
1

Adam News Network

EOS Programmer's Manual

Here it is! The EOS Programmer's Manual by Guy Cousineau. It's a very good document, and I

hope that you find it useful.

This document has been reprinted with the permission of the ADAM News Network. This

document is for personal use only. Please note that a lot of time and effort has been put into this

manual by Guy Cousineau (the original author), and by myself (OCR, formatting, and error

checking). If you intend to use this manual for commercial use, please ask permission first!

2

ELEMENTARY OPERATING SYSTEM PROGRAMMER'S GUIDE

Contents
Adam News Network .. 1

EOS Programmer's Manual .. 1

FOREWORD ... 3

ACKNOWLEDGEMENTS ... 5

OVERVIEW ... 6

MACHINE LANGUAGE PROGRAMMING .. 7

EOS STRUCTURE .. 7

MEMORY USAGE ... 9

EOS ROUTINES .. 10

EXECUTIVE CALLS .. 11

CONSOLE OUTPUT .. 21

PRINTER INTERFACE .. 25

KEYBOARD INTERFACE .. 36

FILE OPERATIONS .. 41

FILE OPERATIONS FILE I/O ... 52

DEVICE OPERATIONS ... 66

DEVICE OPERATIONS READ/WRITE BLOCK ... 74

VIDEO RAM MANAGEMENT.. 83

GAME CONTROLLERS .. 100

SOUND ROUTINES ... 103

SUBROUTINES ... 109

EOS DATA TABLES ... 114

EOS JUMP TABLE ... 115

ERROR CODES ... 117

MEMORY BANKS ... 118

DEVICE CONTROL BLOCK STRUCTURE .. 119

FILE CONTROL BLOCK STRUCTURE .. 120

FILE MANAGER STRUCTURE .. 121

SAMPLE PROGRAM ... 122

3

SAMPLE PROGRAM HEX CODE FIRST BLOCK .. 154

SAMPLE PROGRAM HEX CODE SECOND BLOCK .. 156

SAMPLE PROGRAM HEX CODE THIRD BLOCK ... 158

EOS DIRECTORY STRUCTURE ... 159

Interleave Chart .. 161

160K Disk Interleave Example ... 161

ASCII CHART .. 163

COLOR PALETTE .. 165

MEMORY BANK SWITCHES ... 166

FOREWORD

The EOS (Elementary Operating System), is one of three operating systems available to the ADAM programmer.

The other two, (CP/M (now replaced by the superior and user friendly T-DOS), and 057), are best suited for "work

horse" or practical programs, and game graphics, respectively.

The EOS, the subject of this work, is a sort of bridge between the extremes of the "work horse" T-DOS, and the

graphics game 0S7 operating systems. Thus the three operating systems complement one another.

Inasmuch as it is in the best interest of ADAM owners to have as many good programs for the ADAM as possible,

(thus extending its usefulness, and thereby its practical lifetime), the ADAM News Network, (ANN), felt that it was

desirable to publish a work that would help all interested parties write programs with the greatest facility that could

be made available to them. ANN wants to encourage the ADAM owner to explore the field of Machine Language

(ML) programming, and to encourage the development of ML programs. This work is designed to help ADAM

owners use the EOS routines as correctly, and as effectively as possible.

Thus, through the generous work of Guy Cousineau, the author, this work is presented to help all who would, begin

programming efforts to the benefit of us all.

The EOS, of course, must be addressed via ML instructions. There is, on the other hand, much to be said of the

advantages of programming in the BASIC language. It is certainly easier to understand initially. But the direct use of

ML programming instructions, though more time consuming perhaps, allows the writer to have program

compactness, flexibility, and speed of execution, not possible by the use of any other programming language.

Furthermore, some of the hardware specific functions on the ADAM can only be addressed by ML routines.

ANN also wishes to convey to all readers. and interested parties the understanding that the publication of this work

is not the culmination of an EGO TRIP on the part of ANN or on the part of the author. If there are things found

herein that are unclear, confuse, or clutter the mind, the reader is encouraged to write to, or otherwise get in touch

with the ADAM community. Call the FIDO NET ADAM conference, any ADAM BBS, Compuserve, and direct

whatever question you may have to the author or to any other ADAMite who might be in a position to answer such

queries or implement your suggestions. No one will be offended. In fact, the contrary is the case:

ANN and its members encourage such dialogue.

4

Whether or not other works outlining the best uses of the 0S7 and the T-DOS operating system will. be published in

the future will depend upon the response to this publication. ANN is dedicated to the promotion of anything that will

help ADAM users. If a need is shown for such works, they will surely be forthcoming.

Having been requested to write this "INTRODUCTION", I would like to say that we are indeed fortunate to have

Guy Cousineau as the author. I know Guy, and have worked with him on projects; I have always found him to be

very personable and understanding. I personally have had to go back for repeated explanations of some items which

he has written in the past, and found that he is not an AUTHORITY but a TEACHER. He has patience beyond

reason, and tries very hard to help whenever he can. He is indeed an expert, but he is not an AUTHORITY who

cannot bear to have his writings and. ideas questioned.

In his work, Guy does an excellent job of making the EOS routines understood. I have an original EOS manual, and

have noticed that there are many invalid assumptions made there relative to the level of understanding of the reader.

Guy has clarified it greatly where things were nebulous.

We are fortunate indeed!

Mel Ostler

[ADDRESS REMOVED]

5

ACKNOWLEDGEMENTS

Before going any further, I feel obliged to. say thank you to all those who knowingly or not have made this work

possible. This includes programmers from which I have picked up information or programming tricks, people who

have encouraged me in my ML efforts, people who have published information on the ADAM operating system, and

others who have generally been a support in my efforts on behalf of ADAM.

At the risk of forgetting some of the major contributors, I will list a few sources. If I leave any one out, it is

definitely not intentional: consider yourself honourably mentioned in the above paragraph.

 Tony Morehen for getting me. involved in ML

 Peter and Ben Hinkle for their Hacker's Guides

 Barry Wilson for starting up ANN

 Mel Ostler for his books on ADAM and his introduction

 Bruce Walters for his input on the sound routines

 James Walters for his help with sound and interrupts

 Ian Cottrell (non-ADAMite) who has been a ML mentor

 Ron Mitchell for resurrecting the OTTAWA user's group

 ANN as a whole for reviving my interest in ADAM

 ADAMITES for encouragement by buying my software and

asking all those "not so silly" questions

6

OVERVIEW

What is the EOS? It is the Elementary Operating System of the ADAM, and not the Extended Operating System, as

some people call it. It consists of a series of routines which help the programmer interface with the hardware

attached to the ADAM. The EOS takes up the top 8K of memory and uses an additional 3K of buffers just below it.

This 8K section has routines to address the keyboard, printer, screen, and storage devices. Each routine has a

specific calling convention and may return information about the status of the operation or of the operating system

itself.

The EOS is used by applications programs such as SmartBasic, AdamCalc, SmartFiler, etc. Other programs such as

FileManager and other AJM software products (this is the only plug you will see in this manual) make use of the

EOS to handle its elementary functions.

This manual talks a bit about the benefits of machine language programming, the EOS structure, and memory

configuration. The greater part of the manual, however is devoted to the explanation of EOS routines. Not all

routines will be covered. Some of the incomplete or non-implemented routines will be skipped so not to confuse the

reader. It is intended as a reference tool for the machine language programmer, whether beginner or advanced. The

first section deals with executive calls. As most application programs do not require these, it is recommended to skip

over this section and come back to it later. Otherwise, you might try to absorb a lot of technical information which is

not required. It has been placed first since it is logical in the sequence of operation.

Considering that Assemblers usually generate HEXADECIMAL codes, all addresses quoted in this manual will be

in hexadecimal format only. This manual does not propose to explain Z-80 programming or the use of the Op-

Codes. Someone with a knowledge of Z-80 programming will be able to use the manual to effectively access the

operating system. In addition, some of the examples and complete programs/routines supplied in this manual may

help the programmer pick up tricks about Z-80 programming or the EOS itself.

Please address any technical questions to:

Guy Cousineau

[ADDRESS REMOVED]

7

MACHINE LANGUAGE PROGRAMMING

Why use machine language programming? My three favourite reasons are SPEED, SIZE, and CONTROL.

By skipping superfluous steps and compressing operations into the most effective structure, you can achieve

processing speed which has no match in any language, whether it be BASIC, Fortran, C, Pascal, etc. Think of the

fastest BASIC routine you have seen to sort a series of strings. Then look at the speed of ADAMCALC's sort

feature. The difference is amazing.

The programmer can effectively manipulate routines and common subroutines into a package that occupies less

space than any other language. While some powerful BASIC programs may be quite short, consider that they have

27K of overhead: the BASIC itself! A Self-contained Machine language program can be written using only the EOS

to handle console and file I/O. I have seen some self-contained machine language programs which take less than 1K

and perform several functions.

Control is another key aspect of machine language programming. There is no need to assume that a particular

SYSTEM routine (like BASIC's FOR, INT, etc.) will perform as they should. The programmer writes all his own

support routines which perform the operation in the manner that suits the programmer's purpose. It is a bit more

demanding but the outcome is usually a very efficient and compact program.

Bear in mind that when working with any language, the computer will ALWAYS do what you tell it to do; this is

not always the same as what you intend it to do. It is much easier to throw the computer into a death spin when

writing in machine language: you don't have SmartBasic checking your syntax and reporting other errors.

EOS STRUCTURE

The EOS uses a jump table to gain access to its functions. A jump table is a series of standard entry points which

then pass control over to the routine that actually does the work The advantage of a jump table is that revisions to

the operating system do not affect the addresses that the programmer uses to access the system's functions. The EOS

routines can be subdivided into 9 categories, Each is composed of several routines to perform a specific series of

tasks:

 Executive Calls

These are the high level operations such as startup, device scanning, initialization, etc. Most of these

routines are used on a cold boot to get the computer in running order. Additionally, self booting software

will make use of some of these routines to set up the computer according to the programmer's requirements.

 Console (Screen) Output

These routines take care of printing characters on the screen. They make use of the Video Ram routines

outlined below.

 Printer Interface

These routines take care of printing characters on the ADAM printer. Although parallel printer interfaces

are available, the EOS had made no provision for this feature.

8

 Keyboard Interface

These routines take care of fetching characters from the keyboard.

 File Operations

These routines take care of disk/tape input output at the file level. Files can be created, opened, read,

written to, closed, deleted, etc. in a fashion equivalent to the same commands in SmartBasic.

 Device Operations

These are the routines which interact directly with the devices attached to the ADAM. They include the

keyboard, printer, disk drives and tape drives. The Video Ram is not considered a device by the EOS.

 Video Ram Management

These routines handle the movement of information (characters, sprites, shapes, colour, graphics, etc.) to

and from video memory. It is these routines which actually put something on the screen.

 Game Controllers

Since the joysticks are not devices, these routines handle the reading and decoding of information from the

joysticks.

 Sound Routines

The EOS has complex routines which are used by some software (like the arcade games) to generate

elaborate sound effects.

9

MEMORY USAGE

FROM TO CONTENT

D390 D3FF File Control Blocks

D400 DFFF3 1K blocks used for directory and file I/O

E000 ElF5 Video Ram routines

ElF6 E2C6 Joystick routines

E2C7 E617 Sound routines

E618 F3D9 File routines

F3DA F445 Data used to INIT a medium

F446 F4B9 Device routines

F4BA F4FB Keyboard routines

F4FC F5D4 Printer routines

F5DC F831 Screen routines

F832 FA9D Executive routines

FA9E FBFD Device Control Block Routines

FBFF FC2F Data tables

FC30 FD5F JUMP TABLES

FD60 FEBF Various data tables, storage, and stack

FEC0 FEC3 Processor Control Block

FEC4 FFFE Device Control Blocks (one for each device)

The average program can use all memory below D390. This leaves the full EOS available to perform any function

which many be required.

A program which requires additional memory may choose to use its own buffers for read/write operations. If it does

not make use of the FILE routines, it may overwrite up to DFFF and gain an additional 3K of usable memory.

When even more memory is required, An application program may supply its own video drivers, and joystick

routines (if required). It can then use memory up to F445 and gain another 5K. This leaves just the raw device

drivers in the EOS. Provided no complicated video routines are required, this can be a viable alternative for very

large programs.

10

EOS ROUTINES

This is the start of the technical section of the manual. It describes routines which can be accessed form the EOS

jump table. For the sake of uniformity and ease of reading, each routine description will be on one page with the title

of the routine at the top of the page. Descriptions will use the following format:

JUMP TABLE ADDRESS: The address to CALL. If you want to determine the

actual address of the routine, skip the first byte at this address (the JUMP

instruction) and extract the REAL address from the next two bytes.

ENTRY: A Description of values which must be

 BC placed in registers to tell the function

 DE what to do. Only the relevant registers

 HL will be shown.

EXIT: A Some routines return information. The exit

 BC values will help you make the best use of the

 DE information provided. You will also note that

 HL some routines PRESERVE register values. This can

 be used to your advantage to save program space.

DESCRIPTION:

The description section will usually be in two parts: the first describes the purpose of the routine the second explain

how the routine does its job. When a routine calls another major EOS routine, its name will usually be shown in

UPPERCASE along with the page number in brackets.

EXAMPLES:

Where it can help illustrate the use of a routine, examples will be provided. These will be in machine language

mnemonics with comments in the right margin.

11

EXECUTIVE CALLS

INITIALIZE EOS

JUMP TABLE ADDRESS: FC3O

ENTRY: none

EXIT: B boot device number

DESCRIPTION: ~ ~ ~

When you turn on the computer or pull the reset switch, the EOS is entered at this routine. This is the one that gets

the computer in working order by setting the stack, initializing tables, setting up the devices, and checking for the

presence of a boot tape or disk. While this function is used only at a cold start, a programmer may use it to reboot by

prompting for an "insert media" and calling FC3O to clear memory and boot the media.

The routine starts by setting the EOS stack. It then nulls out all the data tables starting at FD6l. The EOS revision

number is written to FD6O. It calls SET VDP PORTS(83) and SOUND OFF(104). It then nulls all the video RAM

with a call to FILL VRAM(95) and switches in the normal memory configuration with a call to BANK

SWITCH(20). The next step is to perform a HARD INIT(12) to set all the devices. Next is a call to INITIALIZE

FILE MANAGER(41) which sets up the file management buffers. It then scans for the presence of media in disk 1,

disk 2, tape 1, and tape 2 in that order. The first to contain media is presumed to be the boot media. Block 0 of that

media is loaded at C800. The next step is very important: The device number of the boot media is placed in register

B and a jump is made' to G800 where the media boot code can be executed. Boot code should store the boot device

number so further media activity can be performed on the default media. If no boot media is found, a jump is made

to the memory resident processor (electronic typewriter) via the JUMP TO SMARTWRITER(19) routine.

EXAMPLES:

To prompt the user to insert a disk or tape and perform a boot, you can use the following instructions:

 LD HL, INSERTMSG ;prompt message.

 CALL PRINT ;your print to screen routine.

 GALL FC6G ;read keyboard (wait for character).

 JP FC3O ;do the EOS boot.

If you wish to boot a disk or tape without resetting the EOS tables or performing an initialization, you can replace

the last instruction with a jump to F86A. Note that this is the direct address for EOS revision 5 and that it may not

work on other revisions to the EOS. The BOOT device is still returned in B to the Boot block of the media. It is up

to the programmer to pass the boot media to the main program. You could store it at (FD6F) which is the EOS-5

address of current device.

12

EXECUTIVE CALLS

HARD INIT

JUMP TABLE ADDRESS: FC5D

ENTRY: none

EXIT: A destroyed

 BC \

 DE preserved

 HL /

DESCRIPTION:

The function of this routine is to set the processor control block which in turn controls the allocation of device

control blocks. It synchronizes the Z-80 processor with the 6801processor which controls the AdamNet.

This routine starts by initializing the Processor Control Block to FECO. Compare to the SOFT

INITIALIZATION(18) routine which allows the user to set the PCB. It calls HARD RESET NET(13) and the

DELAY(14) to initialize the system. The device control blocks are nulled out and a call to SYNCHRONIZE

CLOCKS(l5) is made. The final step is a call to SCAN FOR DEVICES(l6) to allocate a DCB for each found device.

Although it would be considered a drastic measure, this routine could be called to effectively reset the ADAM and

re scan all the devices.

EXAMPLES: none

13

EXECUTIVE CALLS

HARD RESET NET

JUMP TABLE ADDRESS: FC60

 ENTRY: none

EXIT: A zero

 C reset port number

 others unchanged

DESCRIPTION:

This function does a hardware reset on the AdamNet. It gets the Net port number from location FC28 and sends a

reset request (0F). It waits awhile and sends an idle command to the net. The routine returns the port number in

register C but it is very unlikely that you will ever need this information.

This routine can be called to reset the net without clearing all the DCB's

EXAMPLES: none

14

EXECUTIVE CALLS

DELAY AFTER HARD RESET

JUMP TABLE ADDRESS: FC3C

ENTRY: none

EXIT: A 0

 others preserved

DESCRIPTION:

This routine pauses for 114 clock cycles. It is used after a network reset to make sure that the devices have time to

idle down. With 3 million clock cycles per second, 114 is a blink of an eye for us but almost an eternity for the Z-80

processor. For some reason, the EOS designers did not include this delay as part of the HARD RESET NET(13)

routine and the delay MUST be called for proper timing.

While the routine as-is has limited value, you can make use of it to create your own timed delays by patching

directly into the routine. Remember the default values so you can restore them when you are through. Firstly,

address F962 has a default value of 1. For the delay to have any substance, this should be reset to 0. Address F965

has a default value of 0. This is the one we can modify to create delays ranging up to 2.5 minutes.

 VALUE DELAY VALUE DELAY

 2 1 53 30 1/2 minute

 4 2 71 40

 7 4 88 50

 9 5 106 60 1 minute

 18 10 212 120 2 minutes

 36 20

EXAMPLES:

 LD A,0

 LD (F962) ,A

 LD A,53

 LD (F965) ,A ;set 30 second delay.

 CALL FC3C ;do it.

 LD (F965) ,A ;note that A is zero (save an

instruction).

 INC A

 LD (F962) ,A

15

EXECUTIVE CALLS

SYNCHRONIZE CLOCKS

JUMP TABLE ADDRESS: FCBl

ENTRY: none

EXIT: zero flag indicates success

 A error code if NON-ZERO

 others preserved

DESCRIPTION:

The purpose of this routine is to get ADAM's internals synchronized. Two synchronize requests are sent through the

Processor Control Block. It is essential that these requests function properly. Otherwise, the ADAM NET may not

function properly. The Synchronize Clock request must be sent each time the network is reset.

One of the byproducts of this function is to cancel out All active device control blocks. Thus a SCAN ACTIVE must

be done after each synchronize clock function call.

EXAMPLES:

 CALL FCB1 ;request the synchronize.

 JR Z,COOD ;the synchronization went ok.

;

;here you must decide how to handle the error

;you can call the function again or abort entirely

; telling the user that ADAM has serious problems

;

GOOD:

 CALL FC8A ;scan for active devices.

16

EXECUTIVE CALLS

SCAN FOR DEVICES

JUMP TABLE ADDRESS: FC8A

ENTRY: the Processor Control Block must be set

EXIT: A zero

 others preserved

DESCRIPTION:

The purpose of this function is to find all the active devices on ADAM NET. It begins by zeroing out all Device

Control Blocks. This will effectively remove devices which are no longer on line. On the other hand, the scan will

pick up devices which have been powered up after the ADAM has turned on. Thus you should make sure that all

devices are turned on before calling this function.

An area of 314 bytes is cleared above the 4-byte processor control block. It represents the 15 DCB's which are 21

bytes each. A count is kept in PCB+3 of the total number of devices found and a 21-byte DCB is set up for each

device found. If you wish to check the number of devices found, you will have to FIND the PCB and examine its

byte number 3.

EXAMPLES:

 CALL FC8A ;set up the DCB's.

 CALL FC5A ;get the PCB address into IY.

 LD A, (IY+3) ;number of devices.

;

;now you can tell your program or viewer

;how many devices you found

;

17

EXECUTIVE CALLS

RELOCATE PCB

JUMP TABLE ADDRESS: FC7B

ENTRY: HL Address to relocate PCB to

EXIT: A 83H zero flag set

 BC preserved

 DE preserved

 HL new PCB address

DESCRIPTION

This function is used to relocate the Processor Control Block. Although I can see no particular reason for this

function, COLECO must have thought that it might be a requirement with some of the expansion hardware or for

special purpose applications.

The routine begins by getting the current PCB location since commands must still be sent through the current PCB

location. The new address is written to the PCB data area and a SET command is sent to the NET. The routine then

loops endlessly waiting for the net to acknowledge. If it does not, the system will hang up; there is no time out for

this operation. The last step is updating the CURRENT PCB location in memory.

