.ddt”. Be careful while typing in
the code. One disadvantage of using the microassembler in DDT is that if
you make a mistake in your input, sometimes it’s not easy to go back and
change it. This is because different instructions have different lengths, and if
you put a two-byte instruction in a place where you meant to put a three-byte
instruction, and then you want to go back and try to change it to the 3-byter,
it won’t fit. Using the assembler will eliminate this problem, as we will see in
the next chapter.

Here’s how this program works. When you first start it, you type in your
name. As in the last example, BE CAREFUL! You must terminate your name
with a dollar-sign character!

-g100 <«———— Start the program.
Alfred E. Newman$ -<———— Type your name (press return).

<«—— Watch what happens!

Unfortunately, we can’t reproduce in this book a picture showing the
motion that the program displays. However, we can describe how the pro-
gram works. After you've typed in your name, the program prints a string of
spaces, then your name, then a string of spaces (which is one space longer
than the first string of spaces), then your name, then a string of spaces which
is two spaces longer than the first one, taen your name, and so on. The result
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is a pattern of shifting parabolas which seems far too complicated to have
come from such a simple program.

The constants in the program, 30 hex and 50 hex, are set up to work on an
80-column screen. If your screen is a different size, the program may not
produce the desired results. Try changing the 30 in line 10D and the 50 in line
115 to different values. Experiment a little.

Two registers are used to hold the variables that the program needs to
remember what it’s doing. The B-register holds the number of spaces to be
printed on the current line. This number starts at 30 hex and goes up to 50
hex. (These values were determined by trial and error.) The C-register counts
how many of these spaces have already been printed. That is, if the number
in the B-register is 40, then the C-register will start off at 40 and count down-
ward to O, printing a space each time. When all these spaces have been
printed, the program will go back, increment B by one, and start over print-
ing the new number of spaces.

There’s one new instruction used in this program; it’s called DCR.

The DCR Instruction

This instruction is the opposite of the INR instruction that you learned
about earlier. Where INR incremented (added 1 to) the one-byte register
specified in the instruction, DCR decrements (subtracts 1 from) the register.
Any 8-bit register (A, B, C, D, E, H, or L) may be used in the operand field.

Note that this instruction also sets the appropriate flags. That is, if decre-
menting the register causes it to become 0, the zero flag will be set; otherwise,
it will be cleared. (Some other flags may be set as well.)

Before DCR C Is Executed:

C-register

After DCR C Is Executed:

Fig. 3-4. The DCR instruction.

C-register
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Examples:

dcr b
dcr h

Fig. 3-5 is a flowchart th
locations where the different parts o
By studying the flowchart along wit
to understand how the program works. The heart

Get input string
and store in buffer.

Y

Set B-register = 30.

Y

Increment B-register.

No

Y

Transfer B-register
to C-register.

Is B-register = 50?

Print space.
Decrement C-register.

|s C-register = 0?

Print string from buffer.

Keyboard character
typed?

Exit to DDT.

at details the operation of the program. The memory
f the code occur are shown on the side.

h the program listing, you should begin
of the program is the print-

(100 to 107)

(10D)

(10F to 111)

(112)

(115)

(11A to 122)

(124)

(127 to 12C)

(12F to 135)

(138)

Fig. 3-5. Flowchart for the DCR instruction.
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ing of a string of spaces, in lines 11A to 124. Register C is set at the beginning
of this section to the number of spaces to be printed and is decremented each
time until it is zero. Then, the user’s name is printed and the program checks
to see if a keyboard character was typed to halt the program. After this, the
program returns to 10D to increment the B-register, which started off with 30
and will end at 50. The B-register holds the value that is given to the C-
register in line 112 so that the correct number of spaces will be printed each
time through.

Again, don’t worry if every detail isn’t crystal clear. The point really is just
to understand how a number of systems calls can work together in a single
program.

DIRECT CONSOLE 1/0

DIRECT CONSOLE 1/0 FUNCTION 6 (dec) = 6 (hex)

Enter with: REG C = 06 hex
REG E = FF hex on input
REG E = ASCII character on output

On return: REG A = ASCII character, or 00 (no character) on input.

Comments: A dual-purpose function call, for input and output.
No echo, bypasses all CP/M line-editing commands.

Direct Console 170 provides the serious programmer with a means of get-
ting characters from the keyboard and displaying characters on the screen
without echo and without the previously described built-in control-character
functions, which it does not acknowledge. This is useful in those special cir-
cumstances where you want to do something nonstandard with the user’s
input or the screen output. For instance, you might be writing a word-
processing program, and you might want to use control-c to cause the cursor
to move to another part of the document, rather than causing a warm boot as
it normally does. Or, you might want to define a special function for control-
s, instead of having it halt the display.

The use of Direct Console 1/0 lets you define control characters as you
wish and, thus, gives you a great deal of flexibility and control over your
input and output. However, you sacrifice all the capabilities that CP/M
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offers for free, such as, freeze the display, warm boot, retype line, backspace,
printer on/off, etc. If you want these functions in Direct Console I/0, you
must build them into your program yourself.

Since using the control characters in a nonstandard way can lead to confu-
sion if you’re not careful, the makers of CP/M (Digital Research, Inc.) rec-
ommend that you not use Direct Console I/0. Of course, many programmers
use it anyway.

Direct Console 170 is unusual in another way. It’s actually two functions,
accessed with the same system call.

On input, put ff (hex) into the E-register. The function will immediately
return with a 0 in the A-register, and will continue to return O until some-
thing is typed on the keyboard. Then, it will return the ASCII value of the
character typed, but nothing will appear on the screen. This function is
unlike both the Console Input and Read Console Buffer system calls in that
it does not wait until the user types something before it returns to the calling
program. (In this way, it’s like the INKEYS$ function in some versions of
BASIC.) Thus, you must continually check to see if the A-register is zero, and
do the call again if it is.

On output, put the ASCII character you want to send to the screen into the
E-register. The function will print it, without checking to see if it is a control
character.
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A Short Example

Here’s a very short DDT program demonstrating how the calls are made to
both the input and output functions of Direct Console I/0. All this program
does is echo on the screen whatever is typed on the keyboard.

-a100

0100 mvi c, 6 Get keyboard character;
0102 mvi e, ff ff indicates input.

0104 call 5

0107 ora a Is A-register = 0?

0108 jz 100 Yes, go try again.
010B mvi ¢c,6 Got character, so print it;
010D mov e,a put it in E-register.
UI0E - call O

0111 jmp 100 Go wait for next character.

Save the program as “test8.ddt” and then try it out. Notice how none of
the editing control keys has any effect. Also, the backspace doesn’t work.
And, most inconvenient of all, there is no way to stop the program since
control—c is inoperative. If you needed to use Direct Console 170, you’d have
to build all these features into your pro