Once the PCB has been relocated, all devices are effectively put off line. You have to issue a SCAN FOR DEVICES

(16) to restore all devices. I am not sure if it is necessary to perform a hard reset, but to be on the safe side, I would

recommend using the SOFT INITIALIZATION(18) instead of this routine to relocate the PCB.

EXAMPLES:

 LO HL, 8000H ;address to relocate to.

 CALL FC7B ;move the PCB please.

 CALL FC8A ;scan for devices.

18

EXECUTIVE CALLS

SOFT INITIALIZATION

JUMP TABLE ADDRESS: FC8D

ENTRY: HL New PCB address

EXIT: A destroyed

 others unchanged

DESCRIPTION:

The function of this routine is to set the processor control block which in turn controls the allocation of device

control blocks. It synchronizes the Z-80 processor with the 6801 processor which controls the AdamNet.

This routine starts by initializing the Processor Control Block to the value supplied in HL. After that, its execution is

virtually identical to HARD INIT(12). It does a hard reset, a delay, a synchronize, and a scan for devices.

Since you need to do all these housekeeping functions when you want to relocate the PCB, it is best to call this

vector instead of RELOCATE PCB.

EXAMPLES:

19

EXECUTIVE CALLS

EXIT TO SMARTWRITER

JUMP TABLE ADDRESS:FCE7

 ENTRY: none

 EXIT: none

DESCRIPTION:

This is the routine used by the COLD BOOT sequence (power up) when no bootable media is found. It bank

switches in the SMARTWRITER ROM and jumps to it. If you wish to abort a program you can call this routine to

effectively halt all operations.

Since this routine does a BANK switch, it is essential that the STACK be located in upper memory when it is

invoked. Although it is not a standard location, I suggest using 65535 since it is used only temporarily and the

SmartWriter will set its own stack when it takes over.

EXAMPLES:

 CALL ABORTYN ;ask user to abort.

 RET NZ ;changed his mind.

 LD SP,FFFF ;set stack to upper half.

 JP FCE7 ;let's get out.

20

EXECUTIVE CALLS

SWITCH MEMORY BANKS

JUMP TABLE ADDRESS: FD14

ENTRY: A desired memory configuration

EXIT: A current configuration

 B current configuration

 C memory port number

 DE preserved

 HL preserved

DESCRIPTION:

This routine can switch either the upper or the lower 32K of memory to any of 4 configurations. It simply sends the

requested configuration to the memory bank switch port. Although it is a simple routine, it is easy to get into trouble

with it. When the memory configuration is changed, program control may wind up in the switched bank with

unpredictable results. Since the EOS is in the top half of memory, the TOP HALF should never be switched using

this routine. If you do, the EOS will effectively disappear, and your program will crash. It is also essential that the

Routine which calls this function be also located in the upper half of memory (above 8000H) or program control will

also be lost.

Consult the appendix for ADAM's memory bank configuration.

EXAMPLES:

This is the breakdown of the routine used to switch banks. If you wish to switch in the upper half of memory, you

will require a routine similar to this in the lower 32K to make the switch.

 LD A, (FC27) ;get the port number.

 LD (SAVE) ,a ;save the address in lower memory

somewhere.

 LD C,A ;put port in C.

 LD A,config ;put in the configuration you want.

 OUT (C) ;switch it over.

;

;do what you wish to do in here

;

 LD A, (SAVE) ;get the port back.

 LD C,A

 LD A,normal ;bring the EOS back into top half.

 OUT (C) ;send request to port.

21

CONSOLE OUTPUT

INITIALIZE CONSOLE

 JUMP TABLE ADDRESS: FC36

ENTRY: B number of columns (0 to 31)

 C number of lines (0 to 23)

 D home column

 E home row

 HL pointer to pattern name table

EXIT: all registers lost

DESCRIPTION:

This routine is used to set up a WINDOW for screen display. Registers B and C contain the, number of rows and

columns while registers D and E contain the upper left corner of the window. The other parameter required is base

address of the Pattern Name Table. If you have previously set up VDP, you should have NOTED what that address

was. If you; are using a routine in conjunction with SmartBasic, the default pattern name table address is 1800H.

The routine stores lines and columns, sets up minimum and maximum values for ROW and COLUMN based on the

supplied parameters. You can set up many windows and jump around between them by repeating calls to this

routine. When this routine exits, the default cursor (an underline) is placed in the top left corner of the window. You

can then send a move cursor command (see console display page 18) to place it at the appropriate location in the

window.

EXAMPLES:

This routine sets up a 12 line window in the centre of the screen:

 LD B,20 ;20 columns.

 LD C,12 ;12 rows.

 LD D,6 ;home column.

 LD E,6 ;home row.

 LD HL, 1800H ;or whatever your pattern address is.

 CALL FC36 ;set up the screen.

22

CONSOLE OUTPUT.

CONSOLE DISPLAY REGULAR

JUMP TABLE ADDRESS: FC33

ENTRY: A character to send

EXIT: all registers preserved including A

DESCRIPTION:

This routine prints whatever character is in the accumulator to the screen. It presumes that the VDP has been set up

and that a window has been defined. It will print ALL characters including the graphic representation of the control

codes (0-31). If you wish to send a control CODE, use the routine on the next page.

The routine first sends the character to video RAM. Then it advances the cursor position, going to the next line if

required. If the cursor is on the last line, the screen is scrolled.

EXAMPLES:

This subroutine is used to print an incoming message in register HL. It presumes that the string to print is followed

by a null (ASCII 00).

PRTSTR:

 LD A, (HL)

 OR A

 RET Z ;the string was over.

 CALL FC33 ;print the thing.

 INC HL ;remember HL was preserved.

 JR PRTSTR ;loop until end of string.

23

CONSOLE OUTPUT

CONSOLE DISPLAY SPECIAL

JUMP TABLE ADDRESS: FC39

ENTRY: A character to print or PLACE CURSOR request

 D column to go to if PLACE CURSOR

 E row ,to go t9 if PLACE CURSOR

EXIT: all registers preserved including A

DESCRIPTION:

This routine, like console display on previous page will print a character on the defined window. It begins however

by checking for 12 special control codes. If it finds one of these, it executes the following control functions:

CONTROL KEYBOARD FUNCTION

CRARACTER EQUIVALENT PERFORMED

08 BACKSPACE move cursor left one

0A ^J move cursor down one line (line feed)

0C ^L clear screen and home cursor

0D RETURN return cursor to start of line

 (must send line feed if new line wanted)

 16 ^V delete to end of line

 18 ^X delete to end of screen

1C ^\ place cursor at position DE

80 HOME home the cursor (no clear)

A0 up arrow move up

Al right arrow move right

A2 down arrow move down

A3 left arrow move left

Note that there is no CURSOR ON or CURSOR OFF. In EOS-5, you can replace 3 bytes starting at F658 with.

ZEROS to turn the cursor off. Be sure to remember the values to turn it back on again.

EXAMPLES:

When the string STRING is printed, it will send the cursor home, skip 2 lines, print HELLO, and clear the rest of the

screen. Note that the first two lines would not be erased by this operation:

 LD HL,STRING

REPEAT:

 LD A, (HL)

24

 OR A

 JR Z,CONT

 CALL FC39

 INC HL

 JR REPEAT

STRING: DB 80H,A2H,A2H, 'HELLO' ,18H,0

CONT:

;Program continues here

25

PRINTER INTERFACE

PRINT CHARACTER

 JUMP TABLE ADDRESS: FC66

ENTRY: A character to print

EXIT: zero flag set - successful

 A error code if NZ

 others preserved

DESCRIPTION:

This routine sends one character to the printer. Compare to print buffer on next page.

If the printer is not found, error code number 1 is returned in the accumulator. This means the NET does not know

the printer is there. You should re scan for active devices and if the printer is still not found, you should abort with a

warning to the user.

If the printer is busy, the routine returns error code number 2 in the accumulator. You can wait a bit and retry.

If the printer is off-line (i.e. not working), error code 3 is returned. If this happens, do NOT retry; it will serve no

purpose.

If the printer is ready, the character is placed in the print buffer and the printer is asked to print it via the PRINT

BUFFER routine on the next page.

EXAMPLES:

RETRY:

 LD A, character ;what you want to print.

 CALL FC66 ;ask printer to do it.

 JR Z,GOOD

 AND 127 ;strip acknowledge bit if any.

 DEC A, ;was A one?

 JP Z,NODCB ;try and find the printer

 DEC A ;was A two?

 JR Z, RETRY ;let's loop until it works.

 DEC A ;was A 3?

 JP Z,PTRDIED ;printer died? Now what do we do?

GOOD:

;

;continue program

26

PRINTER INTERFACE

PRINT BUFFER

JUMP TABLE ADDRESS: FC63

ENTRY: HL pointer to string (terminated with ASCII 03)

EXIT: Zero Flag set - successful

 A error code if non-zero

 others preserved

DESCRIPTION:

This routine will print a string pointed to by register HL. The bytes are sent to the printer in groups of 16. If the

string (or remainder) is less than 16 then the partial string is sent and then the routine exits. You can use this routine

to print strings of any length: an entire document if you wish. The nice thing about it is that you only need to place a

"03" at the end of the string.

The routine stays in control until the entire string is printed. Since the printer is a very slow device, you may choose

the alternate method using START WRITE and END WRITE explained on the following pages. The error codes are

the same as for PRINT CHARACTER:

 1 No printer

 2 Printer busy

 3 Printer off line (idle)

EXAMPLES:

This is an example of a subroutine used to print a string. The subroutine expects HL to point to the data and takes

care of errors:

 LD HL,STRING ;print this.

 CALL PRINTIT ;ask subroutine to do it

;

;

PRINTIT:

 CALL FC63 ;print the whole thing.

 RET Z ;OK..

 AND 127 ;strip acknowledge bit.

 DEC A

 JR Z,NOPRINT ;No DCB found.

 DEC A

 JR Z, PRINTIT ;retry.if busy.

27

;if we get here then the printer is off line.

NOPRINT:

;if we get here then try FINDING the printer again.

28

PRINTER INTERFACE

PRINTER STATUS

JUMP TABLE ADDRESS: FC84

ENTRY: none

EXIT: Zero flag set - READY

 A error code if non zero

 IY address of DCB (only if no error) others preserved

DESCRIPTION:

Although it might be considered a bit of a waste, this is a handy routine to use. You don't need to remember the

DEVICE number of the printer(2) and call REQUEST STATUS.

If you wish to check the availability of the printer prior to sending a character or string, use this routine. When used

in conjunction with the routines on the next pages, it allows you to do other things while you are waiting for the

printer to be READY.

The most common errors are

 1 no DCB

 2 busy (it is printing something)

 3 off line (idle)

EXAMPLES:

This routine waits for the printer to be ready and then sends the character in A to be printed.

 LD C,A ;save the character.

RETRY:

 CALL FC84 ;check status.

 JR Z,READY

 AND 127 ;strip acknowledge bit if any.

 CP 2

 JR Z , RETRY

;

;process other errors here.

;

29

READY:

 LD A,C

 CALL FC66 ;print it.

 RET

30

PRINTER INTERFACE

START PRINT CHARACTER

JUMP TABLE ADDRESS: FC9F

ENTRY: A character to print

EXIT: Zero flag set - successful

 A error code if non-zero

 others preserved

DESCRIPTION:

This routine is used to set up background printing. If the printer is READY, it asks it to print a character and returns

the control to the user. Since the printer is very slow, you can perform a few other tasks and use END PRINT

CHARACTER to check if the printer is done.

The error codes are the same as the other print routines.

EXAMPLES:

This subroutine expects a character to print in A. It sends it to the printer first (since it is slow); then to the screen.

Finally it waits until the printer is done prior to returning.

 LD C,A ;save the character.

 CALL FC9F ;start print.

 JR NZ, PERR

 LD A,C ;get character back.

 CALL FC66 ;print to screen.

 JR NZ,SERR

RETRY:

 CALL FC42 ;is printer done?

 JR NZ,PERR ;must check error FIRST.

 JR NC,RETRY ;if no error and not completed then wait.

 RET ;yes we are finished.

PERR: ;process printer error here.

SERR: ;process screen error here.

31

PRINTER INTERFACE

END PRINT CHARACTER

JUMP TABLE ADDRESS: FC42

ENTRY: none

EXIT: CARRY SET completed

 NO CARRY and ZERO not completed

 NON ZERO error

 A error code if no carry and non-zero

 others preserved

DESCRIPTION:

This is the companion routine to start print character. It finds the DCB and returns an error if not found. It will also

return an error if the printer is off line or is busy. If the printer is done, the carry flag is set prior to returning to

caller.

This routine does not retain control while a character is being printed. It allows the programmer to do some co-

processing.

EXAMPLES:

The routine shown in start print buffer is not the most effective way of maximizing throughput since the print

routine does only one task and spends the rest of the time waiting. Once it is done, the programmer still uses

valuable processing time to FETCH another character to send to the routine. Another approach is to send the FIRST

character to print using START PRINT and not check for completion. All subsequent characters can be sent to this

routine which waits for the first to be done prior to sending another.

 LD A,CHAR

 CALL FC9F ;this is the first character printed.

;

;

 LD A,CHAR

 CALL PRINTC ;all subsequent chars to this routine.

;

;

PRINTC:

32

 LD C,A ;save new character to send.

WAIT:

 CALL FC42 ;end print the last one?

 JR NZ,PERR ;oops.

 JR NC ,WAIT

 LD A,C

 CALL FC9F ;start to print this one.

 RET Z ;good start.

 PERR: ;here we have a printer problem.

33

PRINTER INTERFACE

START PRINT BUFFER

JUMP TABLE ADDRESS: FC9C

ENTRY: HL points to a string terminated with ASCII 03

EXIT: Zero Flag set - success

 A error code if non-zero

 others preserved

DESCRIPTION:

This routine was intended to print up to 16 characters on the printer in background. It requires the use of the

companion END PRINT BUFFER routine on the next page. The routine starts by finding the printer and returns an

error if the printer is not found or busy. It then looks through the input string for a 03 in the first 16 characters. If

none is found, it STARTS to print the first 16 characters. The routine may have been intended to handle longer

strings since it keeps track of where it is (when longer than 16).but does not seem to have been fully implemented.

Since the ADAM printer is slow, you will have about a second and a half (almost an eternity for the Z-80) to

perform some other work while the printer is busy doing this task. You can periodically check if the printer is done

and then send more characters When you send your last 16 (or less), you can just carry on doing something else,

provided you check if the printer is done prior to starting another print sequence.

EXAMPLES:

See example on next page which sends a LONG string to the printer.

34

PRINTER INTERFACE

END PRINT BUFFER

JUMP TABLE ADDRESS: FC3F

ENTRY: none

EXIT: CARRY SET completed

 NO CARRY and ZERO not completed

 NON ZERO error

 A error code if no carry and non-zero

 others preserved

DESCRIPTION:

 This is the companion routine to START PRINT BUFFER(33). It allows you to perform other tasks

and check if the printer is done the 16 (or less) characters you sent. Once completed (or error), you can send

another with START PRINT BUFFER(33).

EXAMPLES:

The following routine sends a LONG string (which has a 03 at the end) to the printer. It makes use of the wait time

to call another routine which could perform any small task.

 PUSH HL ;save start of string.

 ID A,3

 ID BC,65535

 CPIR ;find the 03.

 LD HL,0

 OR A

 SBC HL,BC ;this is the number of characters

 SRL H

 RR L

 SRL H

 RR L

 SRL H

35

 RR L

 SRL H

 RR L ;this is the number of 16-byte packets to send.

 LD B,H

 LD C,L

 INC BC ;correct count

 POP HL ;get back original pointer;

MORE:

 CALL FC9C ;start to print.

 JR NZ,ERROR

WAIT:

 CALL ABCD ;routine better save BC and HL.

 CALL FC3F ;is printer done?

 JR NZ, ERROR

 JR NC,WAIT

 LD DE,16

 ADD HL,DE ;advance pointer

 DEC BC

 LD A,B

 OR C ;is BC zero?

 JR NZ,MORE

36

KEYBOARD INTERFACE

KEYBOARD STATUS

JUMP TABLE ADDRESS: FC81

 ENTRY: none

EXIT: Zero flag set - no errors

 A error code if non-zero

 IY address of DCB (only if no error)

 others preserved

DESCRIPTION:

This routine is used to find out if the keyboard is active. It will return a 1 in the accumulator if there is no DCB. This

means that the keyboard was not found. It may indicate hardware failure or just that the keyboard was not plugged in

when the system was turned on. Error code 3 means that the device is idle.

While it may be useful to check the keyboard status in this manner, you still need another EOS call to actually fetch

a character from the keyboard. This routine could be used in a power up sequence to ensure the keyboard is there.

EXAMPLES:

37

KEYBOARD INTERFACE

READ KEYBOARD

JUMP TABLE ADDRESS: FC6C

ENTRY: none

EXIT: Zero flag set - no error

 A character if non zero

 else it contains the error code

 others preserved

DESCRIPTION:

This routine starts by calling START READ KEYBOARD(28). If this fails, an error code is returned. The routine

then keeps calling END READ KEYBOARD(29) until a character or an error is received. The routine remains in

control until a key is pressed; this is like SmartBasic's GET command.

For simple keyboard input, this routine is adequate. It should not be intermixed with the START and END read

commands as you may wind up missing a character.

EXAMPLES:

This routine requests characters from the keyboard and places them in a buffer at (HL) until <RETURN> is pressed.

 LD HL,BUFFER ;point to a memory area for data.

 CALL GETENTRY ;fill it up please

;

;more program here.....

;

GETENTRY:

 CALL FC6C ;read keyboard.

 JR NZ, ERROR ;something went wrong.

 LD (HL) ,A ;save character even if <CR>

 CP 13

 RET Z ;yes we have a full entry.

 INC HL

 JR GETENTRY ;get another character.

38

KEYBOARD INTERFACE

START READ KEYBOARD

JUMP TABLE ADDRESS: FCA8

ENTRY: none

EXIT: Zero flag set - successful

 A error code if non-zero

 others preserved

DESCRIPTION:

This routine asks the keyboard to fetch a character. The Keyboard will not acknowledge until it a key has been

pressed. After that, the only thing the programmer needs to do is call END READ KEYBOARD(39) to see if there

is a character waiting.

If there is no DCB or the keyboard is off line, an error code will be returned.

EXAMPLES:

 see page 39

39

KEYBOARD INTERFACE

END READ KEYBOARD

JUMP TABLE ADDRESS: FC4B

ENTRY: none

EXIT: No Carry no character waiting.

 Carry set we have an answer (could be an error).

 Zero flag set No error.

 A keyboard character if carry set.

 error code if zero flag set.

DESCRIPTION:

This routine asks the keyboard what is happening. It returns a complex set of readings using the Carry and Zero

flags. It is important to check these in the correct order to trap all the conditions. First, check the carry flag to see if

the operation is complete. The next step is to check the zero flag for errors.

A combination of START and END read is the most effective way of reading the keyboard since it allows you to

check the keyboard for an interrupt command while some other process is ongoing (similar to catching CONTROL-

S when listing in SmartBasic).

EXAMPLES: Routine to check for abort within a process.

IGNORE:

 CALL FCA8 ;start read (only if not previously done).

 JR NZ,ERROR

 MORE:

 CALL PRINTCHR ;send once character to the screen/printer.

 CALL FC4B ;is there anything?

 JR NC,MORE ;so let's print some more.

 JR NZ,ERROR ;we have a keyboard error.

 CP 19 ;is it CONTROL-S?

 JR Z,WAIT ;wait until other key pressed.

 CP 3 ;is it CONTROL-C?

 JR NZ,IGNORE ;if not ignore key but reset read.

;abort code goes here.

Routine to wait for a character and return it in B.

STARTGET:

 CALL FCA8 ;enter here is need to start the keyboard.

 JR NZ,ERROR ;start read.

40

WAITCHAR: ;enter here if start already done.

 CALL FC4B ;end read.

 JR NC ,WAITCHAR ;wait until acknowledge.

 JR NZ, ERROR ;bad keyboard again.

 LD B,A ;save character.

 CALL FCA8 ;restart read for next time.

 JR NZ, ERROR

 RET

41

FILE OPERATIONS

INITIALIZE FILE MANAGER

JUMP TABLE ADDRESS: FCBA

 ENTRY: DE pointer to 3K of memory for FCB transfer buffers

 HL pointer to 105 bytes for three File Control Blocks

 EXIT: all registers preserved

DESCRIPTION:

This routine establishes three file control blocks and 3 1K buffers for the data sent/received through the FCB's. It

also sets up and sets to AVAILABLE three 35 byte file control blocks.

The EOS INIT sequence sets up three default FCB's and buffers. programmer, however, may wish to move these

elsewhere.

EXAMPLES:

This routine shows the default setup for the FCB's:

 LD HL,D390 ;reserve 112 bytes for FCB's (round number?)

 LD DE,D400 ;3K ending at EOOO.

 CALL FCBA ;set up file manager.

42

FILE OPERATIONS

CHECK DIRECTORY FOR FILE

JUMP TABLE ADDRESS: FCFC

 ENTRY: A device

 HL pointer to file name

EXIT: Zero flag set means file found

 A error code if non zero

 BC DE Start block of file if found

 HL preserved

DESCRIPTION:

This routine ALWAYS uses the first file control block which is reserved for directory work. It sets the FCB to read

block 1 of the medium which is presumed to be the directory. It extracts the directory size from byte 12 of block 1 of

the media. The next step is to check if this is a directory by looking for the 55 AA 00 FF at bytes 13, 14, 15, and 16.

It then updates the file counters and begins searching for the file name. First, it looks for a BLOCKS LEFT entry; if

found, the routine aborts with error code 5 in A. Deleted entries are also skipped.

The next part is to compare the file name with the user supplied name in (HL). The search routine has the capability

of skipping the FILE TYPE byte based on a flag at FDD8. If non-zero, then the file type is expected to match. In

order to set this flag properly, you should use the FIND FILE 1 or FIND FILE 2 routines.

The routine continues scanning entries, reading additional blocks if necessary in order to find the file. If the file is

found it's start block is placed in registers BCDE and the file name is preserved in HL.

EXAMPLES:

 LD A,8 ;read tape 1.

 LD HL, FILE ;look for this file.

 CALL FCBA ;find the file.

 JR Z,FOUND

 CP 5

 JR Z,NOTFOUND ;reached BLOCKS LEFT.

;

;interpret and process other errors like bad block here.

;

FILE: DB 'thisfileA',03 ;note the file type and the 03.

43

FILE OPERATIONS

FIND FILE 1

 JUMP TABLE ADDRESS: FCCC

 ENTRY: A device

 DE pointer to file name

 HL pointer to user buffer

EXIT: Zero flag set means file found

 A. error code if NZ

 BC DE file start block if found

 (HL) directory entry if found

 HL preserved

DESCRIPTION:

This routine looks for a match of a file name and file type. To search only for a name, use FIND FILE 2 on the next

page It sets the search flag and calls CHECK DIRECTORY FOR FILE (42). If the file is found, it copies 23 bytes

from the directory entry (excluding the date bytes) to the user buffer pointed: to by HL. Registers BCDE also

contain the start block of the file.

While this routine may be more informative than CHECK DIRECTORY, the programmer must ensure that

incoming registers are properly set. Note also that this routine uses DE to point to the name while the other uses HL.

EXAMPLES:

This routine finds a file and determines the size of the file (in blocks).

 LD A,4 ;use disk 1.

 LD DE,FILE ;point to the file name.

 LD HL, BUFFER ;store the entry here.

 CALL FCCC ;find the file.

 JR NZ,ERROR

 PUSH HL ;HL buffer pointer was saved.

 POP IX ;copy HL to IX.

 LD L, (IX+19)

 LD H, (IX+20) ;get the file size into HL.

 ;note BCDE have the start block.

;

;

;

 ERROR:

44

;

;interpret and process other errors like bad block here.

;

.

FILE: DB 'thisfileA',03 ;note the file type and the 03.

45

FILE OPERATIONS

FIND FILE 2

JUMP TABLE ADDRESS: FGFF

ENTRY: A device

 DE pointer to file name

 HL pointer to user buffer

EXIT: Zero flag set means file found

 A error code if NZ

 BC DE file start block if found

 (HL) directory entry if found

 Hi. preserved

DESCRIPTION:

This routine is identical to FIND FILE 1 on the previous page with only one exception. It sets the FILE NAME

ONLY flag of the file search. Thus a file will be found whether its type is A a H h or any other type. When calling

this routine, your FILE NAME POINTER must have a file type because the length of the search string is important.

This routine can be useful prior to making a file (of any type). You may wish to check if the same name exists under

another type to avoid conflicts. It can also be useful when loading ENCODED file names which specify their

function or use according to the file type. If the user says LOAD FILE JUNK, you can find the file, check the file

type, and verify that it is suitable to the desired operation.

EXAMPLES:

This routine finds a file and extracts the file type byte for comparison.

 LD A,4 ;use disk 1.

 LD DE,FILE ;point to the file name.

 LD HL, BUFFER ;store the entry here.

 CALL FCFF ;find the file.

 JR NZ, ERROR

;

;since we know the file name was correctly parsed, we need no safety valve

;

 LD A,03 ;find. the end of name.

 PUSH BC ;save start block.

 LD B,1 ;look a long way.

 CPIR

 POP BC ;get back start block.

 DEC HL ;now points to the 03.

46

 DEC HL ;now points to file type.

 LD A, (HL) ;here it. is now check it.

;--------------

ERROR:

;--------------

FILE: DB 'thisfileA' ,03 ;note the file type and the

03.

47

FILE OPERATIONS

FIND FILE IN FCB

JUMP TABLE ADDRESS: FCF0

 ENTRY: HL Pointer to file name

EXIT: Zero flag set means file found

 A error code if non-zero (including not found)

 or contains FCB number if found

 B file mode if file found

 HL points to File Control Block if found otherwise preserved

 others preserved

DESCRIPTION:

This routine checks the second and third file control blocks for a match of the user supplied file name. If the file is

not found, error code 5 is returned in A with the zero flag reset. If the file is found, the file mode is returned in

register B, the FCB number in A, and HL points to the start of the FCB so you can decode the DATA in the file.

EXAMPLES:

 LD HL, FILE ;point to the file name.

 CALL FCF0 ;find the file.

 JR NZ , NOTFOUND ;this is the only possible error.

;

;now we have the file mode, the FCB number and a pointer to the FCB

;

;--------------

NOTFOUND:

;--------------

FILE: DB 'thisfileA',03 ;note the attribute and the 03.

48

FILE OPERATIONS

CHECK FILE MODE

JUMP TABLE ADDRESS: FCF9

 ENTRY: HL directory entry

 IX pointer to FCB

EXIT: Zero flag set mode OK

 A error code if non zero

 others preserved

DESCRIPTION:

This routine examines the file mode in the incoming FCB in IX. If the mode is out of range, error code 17 is

returned. The Attributes of the file entry are then checked against the requested mode; If the file is READ

PROTECT and the request is READ or WRITE PROTECT for WRITE, error code 20 is returned.

While this routine is called by other EOS routines such as READ, WRITE, DELETE, etc. There may be some

occasions where the programmer may wish to perform his own mode check. The calling syntax is also strange. If IX

points to a File Control Block, it also points to a file name. So why do I also need it in Hi.?

The File modes are:

 0 unused (FCB is available for use)

 1 read

 2 write

 3 update (e.g. change attributes) or Read/Write

 4 fill rest of space on medium (MAKE with size of 0)

EXAMPLES:

 LD HL, FILE ;point to the file name.

 CALL FCFO ;find the file in FCB.

 JR NZ , NOT FOUND ;this is the only possible error.

 PUSH HL

 POP IX ;copy to IX as well.

 CALL FCF9 ;check mode.

 RET Z ;mode OK.

 CP 17

 JR Z, BADMODE ;mode is not 1 2 3 4.

 CP 20

 JR Z,ILLEGAL ;mode incompatible with attributes.

49

FILE OPERATIONS

MAKE FILE

JUMP TABLE ADDRESS: FCC9

ENTRY: A device

 BC DE file size in bytes

 HL pointer to file name

EXIT: Zero flag set means success

 A error code if non zero

 others preserved

DESCRIPTION:

This routine begins by determining the number of K required for the file. If BCDE are zero, then the file will be

allocated ALL the remaining space on the medium. This technique is used when you create a file without yet

knowing how long it will be. It then calls READ BLOCK(74) to get the. directory and verifies that it is indeed a

directory. It then looks through the directory entries to find a HOLE of the right size. If the file length' is zero, then it

will scan through until it finds BLOCKS LEFT or runs out of room. At the same time, it calls FIND FILE(43) to

make sure the file does not exist. After scanning the entire directory, it checks to see if a suitable file was found. The

correct directory block is re-read and the file data is copied to the directory entry. The directory is then re-written to

disk via WRITE BLOCK(79).

Note that this routine only creates a directory entry of the size requested. The data is not written to the file.

EXAMPLES:

 LD A,8 ;use tape 1.

 LD BC , 0

 LD DE, 12345 ;12,345 bytes in the file.

 LD HL, FILE ;point to name of file.

 CALL FCC9 ;make the directory entry.

 JR Z,GOOD

 CP 11

 JR Z,TOOBIG ;file too big (bigger than 67MEG).

 CP 6

 JR Z,EXISTS ;file name exists in directory.

 CP 12

 JR Z,DFULL ;directory is full.

 CP 13

 JR Z,MFULL ;media is full.

;

;more errors like bad block,. etc.

50

FILE OPERATIONS

UPDATE FILE IN DIRECTORY

JUMP TABLE ADDRESS: FCCF

ENTRY: A device

 DE pointer to file name

 HL address of user File Control Block

EXIT: Zero flag set no error

 A error code if non zero

 others preserved

DESCRIPTION:

This routine starts by finding the file in the directory; it aborts if it is not, found. It moves 23 bytes (everything

except the date) into the directory entry. It then calls WRITE BLOCK(79) to re-write the directory entry.

This routine is used to update a file's attributes, adjust the file size, etc. It is used by CLOSE FILE(53) to update the

directory when finished with file. It presumes the file already exists on the selected media.

EXAMPLES:

This routine finds a file, changes the attributes, and rewrites the entry.

 LD A,4 ;use disk 1.

 PUSH AF ;save device.

 LD DE,FILE ;point to the file name.

 PUSH DE ;save file name.

 LD HL,BUFFER ;store the entry here.

 CALL FCCC ;find the file.

 JR NZ , ERROR

 PUSH HL ;HL buffer pointer was saved.

 POP IX ;copy HL to IX.

 SET 3, (IX+12) ;set the system bit of the file.

 POP DE ;file name.

 POP AF device.

 CALL FCCF ;re write entry

 JR NZ, ERROR ;let's find out what went wrong.

;

;

ERROR:

51

 AND 127 ;strip acknowledge bit if any.

; interpret errors here.

; 1 DCB not found

; 2 Device busy

; 3 Device off line

; 5 File not found

; 22 Device error

52

FILE OPERATIONS FILE I/O

OPEN FILE

JUMP TABLE ADDRESS: FCC0

ENTRY: A device

 B mode

 HL pointer to file name

EXIT: Zero flag set means no error

 A file number OR error code

 B file number if no error

 others preserved

DESCRIPTION:

This routine sets up a File Control Block for the user to access the requested file. It begins by checking the 2 File

Control Blocks If both are busy error code 7 is returned in register A. It then tries to find the file in the directory. If

the file is found, it calls MODE CHECK(48) to ensure the request can be processed. It then sets the control bytes in

the FCB (current block, last block, etc.) so the file is ready to be accessed. It also sets up the buffer associated with

the FCB as the position in the file and copies the start block of the file to the current block in the FCB.

At this point, the routine checks if the request is a write; if so the job is done. If the request is read, it sets an internal

flag (bit 7 of the mode) only if the file size is 1K. This warns the other file routines not to READ another block from

this file. It then calls READ BLOCK(74) to pre read the first block of the file.

This routine has two problems. If the file size is zero, it does not initialize the File Control Block properly and may

wreak havoc on the media on write operations. The next problem is that it does not tell you where the raw data from

the medium is placed. It presumes that you will call READ FILE(54) or WRITE FILE(56) to perform transfers.

It is very important when opening a file to REMEMBER what the FILE NUMBER is. All other access to the file

will be made via the FILE NUMBER. The EOS allows you to have two files- opened simultaneously, although they

must be on the same medium. Otherwise, a fourth FCB would be required to hold the directory of the other medium.

This may have been an oversight in the design of EOS. At the time, there was only the tape drive to worry about.

This means that you can't use exclusively the EOS FILE FUNCTIONS to copy a file from one medium to another

without buffering.

EXAMPLES:

 LD HL, FILE ;point to a file name.

 LD A,8 ;use tape 1.

 LD B,1 ;let's read the file.

 CALL FCC0 ;open the file.

 JR NZ, ERROR ;let's see what went wrong.

 LD (FNUM),A ;save the file number for later.

53

FILE OPERATIONS FILE I/O

CLOSE FILE

 JUMP TABLE ADDRESS: FCC3

ENTRY: A File number

EXIT: Zero flag set successful

 A error code if non zero

 others preserved

DESCRIPTION:

This routine is used to close off a file and free up its File Control Block. It begins by checking the validity of the file

number (can only be 1 or 2 since there are only 2 File Control Blocks for FILES). If the file number is bad, error

code 9 is returned. If a request is made to close a file in an FCB that is empty, error code 9 is also returned. It then

checks the WRITTEN BIT in the file mode (40H) to see if it the buffer needs flushing. If so, the buffer is written out

via WRITE BLOCK(79). If the WRITE is unsuccessful, the routine aborts without clearing the FCB. This gives you

a chance to retry. The last step is a call to UPDATE FILE IN DIRECTORY(50). Regardless of the outcome of this

routine, the FCB is marked as empty and errors (if any) reported to the user.

This last step can also lead you into trouble. You could have written several K to a file, the data would be there, but

if the directory is not updated, you have no way of finding that information again. If you get a BAD BLOCK/CRC

error, the only way of knowing if it was when the buffer was flushed or when the directory was written is by

checking if the FCB is closed (perhaps that was the intent).

EXAMPLES:

 LD A,(FNUM) ;get back the file number when opened.

 CALL FCC3 ;close it off.

 JR Z,COOD ;no errors.

 AND 127 strip acknowledge bit if any.

 CP 9

 JR Z , BADNUM ;file number is bad.

 CP 3

 JR Z,IDLE ;device off line.

 CP 24

 JR Z,BADDIR ;directory fails check bytes.

 ;etc.

54

FILE OPERATIONS FILE I/O

READ FILE

 JUMP TABLE ADDRESS: FCD2

ENTRY: A file number

 BC number of bytes required

 HL where to put the data

EXIT: Zero flag set means success

 A error code if non zero

 BC number of bytes actually transferred

 others preserved

DESCRIPTION:

This routine will read a specified number of bytes form a file which has been OPENED(52). It begins by checking

the validity of the file number and that the mode is compatible with the request. If the FCB is on the LAST BLOCK,

it checks to see if it can deliver the requested number of bytes from the current position on the buffer. Otherwise, it

checks how many bytes are remaining in the current block to fill the request. If there is not, it starts by delivering the

last remaining bytes in the buffer and tries to read in the next block of the file. This cycle continues until file end is

reached or all the bytes are delivered, making successive calls to READ BLOCK(74). If all bytes cannot be

delivered, an end of file error code 10 is returned in A. Other error codes indicate other problems such as bad block,

device idle, etc.

You can use this routine to read from 1 to 65535 bytes from the input file. Prior to making the call, be sure you have

sufficient buffer space starting at (HL) to accept all the bytes requested. The handy thing about this routine is that it

allows you to read in an entire file without knowing it's size. Just ask for a large amount and if error code 10 is

returned, BC will tell you the file size in bytes.

EXAMPLES:

 LD HL, FILE ;point to a file name.

 LD A, 8 ;use tape 1.

 LD B,l ;let's read the file.

 CALL FCC0 ;open the file.

 JR NZ, ERROR ;let's see what went wrong.

 LD (FNUM) ,A ;save the file number for later.

;.....more code

 LD A, (FNUM) ;get file number.

 LD BC,20000 ;we have room for 20000 bytes.

 LD HL, BUFFER ;starting at this address.

 CALL FCD2 ;read them in.

 JR Z , NOTALL ;all read in so file bigger than 20000

 CP 10

55

 JR NZ, ERROR ;this is not an EOF error, what

happened?

 LD (FSIZE) ,BC ;save this as the file size.

.

56

FILE OPERATIONS FILE I/O

WRITE FILE

 JUMP TABLE ADDRESS: FCD5

ENTRY: A file number

 BC bytes to write

 HL. pointer to the data

EXIT: Zero flag set means success

 A error code if non zero

 others preserved

DESCRIPTION:

This routine is very similar to READ on the previous page except that it writes out the specified number of bytes. It

fills up the current block, writes it out if full via WRITE BLOCK(79) If the mode is 3 (read/write) it pre-reads the

next block prior to writing additional data. Error handling is similar to READ.

The advantage of this routine is that it lets you write sequentially or randomly to a file. When using random write,

you must use FILE MODE 3 when opening the file and pre-read up to the end of the previous record prior to writing

out the current one.

EXAMPLES:

This routine opens a file for random read and updates record number 10.

 LD HL, FILE ;point to a file name.

 LD A, 8 ;use tape 1.

 LD B,3 ;let's read/write the file.

 CALL FCC0 ;open the file.

 JR NZ , ERROR ;let's see what went wrong.

 LD (FNUM) ,A ;save the file number for later.

;more code

 LD E,9;read 9 records.

MORE:

 LD A,(FNUM) ;get file number.

 LD BC,20 ;each record is 20 bytes.

 LD HL,BUFFER ;starting at this address.

 CALL FCD2 ;read them in.

 JR NZ, ERROR ;let's see what happened.

57

 DEC E

 JR NZ,MORE

 LD A, (FNUM)

 LD BC,20

 LD HL,NEW ;this is the new data.

 CALL FCD5 ;update record 10.

 JR NZ, ERROR ;something went wrong.

58

FILE OPERATIONS FILE I/O

TRIM FILE

JUMP TABLE ADDRESS: FCED

ENTRY: A device

 DE pointer to filename

EXIT: Zero flag set means no errors

 A error code if non zero

 others preserved

DESCRIPTION:

This routine is used to correctly close a file which was MADE [MAKE FILE](49) with a file length of zero.

Initially, all remaining space was allocated to the file. The routine starts by finding the file and placing it in its

internal FCB buffer. It compares the reserved size with the used size. If they are the same, the routine exits with no

error. It then checks that the file is indeed the last entry in the directory. If it is not, the routine exits without an error;

it just does not trim. If all the above conditions are met, the directory entry for the file and for BLOCKS LEFT are

adjusted to reflect the USED file size. The directory is updated via a call to WRITE BLOCK(79). The only errors

this routine generates are those outside its control such as File Not Found, Missing Media, Bad Block, etc.

Failure to TRIM a file which was made with a file length of 0 will effectively disable the rest of the medium. Since

the BLOCKS LEFT will be zero, no more files will be allowed.

EXAMPLES:

59

FILE OPERATIONS FILE I/O

INITIALIZE DIRECTORY

JUMP TABLE ADDRESS: FCBD

ENTRY: A device

 C number of K in directory

 DE size of medium (160K, 256K, 320K, etc.)

 HL Volume name

EXIT: Zero flag set means no error

 A error code if non zero

 others preserved

DESCRIPTION:

This routine is equipped to correctly initialize a directory of any size on a medium of any size. It starts by filling a

1K buffer with zeros. It then moves in the 4 default directory entries: VOLUME, BOOT, DIRECTORY, and

BLOCKS LEFT. It then copies the user supplied name into the volume entry, making sure that the volume name is

not longer than 11 characters. If it is longer, it is truncated without an error. It then sets the directory size in the

volume entry by adding 8OHEX to it and placing it in the attributes byte of the volume name. The volume size is

then copied to the volume entry and the directory size to the directory. The number of blocks in the directory are

subtracted from the volume size to determine the blocks left and that entry is updated. It then writes out the directory

with an indirect call to

WRITE ONE BLOCK(80).

If this routine is carefully used, it can successfully initialize any directory. Unlike SmartBasic's INIT command, this

routine does not check if the directory is protected. The only protection against an INIT from this function is a write

protect tab.

Also, unlike SmartBasic's INIT, it does NOT put a JUMP TO SMARTWRITER in block zero of the medium. If the

INIT disk was previously a bootable medium, you may get undesirable results if the disk is BOOTED.

EXAMPLES:

 LD A,4 ;do disk one.

 LD C,3 ;give it 3 blocks of directory.

 LD DE,360 ;this is a double sided 5 1/4 disk.

 LD HL, NAME ;give it this volume name.

 CALL FCBD ;do it

 JR NZ , ERROR ;what happened?

;

NAME: DB 'Guy's Disk',03

60

FILE OPERATIONS FILE I/O

RESET FILE

JUMP TABLE ADDRESS: FCC6

ENTRY: A file number

EXIT: Zero flag set means success

 A error code if non zero

 others preserved

DESCRIPTION:

This function rewinds a file back to the first byte so it can be read over from the beginning. It begins by checking the

validity of the file number and checks if the FCB is indeed in use. Upon failure of either of these conditions1 error

code 9 is returned. It then checks if the current block has been modified. If so, it is written out via WRITE

BLOCK(79). The FCB pointers are reset to the beginning of the file. If the mode is WRITE, the USED FILE SIZE

is set to 1. If the mode is READ or READ/WRITE, the first block of the file is pre-read into the FCB buffer.

This function may be handy when TWO PASS work is performed on a file. After reaching the end or a determined

point, the file can be rewound without resorting to CLOSE FILE(53) and OPEN FILE(52). While it can be used in

conjunction with random access files, it is awkward for this use since the file is always rewound to the start rather

than a specific point. One way to handle Random access is to rewind the file, read and ignore x-l records, and finally

bring in record x. When a random file is very long, this process can be very time consuming, especially from tape.

The recommended approach for randomly accessing files is to calculate your own offsets and read it directly using

READ BLOCK(74) WRITE BLOCK(79). Your program will have to remember what the highest record is and

update the directory entry accordingly. Care must be exercised not to over run the maximum file size as allocated in

the directory. The safest thing to do is likely to adopt the SmartFiler technique and allow only one data base per

medium and have it occupy all the space regardless of the size.

EXAMPLES:

Consult the example in WRITE FILE(56). After the file has been opened and written to. It will be necessary to

rewind it to access a smaller record number (e.g. 5):

 LD A,(FNUM) ;get the file number.

 CALL FCC6 ;rewind to start.

 JR NZ,ERROR

;

;now use the same technique shown on page 41

;to pre read records which are ahead of the desired one.

;

61

 FILE OPERATIONS FILE I/O

GET DATE

JUMP TABLE ADDRESS:FCDB

ENTRY: none

EXIT: Zero flag set means success

 A error code if non zero

 B day in Binary Coded Decimal

 C month

 D year

 others preserved

DESCRIPTION:

This routine extracts the system date from the EOS. If all 3 date bytes are zero, an error code 4 is returned in register

A. Otherwise, registers B C D contain the day, month, and year.

The date is stored in BCD format. This is a combination of hexadecimal and decimal and can more accurately

defined as the ASCII representation of the decimal characters of the date. Thus January 28, 1987 would be

represented by the following HEX numbers: 28 0l 87.

EXAMPLES:

This subroutine gets the date and displays it in decimal on the screen. There are more elegant ways of printing BCD

numbers, but this one is easy to follow:

SHOWDATE:

 CALL FCDB

 LD E,32 ;the ASCII value of space.

 LD A,B

 CALL PRINTD ;print the two digits.

 LD A, C

 CALL PRINTD

 LD A,D ;and fall through to FRINTD.

PRINTD:

 PUSH AF ;save character.

 AND F0 ;strip the lower bits.

 RRCA

 RRCA

 RRCA

 RRCA ;move to lower 4 bits.

 OR E ;add in the ASCII offset.

62

 CALL PRINTA ;routine to call print character and check

errors.

 POP AF

 AND 0F ;strip the top bits.

 OR E

 CALL PRINTA ;print the other half.

 LD A,' ' ;put a space between.

 CALL PRINTA

 RET

63

FILE OPERATIONS FILE I/O

PUT DATE

JUMP TABLE ADDRESS: FCD8

ENTRY: B day

 C month

 D year

EXIT: all registers preserved

DESCRIPTION:

This routine updates the system date with the user supplied date. It will not return an error since no device

operations or validity checks are performed. See GET DATE on previous page for date formats.

The only time that the EOS uses the system date is when a file is CREATED [MAKE FILE](49). At that time, the

system date is written to the file control block of the file. Subsequent actions on a file will not change the system

date. Even a call to UPDATE FILE IN DIRECTORY(50) will not change the date. Thus the date in a file entry is

intended to reflect the creation date of the file.

If you wish to have your files DATED correctly, you should ask the user for the date, read it from a clock, etc. and

then PUT in in the EOS via this function.

EXAMPLES:

Following is a machine language routine which may be used from SmartBasic to PUT the date in the EOS. It

presumes that memory addresses 28000 to 28002 contain the day, month, and year in the correct BCD format.

 LD HL, 28000

 LD B,(HL)

 INC HL

 LD C, (HL)

 INC HL

 LD D, (HL)

 CALL FCD8

 RET

This routine can be POKED anywhere in available memory; following are the related DECIMAL POKE values.

33 96 109 70 35 78 35 86 205 216 252 201

^^^^^

This is 28000; change to reflect a different source address for the data.

64

FILE OPERATIONS FILE I/O

DELETE FILE

JUMP TABLE ADDRESS: FCE1

ENTRY: A device

 HL pointer to file name

EXIT: Zero flag set means success

 A error code if non zero

 others preserved

DESCRIPTION:

This routine calls FIND FILE(43) to see if the file exists. It then extracts the attributes from the file entry to see if

the file is locked (bit 7). If it is, error code 16 is returned. If not, the deleted bit (2) is set and the directory entry re

written via UPDATE FILE IN DIRECTORY(50).

The EOS uses its own internal buffers to perform this function. Thus two files can be opened and delete file called

without fear of running out of buffers.

EXAMPLES:

 LD A, 8 ;use tape 1.

 LD HL, NAME ;use this file name.

 CALL FCE1 ;try and delete.

 RET Z ;it worked.

 CP 16

 JR Z,LOCKED

 CP 5

 JR Z,NOFILE ;file not found.

 CP 24

 JR Z,BADDIR ;medium contained invalid directory.

;etc.

65

FILE OPERATIONS FILE I/O

RENAME FILE

JUMP TABLE ADDRESS: FCDE

 ENTRY: A device

 DE old name

 HL new name

EXIT: Zero flag set means success

 A error code if non zero

 others preserved

DESCRIPTION:

This routine is used to change a file's name; it will not change the file's attributes. It begins by checking if the NEW

NAME exists via FIND FILE(43). If it exists, the routine exits without generating an error!(l)! It then tries to find

the old file name. If it is not found, error 5 is returned. The next step is to move 12 bytes of the new name on top of

the old name and rewrite the directory via UPDATE FILE IN DIRECTORY(50).

(l)This unfortunate oversight can cause many problems. For example, you may try to rename an "A" file to a" and

get a no error condition when nothing was done. It seems this routine initially returned an error but COLECO

decided not to generate an error because they expected the FIND FILE routine to generate errors. While this is true

with the second find, it is not of the first. PROGRAMMERS BEWARE! You must look for the target file name

yourself.

EXAMPLES:

Here is a routine to correctly rename a file.

 LD A,4 ;use disk 1.

 LD DE,NEW ;point to the new file name.

 LD HL,BUFFER ;store the entry here.

 CALL FCCC ;find the file.

 JR Z,EXISTS ;then rename must abort.

 LD. A,4

 LD DE,OLD

 LD HL,NEW

 CALL FCDE ;now we can try to rename.

 RET Z ;yes we got it.

;

;process errors here

66

DEVICE OPERATIONS

FIND PCB

JUMP TABLE ADDRESS: FC5A

ENTRY: none

EXIT: IY current PCB address

 others preserved

DESCRIPTION:

This simple routine just returns the address of the current Processor Control Block. It is the header to the Device

Control Blocks which follow immediately after it. The first byte of the PCB (IY+0) indicates its status. The lower 7

bits are usually a 2, indicating it is busy... it is always busy. The top bit is set to indicate it has acknowledged the last

command it has received. The next 2 bytes contain a pointer to the PCB itself. While this may seem redundant, it is

essential to the proper operation of a RELOCATE PCB(17) command.

Byte 3 (IY+3) may be of interest. It indicates how many devices were FOUND when the net was scanned.

Remember that the keyboard and ADAM printer are one device each. The tape drives 1 and 2 only count as 1 device

since they share the same processor. Thus, a BASE ADAM will respond with three devices. An ADAM with two

disk drives will have 5 devices. A maximum of 15 devices can be handled by the PCB.

EXAMPLES:

67

DEVICE OPERATIONS

FIND DCB

JUMP TABLE ADDRESS: FC54 or FC57

ENTRY: A device

EXIT: Zero flag set means no error

 A device ID or error code

 IY pointer to DCB for selected device or garbage if error

 others preserved

DESCRIPTION:

This routine is called internally by various device routines. It returns a pointer to the Device Control Block in

register IY. If the user wishes to write his own device handling routines, this one will be the backbone of all

operations Unless the NET is re-scanned, it is not necessary to FIND the DCB before every operation. EOS device

routines can be speeded up by making your own table of DEVICES and accessing them directly. The EOS originally

had two different routines for finding DCB's. While one has been eliminated, its jump table entry points to the active

routine.

See DEVICE CONTROL BLOCK STRUCTURE(119) for details of the DCB commands.

EXAMPLES:

The following routine sets up a table for 15 devices and writes their DCB address (or zero) in the table:

 LD B,15

 LD HL,TABLE+31 ;point to the top of the device table.

FIND:

 LD A,B

 CALL FC54

 LD DE,0 ;prepare to write a zero if none.

 JR NZ,NODCB

 PUSH IY

 POP DE copy DCB address to DE.

NODCB:

 LD (HL) ,D ;write address to table.

 DEC HL

 LD (HL) ,E ;remember we are working backwards.

 DEC HL

 DJNZ FIND

68

DEVICE OPERATIONS

REQUEST DEVICE STATUS

JUMP TABLE ADDRESS: FC7E

ETTRY: A device

EXIT: Zero flag set means no errors

 A error code if non-zero

 IY DCB address or garbage if DCB not found.

 others preserved

DESCRIPTION:

This routine finds the DCB(67) for the requested device. It asks the device for status and waits for a reply. When the

DCB replies, the status is compared with 80HEX and control is returned to the user with IY pointing to the DCB.

This routine returns the status of the DCB itself. For the status of the device, see the routine on the next page.

EXAMPLES:

 LD A,4 ;check disk 1.

 CALL FC7E ;how is it doing?

 RET Z ;everything is fine.

 AND 7F ;strip the high bit.

 CP 1

 JR Z,NODCB ;sorry no disk one.

 CP 2

 JR Z,BUSY ;leave me alone I am working.

 CP 3

 JR Z,IDLE ;device off line.

;etc.

69

DEVICE OPERATIONS

GET DEVICE STATUS

JUMP TABLE ADDRESS: FCE4

ENTRY: A device

EXIT: Zero flag set means no errors

 A error code if non-zero or status

 others preserved

DESCRIPTION:

This routine gets the device specific status which was reported during the REQUEST FOR STATUS on the previous

page. In order to get a complete status report, both these routines should be called and evaluated.

The routine does not perform a STATUS request, it just reads the DEVICE STATUS FLAG from the device control

block. This is a complex bit pattern indicating presence of an alternate device and whether or not media is present.

These bit patterns are placed in the upper and lower nibble of the status which is returned in A. If you are checking a

PRIMARY device (one with a number from I to 15), you should check the lower nibble. If you are checking a

secondary device (one with a number from 17 to 31), you should check the upper nibble.

The bit pattern is as follows: 0000 unknown error/or all OK

 0001 CRC Error

 0010 Missing Block

 0011 Missing Media

 0100 Missing Drive

 0101 Write protect tab in place

 0111 Drive Error

EXAMPLES:

The following routine asks for the device status flag. the device status of the tape drives and reads

 LD A,8 ;ask about tape 1.

 CALL FC7E ;get status first.

 JR NZ, ERROR ;problem with device.

 LD A, 8

 CALL FCE4 ;ask for device status.

 AND 0F ;use lower nibble only.

 CP 4

 JR Z , NODEVICE ;there is no tape 1.

 CP 3

 JR Z,NOMEDIA ;no tape in the drive.

 LD A,18H

 CALL FCE4 ;ask about tape 2.

 AND F0 ;strip low bits this time.

 RRCA

 RRCA

70

 RRCA

 RRCA ;shift high to low.

;now process as above for tape 2 status.

71

DEVICE OPERATIONS

SOFT RESET DEVICE

JUMP TABLE ADDRESS: FC90

ENTRY: A device

EXIT: Zero flag set means success

 A error code if non zero or 128 if complete

 others preserved

DESCRIPTION:

This routine can be used to reset a device to its default inactive state. While there are routines to specifically reset

the keyboard and printer, they both call this routine. Other devices like the tape and disk drives, must be reset from

this routine.

The routine begins by finding the DCB for the device; it returns an error if not found. It then checks if the device is

busy; a busy device is not reset as this may interrupt a crucial activity like writing a block to disk. The next step is to

ask the DCB to RESET the device. The routine then waits for the DCB to acknowledge the command and compares

the result with 128 which is the OK status. Thus, if there are any problems, a NON ZERO flag is returned to the user

for interpretation.

EXAMPLES:

 LD A, 8 ;reset tape 1.

 CALL RESET ;do it.

;

;more code

;subroutine to reset the device in A

;

RESET:

 CALL FC90

 RET Z ;reset went OK

 AND 127 ;strip acknowledge bit.

 CP 3

 JR Z,BUSY ;device is doing something

 CP 1

 JR NZ,NODCB ;sorry I don't have a device.

72

DEVICE OPERATIONS

SOFT RESET KEYBOARD

JUMP TABLE ADDRESS: FC93

ENTRY: none

EXIT: Zero flag set if success

 A error code if non zero

 others preserved

DESCRIPTION:

This routine simply loads the keyboard device(l) and jumps to SOFT RESET DEVICE(71). It has one important

function...take off the SHIFT LOCK key. Sometimes, your program may expect a lower-case character or a number

from the keyboard. If the KEY PRESS is not echoed to the screen, you may receive a $ instead of a 4, reject it, and

the user is wondering what happened. Sending a SOFT RESET to the keyboard, makes sure that the LOCK key is

released.

EXAMPLES:

73

DEVICE OPERATIONS

SOFT RESET PRINTER

JUMP TABLE ADDRESS: FC96

ENTRY: none

EXIT: Zero flag set means success

 A error code if non-zero

 others preserved

DESCRIPTION:

This routine also loads the PRINTER device number(2) and jumps to SOFT RESET DEVICE(71). As with the

keyboard reset, it accomplishes a useful function. When the printer receives a reset, it returns the print head to the

left margin and returns the printer to FORWARD MOTION. This function is highly recommended before any

printing job. If the last job was aborted in mid stream, you want to make sure you are not left hanging in the middle

of a line.

Note that the printer will not be reset if it is busy (printing something). You should make sure it is not busy by

performing a status check first.

EXAMPLES:

74

DEVICE OPERATIONS READ/WRITE BLOCK

READ BLOCK

JUMP TABLE ADDRESS: FCF3

ENTRY: A device

 BCDE block number

 HL destination for data

EXIT: Zero flag set means success

 A error code if non zero

 others preserved

DESCRIPTION:

This is the most intensive READ BLOCK routine. It begins by calling READ ONE BLOCK(75). If an error other

than TIMEOUT is returned, it retries up to twice to complete the request. if the command is not accepted, then a

media error is returned (22). If the command is accepted or a timeout, it CALLS REQUEST DEVICE STATUS(68)

until the time out clears or an error is returned. It then gets the MEDIA status (upper or lower nibble) to check for

errors. If the media or the device is missing, then error code 22 is returned. If there is no media error, a second

READ request is sent. After two retries, the command aborts.

While this routine catches a variety of errors, it almost always returns the same error code 22. It may be difficult for

the program to interpret the errors generated by the routine. If you just want to tell the user there is an error, then use

this routine since it should catch all the possibilities. If you want to decode the errors yourself, use the one on the

next page.

Note that the retries in this routine do little good since a tape or disk error is not cleared by the controller until the

drive door is opened and the media "adjusted".

Note also that the second read request does not really slow down the operation since the tape and disk drives have a

1K memory buffer and can instantly return the data if the block number is the same.

COLECO had anticipated VERY LARGE media when it designed the READ BLOCK routines. Accordingly, you

must send a quadruple precision number as the BLOCK to read. Register BC contains the HIGH BLOCK NUMBER

(usually zero), and register DE, the LOW BLOCK NUMBER (up to 65535K). When we have devices on the

ADAM NET which have more than 64MEG of storage, then we will start using BC.

EXAMPLES:

 LD A, 4 ;read disk one.

 LD BC,0

 LD DE,l00 ;read block 100.

 LD HL, 12345 ;put the data here.

 CALL FCF3 ;try and read.

 JR NZ, ERROR ;guess we got an error code 22.

75

DEVICE OPERATIONS READ/WRITE BLOCK

READ ONE BLOCK

JUMP TABLE ADDRESS: FC69

ENTRY: A device

 BCDE block number

 HL RAM address to put data

EXIT: Zero flag set means success

 A error code if non zero

 others preserved

DESCRIPTION:

This routine is quite simple compared to READ BLOCK on the previous page. It calls START READ ONE

BLOCK(76) and aborts on error. It then CALLS END READ ONE BLOCK(77) until the request is completed or an

error returned.

This routine will return an error if the DCB is not found or if the device is busy doing something else. It will also

return an error if the device is off line (idle) or if the device itself returns an error. While not as elegant as READ

BLOCK, it gives the programmer the opportunity to check for other errors.

EXAMPLES:

This routine tries to read one block. If the returned error is not BUSY or NO DCB, the programmer checks if media

is missing. Then the appropriate action can be taken.

 LD A,4 ;read disk one.

 LD BC,0

 LD DE,l00 ;read block 100.

 LD HL,12345 ;put the data here.

 CALL FC69 ;try and read.

 JR Z,GOOD

 AND 127 ;strip the acknowledge bit if any.

 CP 1

 JR Z,NODCB ;oops.

 CP 2

 JR Z,BUSY ;device is busy on something else.

 CP 3

 JR Z,IDLE ;device is off line.

 LD A,4

 CALL FCE4 ;ask for device status.

 AND 0F ;use lower nibble only.

 CP 4

 JR Z,NODEVICE ;there is no disk 1.

 OR A

 JR NZ,NOMEDIA ;no disk in the drive.

76

DEVICE OPERATIONS READ/WRITE BLOCK

START READ ONE BLOCK

JUMP TABLE ADDRESS: FCA2

ENTRY: A device

 BCDE block number

 HL RAM address to put data

EXIT: Zero flag set means success

 A error code if non zero

 others preserved (including A if no error)

DESCRIPTION:

This routine starts by calling FIND DCB(67) and aborts if there is an error. It then checks if the device is off line

(idle). It then writes the pertinent data into the DCB and issues a READ request. Control is then returned to the user

so the device (tape or disk) can do its work while other activities are in progress.

Have you ever noticed that the SUPER GAME Buck Rogers goes to the disk or data pack WHILE THE GAME IS

IN PROGRESS? It does that using START READ and END READ on the next page. The reason for this is to load

the NEXT SCREEN so it is instantly ready for use after finishing this screen. Unless you are extremely good, you

never have to wait after finishing a screen. This process known as background loading can be quite effective when

properly used.

The effective transfer rate of the DATA drives is 1400 bytes per second. Thus, it takes close to a second to READ a

block after the correct place has been found. During that period of time, hundreds of operations may be performed

by the Z-80 if there is no need to WAIT for the data.

EXAMPLES:

See END read for a complete example.

77

DEVICE OPERATIONS READ/WRITE BLOCK

END READ ONE BLOCK

JUMP TABLE ADDRESS: FC45

ENTRY: A device

EXIT: Carry flag set means complete

 Zero flag set means no error if CARRY

 A error code if non zero

 others preserved

DESCRIPTION:

This routine starts by finding the DCB(67) and returns an error if not found. It then checks if the device is off line

(idle). It then checks if the DCB has acknowledged the command (start read). If not, the CARRY FLAG is reset (no

carry) and control returned to the caller. If the command has been acknowledged, the status is compared to 8OHEX,

the carry flag set, and control returned to the caller.

It is important to check the CARRY flag first. If it is not set, then don't presume there is an error. If the Carry is set

and a NON zero condition exists, then there was an error. In order to decode the error, start by subtracting 80HEX

and comparing to the DCB error code table (92).

EXAMPLES:

These excerpts show a potential game situation which uses background loading of ONE block from disk. It calls

several subroutines which are not detailed but can be used as a general guide for such uses:

 LD A,4 ;use disk 1.

 LD BC,0

 LD DE,17 ;get from block 17.

 LD HL, 12345 ;put it here.

 CALL FCA2 ;start read.

 JP NZ, ERROR ;oops.

WAIT:

 CALL READJOY ;read the joystick.

 CALL MOVE ;move player if requested.

 CALL FIRE ;execute fire button if any.

 CALL UPDATE ;move monsters, obstacles, etc.

 LD A,4

 CALL FC45 ;are we done?

 JR NC ,WAIT ;command not acknowledged yet.

 JP Z,DONE ;background loading completed.

 AND 127 ;strip acknowledge bit.

 CP 1

 JR Z,NODCB

78

 CP 2

 JR Z,BUSY

 CP 3

 JR Z,IDLE

79

DEVICE OPERATIONS READ/WRITE BLOCK

WRITE BLOCK

JUMP TABLE ADDRESS: FCF6

ENTRY: A device

 BCDE block number

 HL where to write data

EXIT: Zero flag set means success

 A error code if non zero

 others preserved

DESCRIPTION:

This is the intensive WRITE BLOCK routine. It begins by calling WRITE ONE BLOCK(80). If an error other than

TIMEOUT is returned, it retries up to twice to complete the request. if the command is not accepted, then a media

error is returned (22). If the command is accepted or a timeout, it CALLS REQUEST DEVICE STATUS(68) until

the time out clears or an error is returned. It then gets the MEDIA status (upper or lower nibble) to check for errors.

If the media or the device is missing, - then error code 22 is returned.

While this routine catches a variety of errors, it almost always returns the same error code 22. It may be difficult for

the program to interpret the errors generated by the routine. If you just want to tell the user there is an error, then use

this routine since it should catch all the possibilities. If you want to decode the errors yourself, use the one on the

next page.

Note that the retries in this routine do little good since a tape or disk error is not cleared by the controller until the

drive door is opened and the media "adjusted".

Contrary to READ BLOCK(56), this routine does not ask for a second write as it would require rewinding the tape

and writing again. This operation would be quite slow.

EXAMPLES:

 LD A, 24 ;write to tape 2.

 LD BC,0

 LD DE,100 ;write block 100.

 LD HL, 12345 ;put the data found here.

 CALL FCF3 ;try and write.

 JR NZ, ERROR ;guess we got an error code 22.

80

DEVICE OPERATIONS READ/WRITE BLOCK

WRITE ONE BLOCK

JUMP TABLE ADDRESS: FCB4

ENTRY: A device

 BCDE block number

 HL memory address to start writing from

EXIT: Zero flag set means success

 A error code if non zero

 others preserved

DESCRIPTION:

This routine calls START WRITE ONE BLOCK(81) and returns if there is an error. It then repeatedly calls END

WRITE ONE BLOCK(82) until such time as the command is completed. When the acknowledge is received, the

end write error, if any, is returned to the caller. The routine stays in total control until the process is completed or an

error generated.

EXAMPLES:

This routine tries to write one block. If the returned error is not BUSY or NO DCB, the programmer checks if media

is missing. Then the appropriate action can be taken.

 LD A,4 ;write to disk one.

 LD BC,0

 LD DE,100 ;write block 100.

 LD HL,l2345 ;put the data found here.

 CALL FG69 ;try and write.

 JR Z,GOOD

 AND 127 ;strip the acknowledge bit if any.

 CP 1

 JR Z,NODCB ;oops.

 CP 2

 JR Z,BUSY ;device is busy on something else.

 CP 3

 JR Z,IDLE ;device is off line.

 LD A,4

 CALL FCE4 ;ask for device status.

 AND 0F ;use lower nibble only.

 CF 4

 JR Z,NODEVICE ;there is no disk 1.

 OR A

 JR NZ,NOMEDIA ;no disk in the drive.

81

DEVICE OPERATIONS READ/WRITE BLOCK

START WRITE ONE BLOCK

JUMP TABLE ADDRESS: FCAB

ENTRY: A device

 BCDE block number

 HL RAM address to start writing from

EXIT: Zero flag set means success

 A error code if non zero

 others preserved (including A if no error).

DESCRIPTION:

This routine starts by calling FIND DCB(67) and aborts if there is an error. It then checks if the device is off line

(idle). It then writes the pertinent data into the DCB and issues a WRITE request. Control is then returned to the user

so the device (tape or disk) can do its work while other activities are in progress.

Except for the WRITE request, this routine is identical to START READ ONE BLOCK(76).

EXAMPLES:

82

DEVICE OPERATIONS READ/WRITE BLOCK

END WRITE ONE BLOCK

JUMP TABLE ADDRESS: FC4E

ENTRY: A device

EXIT: Carry flag set means complete

 Zero flag set means no error if CARRY

 A error code if non zero

 others preserved

DESCRIPTION:

This routine starts by finding the DCB(67) and returns an error if not found. It then checks if the device is off line

(idle). It then checks if the DCB has acknowledged the command (start write). If not, the CARRY FLAG is reset (no

carry) and control returned to the caller. If the command has been acknowledged, the status is compared to 8OHEX,

the carry flag set, and control returned to the caller.

This routine is identical to END READ ONE BLOCK(77). See that routine for more details. As a matter of fact,

either END READ or END WRITE may be called to determine if a device is done its operation whether read or

write.

EXAMPLES:

83

VIDEO RAM MANAGEMENT

SET VDP PORTS

JUMP TABLE ADDRESS: FD11

ENTRY: none

EXIT: A current memory configuration

 BC destroyed

 DE preserved

 HL destroyed

DESCRIPTION:

This routine starts by remembering what the current memory configuration is. It then calls bank switch [SWITCH

MEMORY BANKS](20) to switch in the 0S7. This is the mini operating system used by SmartWriter. It extracts the

port addresses for the VDP, Games Controllers, Strobe and Sound ports. Finally, it restores the default memory

configuration.

As a byproduct, this routine returns the current memory configuration. This may be handy to make sure the settings

are correct for the desired operation.

While this routine is called by the EOS cold start [INITIALIZE EOS](11), there may be situations where the

programmer may need to refresh the EOS data areas where the default control ports are stored.

While it is not essential to know what the port numbers are, following are the memory locations and port values for

EOS 6. The addresses may be different in other revisions of EOS but the port values should be the same.

PORT ADDRESS VALUE

VDP Control FC29 191

VDP Data FC2A 190

Joystick 0 FC2B 252

Joystick 1 FC2C 255 IN ONLY

Strobe set FC2D 128

Strobe reset FC2E 192

Sound FC2F 255 OUT ONLY

EXAMPLES:

84

VIDEO RAM MANAGEMENT

INITIALIZE VRAM TABLES

JUMP TABLE ADDRESS: FD29

ENTRY: A table number

 HL table address

EXIT: all registers, including IX and IY are used

DESCRIPTION:

This is a very useful routine which can be used to set up any of the 5 VDP tables. While the routine correctly sets up

the pointers to the tables, it does not check if the tables overlap each other. It is up to the programmer to ensure

correct setting of the VDP tables. Once the tables are set up, subsequent EOS calls involving characters, patterns or

sprites will be sent to the VDP according to the tables defined here.

The EOS cold start routine [INITIALIZE EOS](11) does NOT set up the VDP; you must set up your own tables. It

is essential to set up EACH table which will be used. In order to facilitate the calculation of tables, the routine asks

for a value in HL which is the VDP address where the table should start. The routine takes care of the encoding of

the data.

 TABLE NUMBER NAME SIZE

 0 Sprite Attribute 128 bytes

 1 Sprite Pattern 256 bytes

 2 Pattern name table varies with VDP mode

 3 Pattern Generator 2048 bytes

 4 Pattern Color varies with VDP mode

EXAMPLES:

This routine shows the requirements for 32 column displays. VDP memory area from 420 Hex to 7FF Hex is

unused. Neither is the area form 1000 Hex to 37FF Hex. All area above 3980 Hex is also available. This

configuration leaves plenty of room for bigger pattern and color tables for the other VDP modes.

85

VIDEO RAM MANAGEMENT

LOAD DEFAULT ASCII IN VDP

JUMP TABLE ADDRESS: FD38

ENTRY: A none

EXIT: All registers including IX are used.

DESCRIPTION:

This routine gets the address of the pattern generator table as it was set up using INIT TABLES on the previous

page. It then asks PUT ASCII on the next page, to place the first 128 characters in the start of the table. This routine

is a handy way of bringing in all the ASCII characters without calculating the offsets.

The user MUST call this routine before printing any characters to the screen unless the screen was already initialized

by another program.

EXAMPLES:

86

VIDEO RAM MANAGEMENT

put ASCII IN VDP

JUMP TABLE ADDRESS: FD17

ENTRY: BC number of characters (not bytes)

 DE address in Video RAM to start at

 HL character number to start at

EXIT: all registers used except IY

DESCRIPTION:

This routine copies a specific number of ASCII characters into VRAM. It begins by multiplying HL by 8 to get the

offset position in the table. It also multiplies BC by 8 to get the total byte count. It then switches in the EOS ROM

where the default ASCII characters are located. It gets the address of the ASCII character set and adds the offset to

the first character. It then calls WRITE VRAM(88) to move the data. The last step is to restore the memory

configuration to its previous state. When calling this routine, it is essential to indicate the proper offset into video

RAM based on the tables which were set up using the routine on page 65.

EXAMPLES:

This subroutine restores one ASCII character (sent in A) to its default state. It gets the base VAAM address from

memory where the programmer stored it when initializing the VDP. It might be used if a character was intentionally

(or accidentally) altered for a special effect.

 LD BC,1 ;restore only one.

 LD DE, (PATTERN) ;base address of pattern table.

 LD H,0

 LD L,A ;the pattern to restore.

 ADD HL,HL

 ADD HL,HL

 ADD HL,HL ;times 8-offset.

 ADD HL,DE

 EX DE,HL ;here's where to start in table.

 LD H,0

 LD L,A ;put pattern number back in HL.

 CALL FDl7 ;do it.

If you are going to make significant use of this routine, it is wise to set your pattern table at 0. In that case you only

need to multiply the character by 8 to determine the offset:

 LD BC,1

 LD H,0

 LD L,A

 ADD HL,HL

 ADD HL,HL

 ADD HL,HL

 EX DE,HL

87

 LD H,0

 LD L,A

 CALL FDl7 ;much shorter.

88

VIDEO RAM MANAGEMENT

WRITE VRAM

JUMP TABLE ADDRESS: FD1A

ENTRY: BC number of bytes to write

 DE VRAM start address

 HL where to get data (user buffer)

EXIT: HL points one past end of data moved

 others destroyed

DESCRIPTION:

The routine starts by preparing the VDP for a write operation by feeding it the start address in DE. It then sends the

bytes one at a time through the VDP data port. Since the port does not return any errors, the routine just presumes all

went well and exits after sending the last byte.

EXAMPLES:

This routine sends a screen full of text to the name table. This can be a quick way to POP information into the screen

(e.g. a window).

 LD BC ,768 ;get a screen full worth of 32 column data.

 LD DE, (NAME) ;where did I put the name table?

 LD HL, SCREEN1 ;this is the screen I want displayed.

 CALL FD1A

89

VIDEO RAM MANAGEMENT

READ VRAM

JUMP TABLE ADDRESS: FD1D

ENTRY: BC number of bytes to read

 DE VRAM start address

 HL where to put data (user buffer)

EXIT: HL points one past end of data moved

 others destroyed

DESCRIPTION:

This routine is the logical complement to WRITE VRAM on the previous page. It collects the specified number of

bytes from the VDP and places them in the where they can be analyzed, modified, and perhaps sent back user's

RAM area to the VDP.

EXAMPLES:

90

VIDEO RAM MANAGEMENT

PUT VRAM

JUMP TABLE ADDRESS: FD2C

ENTRY: A table number

 DE first entry to update

 HL pointer to user buffer

 IY number of entries to move

EXIT: HL points to one past end of data moved

 IX preserved

 others destroyed

DESCRIPTION:

This routine is more user friendly than WRITE VRAM(88). It takes care of all the arithmetic for you. All you need

to do is specify which table you wish to update and let the EOS take care of offsets, table addresses, etc.

The routine checks which table to update (see list on page 65) and multiplies the entry numbers, offsets, etc. by 4 or

8 depending if sprite attributes or pattern tables. It then extracts the base VRAM address from its tables and adds in

the offset to the start of the table. The last step is to call WRITE VRAM to actually move the data.

EXAMPLES:

This routine updates the sprite attributes for sprite numbers 10 to 19

 LD A,0 ;do sprite attributes.

 LD DE,l0 ;start at sprite 10.

 LD HL, SP+l0*4 ;start 40 bytes in the sprite table.

 LD IY, 10 ;update 10 entries.

 CALL FD2C

This routine sends one full line of text to line 10

 LD A,2 ;use the name table.

 LD DE,320 ;start at line 10 (32 per line).

 LD HL, LINE ;move in this line.

 LD IY, 32 ;move 32 entries.

 CALL FD2C

91

VIDEO RAM MANAGEMENT

GET VRAM

JUMP TABLE ADDRESS: FD2F

ENTRY: A table number

 DE first entry to get

 HL pointer to user buffer

 IY number of entries to move

EXIT: HL points to one past end of data moved

 IX preserved

 others destroyed

DESCRIPTION:

This routine is the complement of PUT VRAM on the previous page. It extracts from VRAM a specified number of

entries from the desired table. See additional explanations on previous page.

EXAMPLES:

This routine gets a full line of text from line 10 and shifts all the characters right by one. It then writes the data back;

the last character on the right disappears.

 LD A,2 ;use name table.

 LD DE,320 ;start at line 10.

 LD HL,LINE ;move it to here.

 LD IY, 32 ;move 32 entries.

 CALL FD2F ;get it here.

 LD A,2 ;use the name table.

 LD DE,320 ;start at line 10 (32 per line).

 LD HL, LINE - l ;start one behind it.

 LD (HL),' ' ;put a space there.

 LD IY, 32 ;move 32 entries.

 CALL FD2C ;scroll the line over.

92

VIDEO RAM MANAGEMENT

WRITE VDP REGISTER

JUMP TABLE ADDRESS: FD20

ENTRY: B Register to write to

 C Data to send

EXIT: ABCDE destroyed

 others preserved

DESCRIPTION:

This routine extracts the VDP control port address from the EOS table, sends the DATA out the port and then sends

the register number to which 128 has been added. If VDP register 0 or 1 is being written to, the data is stored so it

knows what mode it is in when calculating tables. Writing to the VDP registers is the way to set up various VDP

modes. Following is a breakdown of the VDP values; only the pertinent bits are shown, the others are zero.

REGISTER BIT Meaning if set

0 1 Graphics mode 2

1 7 Always 1

 6 0 to blank display, 1 to activate

 5 Non Maskable Interrupt enable

 4 TEXT mode on (40 column) \ set only one of these bits

 3 MULTI COLOR mode on / or none for 32 column

 1 16x16 sprite enable

 0 double size sprite enable

2 3210 multiplied by 400 HEX is address of NAME table

3 multiplied by 40 HEX is address of COLOUR table

4 multiplied by 800 HEX is address of PATTERN table

S multiplied by 80 HEX is address of SPRITE

Attributes

6 multiplied by 800 HEX is address of SPRITE

Pattern

7 7654 TEXT color in TEXT mode (40 column)

 3210 BORDER color

Bit 6 of register 1 can be cleared (off) while a screen is being PAINTED. The screen will be blanked but drawing

will still take place. Setting Bit 6 will instantly TURN ON the entire screen... nice special effect.

Bits 0 and 1 of register 1 are not the same. Bit 1 uses 4 consecutive sprites (e.g. 0,1,2,3 to make a composite sprite).

Bit 0 doubles the size of each bit to make a double sized sprite. Both bits can be combined for 32x32.

Registers 2 to 6 are handled automatically by INITIALIZE VRAM TABLES (84).

93

The TEXT mode uses no color table. SET (on) bits are the color specified by register 7. CLEAR (off) bits are

always transparent and allow the border color (register 7) to shine through and become the background. The same is

true of the 32 column mode when the CLEAR bits are set to transparent.

94

VIDEO RAM MANAGEMENT

READ VDP REGISTER

JUMP TABLE ADDRESS: FD23

ENTRY: none

EXIT: A VDP control value

 C Control port number

 others preserved

DESCRIPTION:

This routine reads in whatever value resides in the VDP control port, stores it internally, and returns the control

value in A to the caller.

The VDP CONTROL port is also referred to as register 7 which is READ ONLY. Note that the registers on the

previous page are WRITE ONLY. If you need to remember what you wrote to the registers, store it yourself.

Reading the CONTROL port provides 4 items of data in the bit pattern:

bit 7 set on each raster scan (interrupt)

bit 6 set if 5 sprites on the same line

bit 5 set if two sprites overlap

bits 43210 fifth sprite if any.

Reading the CONTROL PORT clears any collisions or 5th sprites which were recorded. If more than one condition

requires verification, be sure sand save the output value as it cannot be retrieved again. The sprite overlap (collision)

flag does not tell you which two have collided, but it is an easy way to check if there is a collision. If no collision,

then you can skip ahead. If there is one, then check each pair to determine who has collided with whom.

Have you noticed on some arcade games that some of the objects (sprites) flicker at times? When this happens, have

a close look: there are 5 or more sprites on the same line. BURGER TIME is a good example. In order for the sprite

not to totally disappear, programmers remove one of the higher priority sprites allowing the fifth sprite to show.

They then replace the other sprite making the 5th disappear again. It can be a lot of work but 'keeps the sprites

visible.

EXAMPLES:

95

VIDEO RAM MANAGEMENT

FILL VRAM

JUMP TABLE ADDRESS: FD26

ENTRY: A value to write

 DE repeat count

 HL address to write to

EXIT: All registers destroyed except IX IY

DESCRIPTION:

This routine sets up the VDP for a write operation to address HL. It then sends the byte in A to VRAM DE times.

When used to fill the name table, it puts the same character throughout the specified area.

EXAMPLES:

This routine sets up the name table and fills 24 lines of 32 rows with a space. This clears the screen the hard way.

 LD HL,0 ;use start of VRAM.

 LD A,2 ;for the name table.

 CALL FD29 ;WRITE VDP register

 LD A , ;put a space.

 LD DE,24*32 ;in the whole screen.

 LD HL,0 ;starting at beginning.

 CALL FD26

96

VIDEO RAM MANAGEMENT

CALCULATE PATTERN POSITION

JUMP TABLE ADDRESS: FD32

ENTRY: D Y position

 E X position

EXIT: DE absolute offset

 others preserved

DESCRIPTION:

This routine takes the drudgery out of figuring the proper offset related to a given set of X Y coordinates. It simply

multiplies Y by 32 and adds X. Unfortunately, the routine is set up for a 32 column screen configuration. If you are

using a 40 column set up, you are on your own. Once the offset is calculated, you can use PUT VRAM(70) to write

data directly to a screen position without affecting the current cursor position. If you wish to position the cursor, you

should use the control sequences in CONSOLE DISPLAY SPECIAL(23).

The routine is equipped to handle negative x,y coordinates but I have no idea why you would want to use them.

EXAMPLES:

This routine writes a message to a particular location on the screen.

 LD E,l0 ;goto line 10.

 LD D,5 ;column 5.

 CALL FD32 ;get offset.

 LD A,2 ;name table.

 EX DE,HL ;put first entry into DE.

 LD HL,MESSAGE ;print this word.

 LD IY,11 ;it is 11 bytes long.

 CALL FD2C ;put in in VAAM.

.....

MESSAGE:

97

 DB 'Please Wait'

...........

For 40 columns, following is a routine to calculate 40*y+x in DE

 LD H,0

 LD L,D ;HL-y.

 ADD HL,HL ;*2.

 ADD HL,HL *4

 ADD HL,HL ;*8.

 LD B,H

 LD C,L save *8.

 ADD HL,HL ;*16.

 ADD HL,HL ;*32.

 ADD HL,BC ;*40.

 LD D,0

 ADD HL,DE ;40*y+x.

98

VIDEO RAM MANAGEMENT

POINT TO PATTERN POSITION

JUMP TABLE ADDRESS: FD35

ENTRY: DE signed number

EXIT: E -DE/8 or 127 or -128 (80 HEX)

 others preserved

DESCRIPTION:

This routine is used to determine the pattern number for a given offset. Since each pattern is 8 bytes, dividing DE by

8 does the job. The routine can handle negative offset and returns either 7F or 80. Again, I have no idea what the

negative offsets are used for.

EXAMPLES:

99

VIDEO RAM MANAGEMENT

WRITE SPRITE TABLE

JUMP TABLE ADDRESS: FD3B

ENTRY: A number of sprites to write

 DE Sprite attribute table

 HL Sprite priority table

EXIT: IX preserved

 IY preserved

 others destroyed

DESCRIPTION:

This routine writes the specified number of sprites to the VDP in the order specified by the priority table in (HL).

This routine is one way to reorder the sprites without having to MOVE all the entries in the table. It can be used to

help overcome the 5th sprite priority problem.

EXAMPLES:

This routine uses two priority tables, alternating on each successive call to send the sprites in a different order.

 LD HL,ONE ;maybe use first order.

 LD A, (TOGGLE) ;

 NEG ;toggle it.

 LD (TOGGLE) ,A ;save it back.

 JR Z,USE1 ;let's use the first table.

 LD HL,TWO ;let's use the alternate.

 USE1:

 LD DE ,ATTRIBUTE ;get the attributes table.

 LD A, 6 ;it contains 6 sprites.

 CALL FD3B ;do it.

 RET

....

ONE: DB 0,1,2,3,4,5

TWO: DB 5,4,3,2,1,0

100

GAME CONTROLLERS

READ GAME CONTROLLER

JUMP TABLE ADDRESS: FD3E

ENTRY: A controller/spinner value

 bit 0 controller 0

 bit 1 controller 1

 bit 7 enable spinner for selected controller

 e.g. use 131 decimal or 83 HEX to read all

 IX user decode table

EXIT: IY preserved

 others destroyed

DESCRIPTION:

This routine can read either joystick or both and optionally read their spinners as well. It checks if controller 0 was

requested and skips to controller 1 if not. If neither controller is requested, the routine returns immediately. After

reading controller 0, it checks if controller 1 was also requested. It then calls a debounce routine which must

temporarily disable the interrupts while reading the joystick(s). It then gets the spinner count and resets it to zero. It

then reads and decodes the fire buttons, keypad, and joystick data. If any of the data is the same as the last time it is

placed in the user buffer. Thus, it takes two successive calls with identical data to register data and effect a

debounce. If the spinner was enabled, the spinner count is added to the previous spinner value in the user's table.

The user's table is ordered in this fashion:

0 Joystick 0 KEYPAD VALUES JOYSTICK

1 Right Fire button 0 1 2 3 1

2 Left Fire button 0 4 5 6 9 | 3

3 Keypad value 0 7 8 9 \ | /

4 Spinner 0 10 0 11 8----|----2

5 Joystick 1 / | \

6 Right Fire button 1 12 purple button (*3) 12 | 6

7 Left Fire button 1 13 blue button (#3) 4

8 Keypad value 1 15 blue and purple

9 Spinner I 15 no key pressed 0

 is off

Note that the EOS has an error in decoding the blue/purple button combination. In EOS 6, you can change byte

E205 to 14 to return the correct data when those buttons are pressed together.

EXAMPLES:

101

 LD A,3 ;read both.

 LD IX,TABLE ;put data here.

 CALL FD3E

 LD IX,TABLE ;restore pointer.

 LD A, (IX+1) ;get right button.

 OR (IX+2) ;OR with left button.

 JR NZ,PUSHED ;at lest one button pushed.

102

GAME CONTROLLERS

UPDATE SPINNER

JUMP TABLE ADDRESS: FD41

ENTRY: none

EXIT: DE preserved

 IX preserved

 IY preserved

 others destroyed

DESCRIPTION:

This routine checks the spinner value in both joysticks and increments or decrements the internal spin table if either

was active. The next time that READ GAME CONTROLLER(100) is called, the spinner's incremented value will

be added to the previous value in the user table - IF AND ONLY IF the spinner bit was enabled when the call was

made.

One spinner is the roller controller, when set in Roller Controller mode of operation. Unfortunately, the spinner

spins so fast that you must call this routine very frequently in order to CATCH most of the spinner action. It seems

the spinner can interrupt the Z-80 and branch to 38H. Thus, you should be able to set up an interrupt at 38H which

branches to FD4l. In this way, you would be able to update spinner values at a fast rate and interpret the spinner

update when you call READ GAME CONTROLLER. Unfortunately, I have not had any success in setting up an

interrupt handling routine.

EXAMPLES:

This routine uses SmartBasic's PDL routines as a vehicle for reading and updating the spinner. There is no PDL

function to return the SPINNER value, so it is necessary to PEEK directly into the joystick table. Unfortunately,

BASIC reads the spinner at the wrong place and it is necessary to FIX its calling convention. Each time you CALL

READ J0YSTICK (PDL in BASIC), the EOS spinner value is extracted and cleared. It is sent to the USER only if

requested. This allows you to CLEAR the current SPINNER update by CALLING READ JOYSTICK with the

SPINNER bit off.

100 POKE 26914, 3:POKE 26929, 3:REM turn off SPINNER read at wrong place

110 POKE 27115, 131:REM turn SPINNER read at correct place

115 p=PDL(0):REM read any joystick

120 PRINT PEEK(16787), PEEK(16782), CHR$(128):REM this is the new spinner

121 FOR x=l TO 1000:CALL 64833:NEXT:REM make several CALLS to UPDATE spinner

122 PRINT " "; PEEK(65112), PEEK(65113),:REM this is update since last time

130 GOTO 115:REM keep on repeating until ^C

103

SOUND ROUTINES

SOUND INITIALIZATION

JUMP TABLE ADDRESS: FD50

ENTRY: B number of entries to create

 HL pointer to list

EXIT: all registers used

DESCRIPTION:

This routine sets up an internal pointer to the user's list of songs, or special effects. It then sets up the pointer to each

of the 4 voices to an END-OF-SONG so they will all be synchronized when START SOUND(105) is called. The

routine then falls through to SOUND OFF on the next page.

Sound CONTROL data is in coded binary format, with the high nibble representing the volume and frequency for

the 4 voices:

1000 frequency voice 1 The lower nibble contains the data

1001 volume voice 1 itself. Either attenuation from 0 to 15

1010 frequency voice 2 or the two most significant bits of the

1011 volume voice 2 frequency. Following are the low nibble

1100 frequency voice 3 control codes for the SOUND voice:

1101 volume voice 3 0100 white noise

1110 noise control 0000 periodic noise

1111 noise volume They can be ORed with the frequency shift:

 0000 high pitch

 0001 medium pitch

 0010 low pitch

 0011 varied by voice 3

104

EXAMPLES:

SOUND ROUTINES

SOUND OFF

JUMP TABLE ADDRESS: FD53

ENTRY: none

EXIT: A 255

 C sound port

 others preserved

DESCRIPTION:

This handy routine turns the volume off on all voices which effectively kills any sound in progress. It should be used

whenever an operation (which may have used sound) is aborted. It can also be useful from SmartBasic when a

program crashes or ends abruptly leaving the sound blasting. Just CALL 64851 to turn it off.

EXAMPLES:

105

SOUND ROUTINES

START SOUND

JUMP TABLE ADDRESS: FD56

ENTRY: B sound number to start playing

 HL pointer to end of sound data

EXIT: A =0 if successful, non zero value means sound in progress

 HL pointer to next note

 IX pointer to sound data table

 all other registers used except IY

DESCRIPTION:

This routine gets the relevant vector for the requested sound into IX. It is the programmer's responsibility to save IX

for ending the sound. It then checks to see, if a sound is currently in progress and simply returns if so. You must

check for A=0 with an OR A instruction since the routine always returns with the zero flag set regardless of success

or failure.

The next step is to record the sound number in the internal buffer. After that, the routine decrements the pointer to

sound data to extract the address of the NEXT NOTE to play and places it in its PLAY buffer.

Note that no sound is generated by this routine, it just sets up the pointers used by PLAY SOUND on the next page.

EXAMPLES:

106

SOUND ROUTINES

PLAY SOUND

JUMP TABLE ADDRESS: FD59

ENTRY: none

EXIT: Zero flag set means sound is over

 all registers used except IY

DESCRIPTION:

This routine goes through each of the 4 voice data areas associated with a SOUND. It sends the volume and

frequency for each voice. It ends by checking if the SOUND is over and returns with the zero flag set if so. The idea

of this routine is to process one set of sound values, return control to the user, and play the next set of values on the

next call. Byte 3 is always a frequency value. Byte 4 may be either a voice or a volume commands. Bit 4 of the

sound data determines which type of command is sent.

BYTE

 0 flag for active voice-channel number or 62(3E) if sound effect.

 1&2 address of sound effect handler if 62 in byte 0

 you may notice that the frequency data is

 3 f2 f3 f4 f5 f6 f7 f8 f9 not in the correct pattern to

send to the

 sound port. The sound manager takes care

 4 0 0 0 0 0 0 f0 f1 of shifting bits around.

 .voice ID. see page 80 for details on voice.

 5 note length. This value determines if a note is to be repeated

(unchanged) several times. Set to 1 to play once.

 6 Sweep code. If zero, the note is not to be swept. The lower nibble

determines how many SWEEPS to perform and is decremented on each pass. Once

it becomes zero, it is reset by using the upper nibble value.

 7 Sweep value. If zero, the note is not swept. Other values

range from 1 to 127 and -l to -128. This value is ADDED to the base

frequency (bytes 3 and 4) to vary the frequency on the next pass. Sweeps

always work on fixed increments.

 8 Attenuation (volume) sweep. If zero, then no sweep. It is

decremented and reset as byte 6.

107

 9 The top four bits determine the VOLUME change to be applied to the

note. A value of 1 increases attenuation by one and a value of 15 decreases

attenuation by 1. Any carry (over 16) causes the volume to go from high to

low or reverse.

Sound programming is very complex and requires HOURS of analysis and experimentation.... I have not tried.

Basically, you set up an NMI interrupt vector to pass control to the SOUND MANAGER on a regular basis. This

allows you to go about your business while a sound is being played.

108

SOUND ROUTINES

END OF SOUND

JUMP TABLE ADDRESS: FD5C

ENTRY: DE pointer to sound number

 HL pointer to next note

 IX pointer to current sound table

EXIT: All registers used except IX and IY

DESCRIPTION:

The input values for HL and IX are the values returned by START SOUND(105). The programmer should have

saved these to call END SOUND. The routine saves the pointer to next note in the sound table, gets the sound

number and turns off the requested sound.

If all this sounds complicated, it is! Besides, the play sound routines can handle complex instructions like frequency

or volume sweeps through a variety of control codes. Several hours of decoding of the associated routines would be

required in order to make full use of the sound routines.

Considering all of that, it is no surprise that this EOS area is commonly used by programmers to install special

drivers like RAM DISK or HARD DRIVE interfaces.

EXAMPLES:

109

SUBROUTINES

DECREMENT LOW NIBBLE

JUMP TABLE ADDRESS: FD44

ENTRY: HL pointer to byte to be decremented

EXIT: Zero flag set if nibble becomes zero

 Carry set if result negative

DESCRIPTION:

This routine can be quite useful when working with BINARY CODED DECIMAL numbers. HI. is used as a pointer

to the byte containing two digits in question. A call to this routine reduces the least significant digit by one and sets

the zero flag if it becomes zero. The carry flag will be set if it becomes negative. The programmer can then affect a

borrow on the high nibble to correct the subtract error.

EXAMPLES:

 LD HL,NUMBER ;point to the data.

 CALL FD44 ;decrement it.

 JR NC,NOBORROW ;no need to borrow.

 CALL FD47 ;make a borrow.

 JR NC, BORROW ;so far so good.

;

;here you need to extend the borrow to the next most significant byte

;

BORROW:

 LD A, (HL) ;get the byte.

 AND 0F0H ;keep the top nibble.

 ADD A, 9 ;was originally zero so now 9 after borrow.

 LD (HL) ,A ;write it back.

NOBORROW:

110

;carry on with routine.

111

SUBROUTINES

DECREMENT HIGH NIBBLE

JUMP TABLE ADDRESS: FD47

ENTRY: HL pointer to byte

EXIT: Zero flag set if nibble becomes zero

 Carry flag set if result negative

DESCRIPTION:

This routine works like the one on the previous page except that it decrements the upper half of the byte in HL. If a

borrow is required, it must be taken from the next most significant byte (if any).

EXAMPLES:

112

SUBROUTINES

MOVE HIGH NIBBLE TO LOW NIBBLE

JUMP TABLE ADDRESS: FD4A

ENTRY: HL address of byte to move

EXIT: all registers preserved except A

DESCRIPTION:

This routine COPIES the most significant nibble of the byte in HL to the least significant nibble. Other than a

precursor to a BCD divide by ten sequence, I can't think of a particularly useful purpose for this routine.

It is used, however, by the sound routines to RESET sweep values. Sweep values range from 0 to 15 and are initially

placed in both halves of a byte. The low nibble is decremented until it becomes zero and then reset with the high

nibble.

EXAMPLES:

 LD HL, COUNTER ;hi-lo nibble as described above

 CALL FD44 ;decrement low nibble

 RET NZ ;not ready to take action yet

 CALL FD4A ;reset the counter in low nibble

;

;here take whatever action is required... one "pass" has been performed.

;

113

SUBROUTINES

ADD A AND (HL)

JUMP TABLE ADDRESS: FD4D

ENTRY: A signed value to add

 HL pointer to 16 bit number

EXIT: A varies

 B destroyed

 others preserved

DESCRIPTION:

This routine adds a signed value in A from +127 to -128 to a 16 bit number pointed to by register HL. The value is

stored in the usual LSB, MSB fashion. It adds the value in A to location HL and writes it back. It then adds the carry

and sign to the most significant byte.

EXAMPLES:

114

EOS DATA TABLES

Following is a description of some of the data tables in EOS 6. Most of them are the same in EOS 7.

FC17 to FC26 the numbers 0 to 15 representing the memory configurations.

FC27 port number for bank switching.

FC28 port number for network reset.

FC29 VDP control port.

FC2A VDP data port.

FC2B Joystick 0 data port.

FC2C Joystick 1 data port.

FC2D Strobe set port (read second half of joystick).

FC2E Strobe reset port (read first half of joystick).

FC2F Sound port.

FC30 to FD5F EOS Jump table.. .see next page.

FD60 EOS revision number.

FD6l FD62 Current VDP mode (registers 0 and 1).

FD63 VDP status (on last call).

FD64 FD65 Pointer to Sprite attribute table.

FD66 FD67 Pointer to Sprite pattern table.

FD68 FD68 Pointer to Name table.

FD6A FD6B Pointer to Pattern table.

FD6C FD6D Pointer to Colour table.

FD6E Current memory configuration.

FD6F Last storage device used.

FD70 FD7l Address of current PCB.

FD75 Last keypress register (after call to read keyboard).

FD76 FD85 Printer buffer.

FD86 Media size for INIT.

FD87 FD8A Current block of storage device.

FDA0 FDB9 Internal search buffer for directory work.

FDBA FDD3 Internal file control block.

FDD4 Current file number in directory.

FDE0 FE1B File Manager (see page 96).

FE1C FE57 Stack.

FE58 FE6l Debounce table for joysticks.

FE62 FE6D Temporary stack used when switching memory banks.

FE6E FE78 Sound data tables.

FE79 Character under cursor.

FE7A Left margin.

FE7B Right margin.

FE7C Top margin.

FE7D Bottom margin.

FE7E FE9E Screen buffer (only 33 characters).

FE9F Number of lines.

FEA0 Number of columns.

FEA1 FEA2 Home cursor address.

FEA3 FEA4 Pointer to name table.

FEA5 FEA6 Current cursor position.

FEC0 FEC3 Processor Control Block (PCB).

FEC4 FFFF Device Control Blocks (DCB); see page 94

115

EOS JUMP TABLE

This table lists only some of the jump vectors in the EOS. The ones which serve no purpose and those which are

disabled have been omitted. The addresses are written in decimal and HEX. The second column indicates the actual

address of the routine in EOS 6.

64560:FC3O JP F832:63538 initialize EOS

64563:FC33 JP F627:63015 console display (no special characters)

64566:FC36 JP F5DG:62940 console initialization

64569:FG39 JP F60A:62986 display character on screen (process

specials)

64572:FC3G JP F95F:63839 delay after hard reset

64575:FC3F JP F5B8:62904 end print buffer

64578:FC42 JP F57C:62844 end print character

64581:FC45 JP FAE2:64226 end read one block

64584:FC48 JP FBA5:64421 end read printer

64587:FC4B JP F4E0:62688 end read keyboard

64590:FC4E JP FBl3:64283 end write one block

64593:FC51 JP FBEl:6448l end write printer buffer

64596:FC54 JP F446:62534 find DCB

64602:FC5A JP FA4C:64076 get PCB address

64605:FC5D JP F8F6:63734 hard INIT

64608:FC60 JP F94B:63819 hard reset net

64611:FC63 JP F515:62741 print buffer

64614:FC66 JP F4FC:62716 print character

64617:FC69 JP FA9E:64158 read one block

64620:FC6C JP F4BA:62650 read keyboard

64629:FC75 JP FA87:64135 read device-return code

64635:FC7B JP FA2F:64047 relocate PCB

64638:FC7E JP F473:62579 request status

64641:FC8l JP F4CB:62667 keyboard status

64644:FC84 JP F5D2:62930 printer status

64650:FC8A JP F9CB:63947 scan net for devices

64653:FC8D JP F922:63778 soft initialization

64656:FC90 JP FA5D:64093 soft reset device

64659:FC93 JP FA5l:64081 soft reset keyboard

64662:FC96 JP FA55:64085 soft reset printer

64668:FC9C JP F580:62848 start print buffer

64671:FC9F JP F56D:62829 start print character

64674:FCA2 JP FAC6:64198 start read one block

64677:FCA5 JP FB86:64390 start read printer

64680:FCA8 JP F4D0:62672 start read keyboard

64683:FCAB JP FAFF:64255 start write 1 block

64686:FCAE JP FBC2:64450 start write printer

64689:FCBl JP F970:63856 synchronize clocks

64692:FGB4 JP FAB2:64178 write 1 block

64695:FCB7 JP FB75:64373 write printer

116

EOS JUMP TABLE

64698:FCBA JP EEEA:61162 initialize file manager

64701:FCBD JP F323:62243 initialize directory

64704:FCC0 JP EA00:59904 open file

64707:FCC3 JP EB04:60164 close file

64710:FCC6 JP EB6C:60268 reset file

64713:FCC9 JP E690:59024 make file

64716:FCCC JP E61B:58907 find file 1

64719:FCCF JP E651:58961 update file in directory

64722:FGD2 JP ECl7:60439 read file

64725:FCD5 JP ED8F:60815 write file

64728:FCD8 JP EEC5:61125 put date

64731:FCDB JP EED4:61140 get date

64734:FCDE JP F10F:61711 rename file

64737:FCE1 JP Fl4E:61774 delete file

64740:FCE4 JP F488:62600 get device status

64743:FCE7 JP FA94:64148 exit to WP

64749:FCED JP F241: 62017 trim file

64752:FCF0 JP F089:61577 find file in FCB

64755:FCF3 JP Fl7B:6l8l9 read block

64758:FCF6 JP FlE6:61926 write block

64761:FCF9 JP FOD9:61657 mode check

64764:FCFC JP EF0B:61l95 look up file in directory

64767:FCFF JP E618:58904 find file 2

64785:FDll JP El9l:57745 set VDP port data

64788:FDl4 JP E185:57733 switch memory banks

64791:FD17 JP E153:57683 put ASC in VDP

64794:FD1A JP E000:57344 write VRAM

64797:FDlD JP E0lA:57370 read VRAM

64800:FD20 JP E034:57396 write VDP register

64803:FD23 JP EO4F:57423 read VDP register

64806:FD26 JP E059:57433 fill VRAM

64809:FD29 JP E066:57446 initialize VRAM tables

64812:FD2C JP E0C9:57545 put VRAM

64815:FD2F JP E0CF:57551 get VRAM

64818:FD32 JP E10A:57610 calculate pattern position

64821:FD35 JP E129:57641 point to pattern position

64824:FD38 JP E149:57673 load default ASCII to VDP

64827:FD3B JP E1C5:57797 write sprite table

64830:FD3E JP E253:57939 read game controller

64833:FD4l JP E2A4:58020 update spinner

64836:FD44 JP E355:58197 decrement low nibble

64839:FD47 JP E35F:58207 decrement high nibble

64842:FD4A JP E369:58217 move high nibble to low nibble

64845:FD4D JP E374:58228 add A + (HL)

64848:FD50 JP E3AB:58283 sound initialization

64851:FD53 JP E3D1:5832l sound off

64854:FD56 JP E3E7:58343 start sound

64857:FD59 JP E406:58374 play sound

64860:FD5C JP E4B8:58552 end of sound

117

ERROR CODES

The EOS returns a variety of error codes. Several of these are errors returned by the Device Control Blocks. In order

to interpret these from the table below, the high bit must be stripped with an AND 7F.

 1 DCB not found

 2 DCB busy

 3 DCB idle

 4 No date

 5 No file

 6 File exists or printer busy

 7 No available FCB

 8 Match error, file incompatible

 9 bad file number (greater than 2).

10 End of file (reading past end of file).

11 File too big

12 Directory full or no key pressed on keyboard read

13 Storage media full

14 File number error

15 Rename error

16 Delete error

17 Range error or bad mode

18 Synchronize error on clock

19 Synchronize error byte 2

20 Mode incompatible with access request; e.g. reading a read protect

file

21 Media status error

22 Device error, usually with tapes or disks

23 Program non existent

24 Storage medium fails directory validity check

27 Device time out

118

MEMORY BANKS

The ADAM can access 64K of memory at a given time. This memory, however can be switched in different

combination of upper and lower 32K segments. These provisions allow the switching in of a GAME CARTRIDGE,

the EOS ROM, Expansion memory1 etc. Following are the memory configuration codes to send to the BANK

SWITCH ROUTINE(15):

CODE LOWER 32K UPPER 32K

0 SmartWriter ROM Normal RAM

1 Normal RAM Normal RAM

2 Expansion RAM Normal RAM

3 Os 7 Normal RAM

4 SmartWriter ROM Expansion ROM

5 Normal RAM Expansion ROM

6 Expansion RAM Expansion ROM

7 OS 7 Expansion ROM

8 SmartWriter ROM Expansion RAM

9 Normal RAM Expansion RAM

10 Expansion RAM Expansion RAM

11 OS 7 Expansion RAM

12 SmartWriter ROM Cartridge ROM

13 Normal RAM Cartridge ROM

14 Expansion RAM Cartridge ROM

15 Os 7 Cartridge ROM

The default set up for cartridge games is 15: use the OS 7 in lower memory and the cartridge in upper.

NORMAL RAM setting is used by SmartBasic and several other software. Generally, software which uses the blue

and yellow SmartKey displays use OS 7 in lower memory and normal RAM in upper (3).

Expansion ROM was intended to be used for some ROM based software which could instantly be booted like

SmartWriter when you power up the system.

SmartWriter uses configuration 0.

119

DEVICE CONTROL BLOCK STRUCTURE

The ADAM has more than one processor controlling its operations. The USER uses the Z-80 processor, and the

network is controlled by several 6801 processors. The main 6801 accesses device control blocks in the EOS to and

receive data according to the commands placed in the device control blocks. Each DCB is 21 bytes organized in the

following fashion:

send

0 Command and/or status byte

1-2 Address where to put or get data

3-4 Size of device buffer (Keyboard-l, Printer-16)

5-8 Block number requested (for tapes and disks)

9 Secondary device (see below)

10-13 Unused

14-15 Retry count, how often before quitting

16 Device number

17-18 Maximum length of device buffer

19 Device type (0-character, 1-block)

20 Device dependent status flag (the one that detects missing

media)

Device commands are placed in DCB+0 and the device acknowledges by placing a value 80HEX or greater in

DCB+0. If the value is greater than 80HEX, there is an error. There are only 5 commands:

 0 Idle, effectively disables the device

 1 Request status

 2 Reset device

 3 Write

 4 Read

The EOS has room for 15 devices. Following is a list of what COLECO had expected to supply as devices:

1 Keyboard 8 Tape 1

2 Printer 9 Tape 3

3 Copywriter 10 ?

4 Disk 1 11 Modem (not the Adam Link)

5 Disk 2 12 High Resolution Monitor

6 Disk 3 13 Centronics Interface

7 Disk 4 14 RS-232 Interface

 15 Gateway

Note that tape 2 is not listed. That is because tapes 1 and 2 share the same DCB. When requesting an operation on

tape 2, the request is sent to the DCB for tape 1 with the number 18HEX in the secondary device ID in byte 9. The

device status flag (20) is split in two nibbles. The upper represents the alternate device while the lower represents

the main device. This status bit is similarly coded for the disk drives as well.

120

FILE CONTROL BLOCK STRUCTURE

The EOS has three file control blocks. The first is used exclusively for directory searches and cannot be utilized for

a user file. The other two are used by the EOS in response to an OPEN FILE(38) request. Thus you can have two

files opened at once (e.g. read form one and write to the other) provided they are on the same medium. A file control

block has 36~bytes and is organized as follows:

0-11 File name

12 File attributes

13-16 Start block of file

17-18 Blocks allocated to the file

19-20 Blocks actually used

21-22 Bytes used in the last block

----------------------------------same as a directory entry

23 Device number corresponding to the file

24 File mode 0-unused (available)

 1-read

 2-write

 3-update

 4-fill rest of space on medium

25-28 Current block being used

29-32 Last block of file (or volume size if Directory FCB)

33-34 Byte position in current block

35 Length of FCB

While it may be interesting to know what the structure of an FCB is, the programmer normally does not need to

worry about the details. The EOS file operation functions can take care of all the housekeeping related to a file.

121

FILE MANAGER STRUCTURE

The Fi1e Manager is an internal data storage area used by the EOS to process file commands. The various routines

put and get information there when working with files. The File manager is 60 bytes long:

0 System Year

1 System Month

2 System Day

 -----------------------same as directory entry

3-14 File name

15 Attributes

16-19 Start Block

20-21 Blocks allocated to file

22-23 Blocks actually used

24-25 Bytes used in the last block

26 File Year

27 File Month

28 File Day

 ------------------------same as directory entry

29-30 Pointer to File Control Block

31-32 Pointer to Directory buffer

33 File number

34-35 Bytes requested (read or write)

36-37 Bytes not processed, yet

38-39 User's buffer to send/receive data

40-41 Pointer to FCB buffer

42-43 Pointer to end of FCB buffer

44-47 Block number currently working on

48-49 Pointer to user's file name

50-53 Block number or volume size

54-57 Block number for start of BLOCKS LEF'T (after adding current file

size)

58-59 Size of BLOCKS LEFT; space remaining on medium

As with the file control blocks, the EOS routines take care of manipulating all the information described above.

122

SAMPLE PROGRAM

;This program illustrates several of the EOS functions described in this manual. It has been deliberately abbreviated and certain

cosmetic improvements suppressed in order to keep it short. You will note that the bulk of the program is data in the form of

messages. Although the entire package may appear lengthy, adding more functions will add very little to the existing code since

most of the groundwork has already been laid. This is the advantage of creating modular routines which can be shared.

;

;The program has 5 functions accessed by pressing Smart Keys

; I string input from the keyboard

; with backspace editing

;

; II ordinary string printing using extra

; line feeds for spacing

;

; III How to move the cursor around

; and turn on inverse video

;

; IV writes data to a file

;

; V reads data from a file

;

;It is worthwhile to study the entire code as there are quite a few programming tricks included within the code itself. At the end of the code ;listing, you

will find full HEX listing in order to POKE the data in. To make a self booting disk, a simple method is to copy blocks zero and one ;of your SmartBasic

medium to a new medium. Then delete all the files form the directory EXCEPT the BASICPGM file. The next step is to ;write all the data starting at block

2 of the media. This can be easily done with CLONE.COM in TDOS. DO NOT change the file size in the ;directory unless you change the corresponding

parameter in the boot block.

;

;If you would like a CP/M disk copy of the source code along with a BOOTABLE version of the DEMO, please send $5.00 to the author. All ;profits will

be channeled back into ANN to fund other projects.

;

;Let's start by defining a few equates for the assembler

123

;

;**

;* JUMP TABLE VECTORS *

;**

;

F'CBDEVICE EQU 0FD6FH ;where EOS stores the default

drive

CONDISP EQU 0FC33H ;print characters without

controls

INITCON EQU 0FC36H ;set up the window

CONOUT EQU 0FC39H ;print character with control~

END_RD_KYB EQU 0FC4BH

START_RD_KYB EQU 0FCA8H

OPENF EQU 0FCC0H ;open file

CLOSEF EQU 0FCC3H

QUERYF EQU 0FCCCH ;find exact file name (including type)

ISFILE EQU 0FCFFH ;does file name exist

MAKEF EQU 0FCC9H

READF EQU 0FCD2H

WRITEF EQU 0FCD5H

GO_WP EQU 0FCE7H ;exit to SmartWriter

WR'IVREG EQU 0FD20H

FILLVRAM EQU 0FD26H

INITTBL EQU 0FD29H ;set up VDP table

LOADASCII EQU 0FC38H ;get ASCII in default location

PUTASCII EQU 0FC17H ;put ASCII in specified place

124

SAMPLE PROGRAM

;

;**

;* KEYBOARD KEYS *

;**

;

CTLC EQU 03H ;abort key CONTROL-C

LEFT EQU 0A3H ;keft arrow

SKl EQU 81H ;smart keys

SK2 EQU 82H

SK3 EQU 83H

SK4 EQU 84H

SK5 EQU 85H

SK6 EQU 86H

;

;**

;* OTHER EQUATES *

;**

;

ESC EQU 1BH escape

EOS EQU 0H end-of-string

BS EQU 8H ;back space

LF EQU 0AH ;line feed

CR EQU 0DH ;carriage return

CLRSCR EQU 0CH ;clear screen

;

;**

;* LET'S GET GOING *

;**

;

125

 LD HL,45EDH ;a RETURN NMI

 LD (66H),HL ;disable NMI ASAP

 LD SP,STACK ;set up local stack

 LD A,(FCBDEVICE) ;get the boot device

 LD (DRIVE),A ;save boot drive

;

;SET UP SCREEN

;

 CALL SETBORD0 ;set border colour

 LD BC,0 ;send 0 to register 0

 CALL WRTVREG

 LD BC,0lC0H ;send C0 to register 1

 CALL WRTVREG ;set up VDP mode

 LD HL, 0

 LD A, 2 ;pattern name

 CALL INITTBL ;set the table

 LD HL,0340H

 LD A,4 ;pattern colour

 CALL INITTBL

 LD HL,0800H

 LD A,3 ;pattern generator

 CALL INITTBL

 LD HL,3800H

 LD A,1 ;sprite pattern

 CALL INITTBL ;though unused here, we must

 LD HL,3880H ;make sure they do not conflict

 XOR A ;=0 sprite attributes

 CALL INITTBL

 CALL SETNORM ;set colours

 CALL SETINV

 LD A,' ' ;use spaces

 LD DE,0300H ;fill whole screen

 LD HL,0 ;at the pattern table

 CALL FILLVRAM

 CALL LOADASCII ;gimme some characters

 LD HL,0

 LD BC, 80H

 LD DE,0C0H

 CALL PUTASCII ;and some inverse

 LD BC,1E17H ;30 columns, 23 rows

 LD HL, 0000 ;pattern name table

 LD DE,l00H ;home position

126

 CALL INITCON ;set it up

 CALL START_RD_KYB ;so we can use END READ to get

;

127

SAMPLE PROGRAM

;

;

;

;*************************************

;* MAIN MENU *

;*************************************

;

MAIN: CALL CLS ;clear off a

 LD DE,0 ;send ~

 LD HL,MAINMENU ;print this message

 CALL PRTLOC ;print at (DE)

MAIN0: CALL CIN ;get a character, wait for it

 CP CTLC ;is it abort?

 JP Z,QUIT

 LD DE,MAIN ;set to return to main

 PUSH DE ;after each function

 CP SKl

 JP Z,KEYIN ;demo keyboard

 CP SK2

 JP Z,PRTMSG ;demo printing

 CP SK3

 JP Z,GOTOXY ;let's move around

 CP SK4

 JP Z,MAKEFILE ;make a file

 CP SK5

 JP Z,READFILE ;let's peek at one

 CP SK6

128

 JP Z,QUIT

;

;get here if no matching menu was pressed

;

 POP DE ;level off stack

 JR MAINO ;try again

;

;*************************************

;* FUNCTION I *

;* Demo of keyboard input *

;*************************************

;

KEYIN:

 LD HL, TYPEMSG ,give user a prompt

 CALL PRTSTR ;print it

 LD B,30 ;read no more than 30

 LD HL, BUFFER ;into this buffer

 CALL C INBUFF ;use our editor

 LD HL, BUFFER ;start at beginning

CASE:

 LD A, (HL) ;get a character

 OR A ;is it zero?

 JR Z,CDONE if end of string then we are done

 CALL UPCASE ;convert to uppercase if letter

 LD (HL) ,A ;replace character even if same

 INC HL ;advance pointer

 JR CASE ;loop until we are done

CDONE:

 LD HL,YOUSAID ;let user know we are echoing

 CALL PRTSTR

 LD HL,BUFFER ;point to buffer

129

 CALL PRTSTR ;print it

 CALL CRLF ;next line

 CALL HITKEY ;print ANY KEY message and get key

 RET ;done this function

;

130

SAMPLE PROGRAM

;

;************************************

;* FUNCTION II *

;* Printing to Screen *

;************************************

;

PRTMSG:

 LD HL,HEREMSG ;print at current position

 CALL PRTSTR

 CALL HITKEY ;wait for user to be ready

 LD HL, SCROLL ;this is a message which forces scroll

 CALL PRTSTR

 CALL HITKEY

 LD HL,SKIPLINE ;this message skips a few lines

 CALL PRTSTR

 CALL HITKEY

 LD HL, LONG ;this long messages wraps around

 CALL PRTSTR

 CALL HITKEY

 RET

;

;*************************************

;* FUNCTION III *

;* Moving the cursor *

;*************************************

;

GOTOXY:

 LD HL, WATCHIT ;print this message

 LD DE,1005H row 16 column 10

 CALL PRTLOC ;routine places cursor and prints

 LD B,30 ;we1ll move 30 times

 LD HL,MOVET ;using the table below

MOVEC:

131

 LD A, (HL) ;get one

 CALL COUT ;send it

 LD DE,33333 ;wait for this long

WAIT:

 DEC DE

 LD A, E

 OR D ;is DE=0?

 JR NZ,WAIT ;let's wait some more

 INC HL ;advance pointer

 DJNZ MOVEC ;repeat until B=0

 LD A, 24 ;clear to end of screen

 CALL COUT ;print the character

 LD BC,65535

 CPIR ;another non destructive way to wait

 CALL IVON ;set to print high bit

 LD HL, IVMSG ;print this message

 CALL PRTSTR ;will use alternate colour

 CALL IVOFF ;back to normal video

 CALL HITKEY

 RET

MOVET:

 DB 160,160,160,163,163,163,160,163,160,163

 DB 160,160,160,163,163,163,160,163,160,161

 DB 160,163,160,161,160,163,160,161,160,163

;

;**************************************

;* FUNTION IV *

;* Writing to file *

;**************************************

;

MAKEFILE:

 LD HL, GETFNAME

 CALL PRTSTR ;ask user for a file name

 LD HL, BUFFER ;put it here

 LD B,11 ;max 11 characters

 CALL CINBUFF ;do it

 LD HL, BUFFER ;reset to start

 XOR A ;look for null

132

 LD BC,11 ;we know there is a null

 CPIR ;within 11 bytes for a name

 LD (HL) , 3 ;mark end of file name

 DEC HL

 LD (HL) , 'A' ;file type

;

133

SAMPLE PROGRAM

;

 LD A, (DRIVE) ;look on default device

 LD DE,BUFFER ;match this name

 LD HL, DIRENTRY ;save here if found

 CALL ISFILE ;match type A or H of file

 JR NZ,NOFILE ;good, we're not killing anything

 LD HL, EXISTS ;tell user

 CALL PRTSTR ;the file is there

 JR MAKEFILE ;and try again

NOFILE:

 LD DE,HEREMSG ;start here

 LD HL,WATCHIT ;end here

 OR A ;clear carry

 SBC HL,DE ;HL=size of file

 LD B,H

 LD C,L ;copy to BC

 LD HL, FILEBUFF ;file start

MOVEDATA:

 LD A, (DE) ;get a byte

 CP LF

 JR Z,IGNORE ;remove all formatting

 CP CR

 JR Z,PUTSPC ;put space for <CR> for wrap

134

 CP EOS

 JR NZ,PUTCHR ;if not END then put the character

 LD A, CR ;now put a <CR>

 JR PUTCHR

PUTSPC:

 LD A,' ' ;a space

PUTCHR:

 LD (HL) ,A ;put in buffer

 INC HL ;increment buffer

IGNORE:

 INC DE ;increment raw source

 DEC BC ;decrement byte count

 LD A,B

 OR C ;is BC=0?

 JR NZ ,MOVEDATA ;not done yet

 LD DE, FILEBUFF ;this is the start

 XOR A ;clear carry

 SBC HL,DE ;this is the modified file size

 LD BC , 0

 LD D,H

 LD E,L ;BCDE=size

135

 PUSH DE ;save file size

 LD A, (DRIVE) ;get the default drive

 LD HL,BUFFER ;point to file name

 CALL MAKEF ;make the file

 JR NZ, ERROR ;oops

 LD A, (DRIVE) ;get drive back

 LD B,2 ;WRITE mode

 CALL OPENF ;HL is still pointing to name

 JR NZ, ERROR

 LD (FNUM) ,A ;save file number for close

 POP BC ;get back file size

 LD HL, FILEBUFF ;start writing here

 CALL WRITEF ;do it in one pass

 JR NZ, ERROR

 LD A, (FNUM) ;get file number back again

 CALL CLOSEF ;close it off

 JR NZ,ERROR

 LD HL, DONEMSG ;tell user

 CALL PRTSTR ;we are done

 CALL HITKEY

 RET

ERROR:

 LD HL, ERRORMSG ;we're not interpreting errors here

 CALL PRTSTR ;just tell user

136

 CALL HITKEY ;and get out

 RET

;

137

SAMPLE PROGRAM

;

;***************************************

;* FUNCTION V *

;* Reading from a file *

;***************************************

;

READFILE:

 LD HL, GETFNAME ;ask user

 CALL PRTSTR ;for file name

 LD HL BUFFER ;put it here

 LD B,11 ;maximum length

 CALL CINBUFF ;use our editor

 LD HL, BUFFER ;point to start

 XOR A ;look for null

 LD BC,11 ;we know there is a null

 CPIR ;within 11 bytes for a name

 LD (HL) , 3 ;mark end of file name

 DEC HL

 LD (HL), 'A' ;file type

 LD A, (DRIVE) ;look on default device

 LD DE, BUFFER ;match this name

 LD HL, DIRENTRY ;save here if found

 CALL QUERYF ;exact match this time

 JR Z, GOTFILE

 LD HL, BADNAME ;tell user

 CALL PRTSTR ;there is no file

 JR READFILE ;and try again

GOTFILE:

 LD A, (DRIVE) device

 LD B,1 ;read mode

 LD HL, BUFFER ;file name

 CALL OPENF ;try and open

 JR NZ, ERROR ;oops

 LD (FNUM) A ;save number for close

 LD BC,5006 ;maximum we want to read

 LD HL, FILEBUFF ;start of buffer

 CALL READF ;bring in 5000 or less bytes

 JR Z NOERROR ;file was at least 5000

 CP i6 ;is it end of file?

 JR NZ,ERROR ;oops

138

;

;here you should flag that all file is not read yet

;

NOERROR:

 LD A, (FNUM) ;get back file number

 CALL CLOSEF ;we'll close it now though normally we

 JR NZ,ERROR ;would wait till completed.

;

;now we'll print the file with a word wrap.

;

 CALL CRLF ;advance to new line

 LD DE, FILEBUFF ;start of buffer

ECHOMORE:

 XOR A ;load A with 0

 LD (DIDWRAP) ,A ;reset the NEWLINE flag

 LD HL, 30 ;screen width

 ADD HL,DE ;this is MAX end of line

FINDWRAP:

 LD A, (HL)

 CP ' ' ;is this character a space

 JR Z,GOTWRAP ;good, let's wrap here

 CP CR ;is it already a NEW LINE

 JR Z,DOLINE ;a <CR> forces wrap anyway

 DEC HL ;back up one character and try again

 JR FINDWRAP ;will crash if no space in30 characters

GOTWRAP:

 LD (HL),255 ;mark with unique character

DOLINE:

 LD A,(DE) ;get character from original position

 CP 255 ;is it the NEW LINE

 JR Z,DOWRAP ;let's do it

139

 CP CR ;or if already newline?

 JR NZ,SKIPWRAP ;nope then don't wrap

;

140

SAMPLE PROGRAM

;

;

;

DOWRAP:

 LD (DIDWRAP) ,A ;set the WE DID A WRAP

 CP 255 ;if (DE) was 255 then reset it

 JR NZ, CHECKHL ;nope, then check if (HL) was set

 LD

 LD (DE) ,A

CHECKHL:

 LD A, (HL) ;always check (HL) regardless of (DE)

 CP 255 ;had we put a force there?

 JR NZ , DOW1

 LD (HL),' ' ;replace the stolen space

DOW1:

 LD A, CR ;now let's put a <CR>

 CALL COUT

 LD A,LF ;followed by a <LF>

SKIPWPAP:

 CALL COUT

 PUSH HL ;save HL

 LD HL, 1000 ;wait a bit just for the heck of it

SLOW:

 DEC HL

 LD A,H

 OR L ;is HL zero?

 JR NZ,SLOW ;wait some more

 POP HL ;restore HL

 INC DE ;advance pointer

 DEC BC ;one less byte in file

 LD A,B

 OR C ;is file done?

 JR Z, FILEDONE ;then let's get out

 LD A, (DIDWRAP) ;did we wrap.

 OR A ;will be non-zero

141

 JR Z,DOLINE ;let's work on this line some more

 JR NZ, ECHOMORE ;let's start a new line

FILEDONE:

 CALL CRLF ;Skip line for clarity

 CALL HITKEY

 RET

;

;*********************************

;* EXIT ROUTINE *

;*********************************

;

QUIT:

 LD SP,OFFFFH ;set stack in safe place

 JP GO_WP ;get outa here

;

;*********************************

;* CHARACTER I/O *

;*********************************

;

CRLF: LD HL,CRLFMSG ;point to a <CR><LF>

 JR PRTSTR ;print it

;

GOTORC:

 PUSH DE ;save requested position

 LD A,D ;reverse DE

 LD D,E ;cause I like to goto XY

 LD E,A ;rather than GOTO YX

142

 INC D

 LD A, 1CH ;goto xy prefix

 CALL COUT ;print the darn thing

 POP DE ;restore original request

 RET

;

PRTLOC:

 CALL GOTORC ;go to location in DE first

PRTSTR:

 LD A, (HL) ;get a byte

 CP EOS ;is it END

 RET Z ;get outa here

 CALL COUT ;print one character

 INC HL ;advance pointer

 JR PRTSTR ;keep going til end

;

143

SAMPLE PROGRAM

IVOFF:

 XOR A ;reset the IV mask

 JR IV0

IVON:

 LD A, 80H ;set to add 128 in COUT routine

IV0: LD (INVERSE) ,A

 RET

UPCASE:

 CP 'a' ;is it less than a

 RET C ;don't convert

 CP 'z'+1 ;is it bigger than z

 RET NC ;don't convert

 AND 5FH strip the LOWERCASE bit

 RET

CLS:

 LD A,CLRSCR ;this is the clear screen code

 JP COUT ;print it

;

;reads B characters into (HL)

;space pads to end of buffer after <CR>

;

CINBUFF:

 LD C,0 ;set counter

CIBUF1:

 CALL CIN ;get a character

 CP CR ;is it ENTER?

 JR Z,CIBUF2 ;flush buffer if so

 CP BS ;was it BACKSPACE

 JR Z,DESTBS ;do it

 CP LEFT ;left arrow as well

144

 JR Z,DESTBS

 CP ESC ;cancel request

 RET Z ;get out NOW

 GP CTLC ;was it abort

 JP Z,MAIN ;go back to MAIN

 CALL COUT ;echo the character

 LD (HL) ,A ;put it in buffer

 INC C ;one more character in

 INC HL ;advance buffer pointer

 DJNZ CIBUF1 ;decrement MAX count & continue if safe

 CP BS ;was last character a BACKSPACE

 JR Z,DESTBS ;do it again

 CP LEFT

 JR Z,DESTBS

 CP ESC ;was last a cancel

 RET Z

 CP CTLC ;was last an abort

 JP Z ,MAIN

CIBUF2:

 LD (HL) ,0 ;mark end of string

 LD A,B

 OR A

 RET Z ;we read in the maximum requested

CIBUF3:

 INC HL ;skip to next character

 LD (HL),' ' ;space fill it

 DJNZ CIBUF3 ;up to requested length

 RET

DESTBS:

 LD A,C ;what is the position

 OR A

 JR Z,CIBUF1 ;can't <BS> if at start

 LD A,BS ;print a backspace

 CALL COUT

 LD A ,' ' ;write a space over old character

 CALL COUT

 LD A, BS ;backspace into hole

 CALL COUT

 DEC HL ;reduce pointer

 DEC C ;and the character count

 INC B ;make one more available

 JR CIBUF1 ;and try again

145

SAMPLE PROGRAM

HITKEY:

 LD HL,ANYKEYMSG ;ask user to press key

 CALL PRTSTR ;print it and fall through

CIN:

 PUSH BC ;save all registers

 PUSH DE ;except A

 PUSH HL

CIN1:

 CALL END_RD_KYB ;is there a character

 JR NC ,CIN1 ;wait

 PUSH AF ;save character

 CALL START_RD_KYB ;restart the read

 POP AF ;restore character

 POP HL ;and all registers

 POP DE

 POP BC

 RET

COUT:

 PUSH AF ;save all registers

 PUSH BC ;including the character to print

 PUSH DE

 PUSH HL

 OR A ;is the character HIGH BIT

 JP M,COUT0 ;if high bit set then control

 CP ' ' ;is it less than 32

 JR NC , COUT1 ;if >than space then print normal

COUT0:

 CALL CONOUT ;this one displays specials COUT2

 JR COUT2

COUT1:

 OR 0

INVERSE EQU $-1 ;add inverse if it is on

 CALL CONDISP ;this one does not display specials

146

COUT2:

 CALL END_RD_KYB ;check for key waiting

 JR NC ,COUT3 ;none so let's get out

 CALL CIN ;get the character

 CP 'S' -40H ;is it CONTROL-S

 JR NZ,COUT3 ;ignore if not

 CALL CIN ;wait for another character

 CP 'C' -40H ;but abort if CONTROL-c

 JP Z,MAIN

COUT3:

 POP HL ;restore all registers

 POP DE

 POP BC

 POP AF

 RET

;

;********************************

;* SUBROUTINES *

;********************************

;

;set the border colour

;

SETBORD0:

 LD A, (BORDCOL) ;get the default border colour

 LD C,A ;into register C

 LD B,07H ;write to VDP register 7

 JP WRTVREG ;do it and return

147

148

SAMPLE PROGRAM

;set the normal and inverse colours

SETNORM:

 LD A, (NCCOL) ;this is the set colour

 SLA A

 SLA A

 SLA A

 SLA A ;normal set colour *16

 LD D,A

 LD A,(NBCOL) ;clear colour

 OR D

 LD DE,l0H ;write 16 bytes

 LD HL, 0340H ;starting here

 JP FILLVRAM ;for character 0-127

;set inverse colour, differently from above

SETINV:

 LD A, (IBCOL) ;clear colour

 LD D,A

 LD A, (ICCOL) ;set colour

 SLA A

 SLA A

 SLA A

 SLA A

 OR D

 LD DE,10H ;16 bytes

 LD HL, 0350H ;start here

 JP FILLVRAM ;for 128-255

;************************************

;* MESSAGES *

;************************************

ANYKEYMSG:

 DB 'Press any key to continue...',EOS

MAINMENU:

 DB 'I Keyboard input' ,CR,LF

 DB 'II Print Message' ,CR,LF

 DB 'III Cursor Movement' ,CR,LF

149

 DB 'IV Make File',CR,LF

 DB 'V Read File' ,CR,LF

 DB 'VI Exit' ,CR,LF,LF,LF,LF,EOS

;

;used by function I

;

TYPEMSG:

 DB 'Type in something' ,CR,LF,LF,EOS

YOUSAID:

 DB CR,LF,5fh,5fh,5fh,'This is what you said:',CR,LF,EOS

;

;used by function II

;

HEREMSG:

 DB 'Normally, messages are printed'

 DB CR,LF,'at the current cursor position.'

 DB CR,'It is up to you to remember';(last line forced wrap)

 DB CR,LF, 'where you last left the cursor.'

 DB CR,'If the last character of a line'

 DB CR,'is on the margin a scroll is'

 DB CR,LF, 'performed. Be careful when'

 DB CR,LF,' formatting your data.',CR,LF,LF,EOS

SKIPLINE:

 DB CR,LF,LF, 'This message skips lines'

 DB CR,LF,LF, 'To appear double spaced'

 DB CR,LF,LF,'You only need an extra <LF>',CR,LF,LF,EOS

SCROLL:

 DB CR,LF,LF, 'This -message is near the bottom'

 DB CR, 'of the screen. It will scroll'

 DB CR,LF, 'smoothly when I reach the end'

 DB CR,LF, 'of the screen. The scroll is'

150

 DB CR,LF, 'handled by the EOS.',CR,LF,LF,EOS

LONG:

 DB CR,LF, 'This message is very long and has not been '

 DB 'formatted for the screen. Although all the characters '

 DB 'are there, it is difficult to read because words are '

 DB 'truncated. See the file read function for more.',CR,LF,EOS

151

SAMPLE PROGRAM

;

;used by function III

;

WATCHIT:

 DB 'Column 5 row 16',CR,LF

 DB 'Watch the cursor move around' ,EOS

IVMSG:

 DB CR,LF,' This message is printed '

 DB CR,LF,' In inverse video. It is '

 DB CR,LF,' accomplished by setting '

 DB CR,LF,' the color table for the '

 DB CR,LF,' high bit characters to '

 DB CR,LF,' make them another color ',CR,LF,LF,EOS

;

;used by function IV

;

ERRORMSG:

 DB CR,LF,LF, 'I/O error' ,EOS

DONEMSG:

 DB CR,LF,LF, 'Operation Complete' ,CR,LF,EOS

EXISTS:

 DB CR,LF,LF, 'File Exists, use another name' ,EOS

GETFNAME:

 DB CR,LF,LF, 'Input File Name: ',EOS

;

152

;used by function V

;

BADNAME:

 DB CR,LF,'File Not Found, try again',EOS

;

;**********************************

:* DATA & STORAGE *

;**********************************

;

CRLFMSG:

 DB CR,LF,EOS

BORDGOL:

 DB 07H ;border colour saved here

NCCOL:

 DB 0lH ;character SET colour

NBCOL:

 DB 0FH ;character CLEAR colour

ICCOL:

 DB 0lH ;inverse SET colour

IBCOL:

 DB 07H ;inverse CLEAR colour

153

DRIVE:

 DS 1 ;default drive

FNUM:

 DS 1 file number for READ/WRITE

DIDWRAP:

 DS 1 ;word wrap flag for file print

;

DIRENTRY:

 DS 26 ;store directory entry here

BUFFER:

 DS 100 ;room for keyboard input

 DS 100 ;stack space

STACK:

FILEBUFF: ;use this area for file I/O

 END

154

SAMPLE PROGRAM HEX CODE FIRST BLOCK

21 ED 45 22 66 00 31 82 OA 3A 6F FD 32 9D 09 CD 87 04 01 00

00 CD 20 FD 01 C0 01 CD 20 FD 21 00 80 3E 02 CD 29 FD 21 40

03 3E 04 GD 29 FD 21 00 08 3E 03 CD 29 FD 21 00 38 3E 01 CD

29 FD 21 80 38 AF CD 29 FD CD 90 04 CD A9 04 3E 20 11 00 03

21 00 00 CD 26 FD CD 38 FD 21 00 00 01 80 00 11 00 0C CD 17

FD 01 17 1E 21 00 00 11 00 01 CD 36 FC CD A8 FC CD E8 03 11

00 00 21 DF 04 CD C9 03 CD 47 04 FE 03 CA B2 03 11 74 O1 D5

FE 81 CA AD 01 FE 82 CA DC 01 FE 03 CA 01 02 FE 84 CA 56 02

FE 85 CA FA 02 FE 86 CA B2 03 D1 48 D3 21 53 05 CD CC 03 06

1E 21 BA 09 CD ED 03 21 BA 09 7E B7 28 07 CD DF 03 77 23 18

F5 21 68 O5 GD CC 03 21 BA 09 CD CC 03 CD B8 03 CD 41 04 C9

21 86 05 CD CC 03 CD 41 04 21 CE 06 CD CC 03 CD 41 04 21 77

06 CD CC 03 CD 41 04 21 66 07 CD CC 03 CD 41 04 G9 21 32 08

11 05 10 GD G9 03 06 1E 21 38 02 7E CD 58 04 11 35 82 1B 7B

B2 20 FB 23 10 F1 3E 18 CD 58 04 01 FF FF ED B1 CD D9 03 21

60 08 CD CC 03 CD D6 03 GD 41 04 G9 A0 A0 A0 A3 A3 A3 A0 A3

A0 A3 A0 A0 A0 A3 A3 A3 A0 A3 A0 A1 A0 A3 A0 A1 A0 A3 A0 A1

A0 A3 21 64 09 CD CC 03 21 BA 09 06 OB CD ED 03 21 BA 09 AF

01 OB 0O ED B1 36 03 2B 36 41 3A 9D 09 11 BA 09 21 AO 09 CD

FF FC 20 08 21 43 09 CD CC 03 18 CE 11 86 05 21 32 08 B7 ED

52 44 4D 21 82 0A 1A FE 0A 28 10 FE 0D 28 08 FE 00 20 06 3E

0D 18 02 3E 20 77 23 13 0B 78 B1 20 E5 11 82 0A AF ED 52 01

00 00 54 5D D5 3A 9D 09 21 BA 09 CD C9 FC 20 28 3A 9D 09 06

02 CD C0 FG 20 1E 32 9E 09 C1 21 82 OA CD D5 FC 20 12 3A 9E

09 CD G3 FC 20 0A 21 2B 09 CD CC 03 CD 41 04 C9 21 1E 09 CD

CC 03 CD 41 04 C9 21 64 09 CD CC 03 21 BA 09 06 0B CD ED 03

21 BA 09 AF 01 OB 00 ED B1 36 03 2B 36 41 3A 9D 09 11 BA 09

155

21 A0 09 CD CC FC 28 08 21 79 09 CD CC 03 18 CE 3A 9D 09 06

O1 21 BA 09 CD C0 FC 20 B7 32 9E 09 01 88 13 21 82 0A CD D2

FG 28 04 FE 0A 20 A5 3A 9E 09 CD C3 FC 20 9D CD B8 03 11 82

0A AF 32 9F 09 21 1E 00 19 7E FE 20 28 07 FE 0D 28 05 2B 18

F4 36 FF 1A FE FF 28 04 FE 0D 20 18 32 9F 09 FE FF 20 03 3E

20 12 7E FE FF 20 02 36 20 3E 0D CD 58 04 3E 0A CD 58 04 ES

21 E8 03 2B 7G B5 20 FB E1 13 0B 78 B1 28 08 3A 9F 09 B7 28

C6 20 AE CD B8 03 CD 41 04 C9 31 FF FF C3 E7 FC 21 95 09 18

0F D5 7A 53 5F 14 3E lC CD 58 04 D1 C9 CD BD 03 7E FE 00 C8

CD 58 04 23 18 F6 AF 18 02 3E 80 32 6A 04 C9 FE 61 D8 FE 7B

D0 E6 5F C9 3E 0C C3 58 04 0E 00 CD 47 04 FE 0D 28 28 FE 08

28 2F FE A3 28 2B FE 1B C8 FE 03 CA 74 01 CD 58 04 77 0C 23

10 E1 FE 08 28 17 FE A3 28 13 FE 1B C8 FE 03 CA 74 01 36 00

78 B7 C8 23 36 20 10 FB C9 79 B7 28 G2 3E 08 CD 58 04 3E 20

CD 58 04 3E 08 CD 58 04 2B 0D 04 18 AE 21 C2 04 CD CC 03 C5

D5 E5 CD 4B FC 30 FB F5 CD A8 FC F1 E1 D1 C1 C9 F5 C5 D5 E5

B7 FA 64 04 FE 20 30 05 CD 39 FC 18 05 F6 00 CD 33 FC CD 4B

FG 30 0F CD 47 04 FE 13 20 08 CD 47 04 FE 03 CA 74 01 E1 D1

C1 F1 C9 3A 98 09 4F 06 07 C3 20 FD 3A 99 09 CB 27 CB 27 CB

27 CB 27 57 3A 9A 09 B2 11 10 00 21 40 03 C3 26 FD 3A 9C 09

57 3A 9B 09 CB 27 CB 27 CB 27 CB 27 B2 11 10 00 21 50 03 C3

26 FD 50 72 65 73 73 20 61 6E 79 20 6B 65 79 20 74 6F 20 63

6F 6E 74 69 6E 75 65 2E 2E 2E 00 20 20 49 20 20 20 4B 65 79 <--data

62 6F 61 72 64 20 69 6E 70 75 74 0D 0A 20 49 49 20 20 20 50 start

72 69 6E 74

156

SAMPLE PROGRAM HEX CODE SECOND BLOCK

20 4D 65 73 73 61 67 65 0D 0A 20 49 49 49 20 20 43 75 72 73

6F 72 20 4D 6F 76 65 6D 65 6E 74 0D 0A 20 49 56 20 20 20 4D

61 6B 65 20 46 69 6C 65 0D 0A 20 20 56 20 20 20 52 65 61 64

20 46 69 6C 65 0D 0A 20 56 49 20 20 20 45 78 69 74 0D 0A 0A

0A 0A 00 54 79 70 65 20 69 6E 20 73 6F 6D 65 74 68 69 6E 67

0D 0A 0A 00 0D 0A 5F 5F 5F 54 68 69 73 20 69 73 20 77 68 61

74 20 79 6F 75 20 73 61 69 64 3A 0D 0A 00 4E 6F 72 6D 61 6C

6C 79 2C 20 6D 65 73 73 61 67 65 73 20 61 72 65 20 70 72 69

6E 74 65 64 0D 0A 61 74 2O 74 68 65 20 63 75 72 72 65 6E 74

20 63 75 72 73 6F 72 20 70 6F 73 69 74 69 6F 6E 2E 0D 49 74

20 69 73 20 75 70 20 74 6F 20 79 6F 75 20 74 6F 20 72 65 6D

65 6D 62 65 72 0D 0A 77 68 65 72 65 20 79 6F 75 20 6C 61 73

74 20 6C 65 66 74 20 74 68 65 20 63 75 72 73 6F 72 2E 0D 49

66 20 74 68 65 20 6C 61 73 74 20 63 68 61 72 61 63 74 65 72

20 6F 66 20 61 20 6C 69 6E 65 0D 69 73 20 6F 6E 20 74 68 65

20 6D 61 72 67 69 6E 20 61 20 73 63 72 6F 6C 6C 20 69 73 0D

0A 70 65 72 66 6F 72 6D 65 64 2E 20 20 42 65 20 63 61 72 65

66 75 6C 20 77 68 65 6E 0D 0A 66 6F 72 6D 61 74 74 69 6E 67

20 79 6F 75 72 20 64 61 74 61 2E 0D 0A 0A 00 0D 0A 0A 54 68

69 73 20 6D 65 73 73 61 67 65 20 73 6B 69 70 73 20 6C 69 6E

65 73 0D 0A 0A 54 6F 20 61 70 70 65 61 72 20 64 6F 75 62 6G

65 20 73 70 61 63 65 64 0D 0A 0A 59 6F 75 20 6F 6E 6G 79 20

6E 65 65 64 20 61 6E 20 65 78 74 72 61 20 3C 4C 46 3E 0D 0A

0A 00 0D 0A 0A 54 68 69 73 20 6D 65 73 73 61 67 65 20 69 73

20 6E 65 61 72 20 74 68 65 20 62 6F 74 74 6F 6D 0D 6F 66 20

74 68 65 20 73 63 72 65 65 6E 2E 20 20 49 74 20 77 69 6C 6G

20 73 63 72 6F 6C 6C 0D 0A 73 6D 6F 6F 74 68 6C 79 20 77 68

157

65 6E 20 49 20 72 65 61 63 68 20 74 68 65 20 65 6E 64 0D 0A

6F 66 20 74 68 65 20 73 63 72 65 65 6E 2E 20 20 54 68 65 20

73 63 72 6F 6C 6C 20 69 73 0D 0A 68 61 6E 64 6C 65 64 20 62

79 20 74 68 65 20 45 4F 53 2E 0D 0A 0A 00 0D 0A 54 68 69 73

20 6D 65 73 73 61 67 65 20 69 73 20 76 65 72 79 20 6C 6F 6E

67 20 61 6E 64 20 68 61 73 20 6E 6F 74 20 62 65 65 6E 20 66

6F 72 6D 61 74 74 65 64 20 66 6F 72 20 74 68 65 20 73 63 72

65 65 6E 2E 20 20 41 6C 74 68 6F 75 67 68 20 61 6C 6G 20 74

68 65 20 63 68 61 72 61 63 74 65 72 73 20 61 72 65 20 74 68

65 72 65 2C 20 69 74 20 69 73 20 64 69 66 66 69 63 75 6C 74

20 74 6F 20 72 65 61 64 20 62 65 63 61 75 73 65 20 77 6F 72

64 73 20 61 72 65 20 74 72 75 6E 63 61 74 65 64 2E 20 20 53

65 65 20 74 68 65 20 66 69 6C 65 20 72 65 61 64 20 66 75 6E

63 74 69 6F 6E 20 66 6F 72 20 6D 6F 72 65 2E 0D 0A 00 43 6F

6C 75 6D 6E 20 35 20 72 6F 77 20 31 36 0D 0A 57 61 74 63 68

20 74 68 65 20 63 75 72 73 6F 72 20 6D 6F 76 65 20 61 72 6F

75 6E 64 00 0D 0A 20 20 20 54 68 69 73 20 6D 65 73 73 61 67

65 20 69 73 20 70 72 69 6E 74 65 64 20 20 20 0D 0A 20 20 20

49 6E 20 69 6E 76 65 72 73 65 20 76 69 64 65 6F 2E 20 49 74

20 69 73 20 20 20 0D 0A 20 20 20 61 63 63 6F 6D 70 6G 69 73

68 65 64 20 62 79 20 73 65 74 74 69 6E 67 20 20 20 0D 0A 20

20 20 74 68 65 20 63 6F 6G 6F 72 20 74 61 62 6G 65 20 66 6F

72 20 74 68 65 20 20 20 0D 0A 20 20 20 68 69 67 68 20 62 69

74 20 63 68 61 72 61 63 74 65 72 73 20 20 74 6F 20 20 20 0D

0A 20 20 20

158

SAMPLE PROGRAM HEX CODE THIRD BLOCK

6D 61 6B 65 20 74 68 65 6D 20 61 6E 6F 74 68 65 72 20 63 6F

6C 6F 72 20 20 20 0D 0A 0A 00 0D 0A 0A 49 2F 4F 20 65 72 72

6F 72 00 0D 0A 0A 4F 70 65 72 61 74 69 6F 6E 20 43 6F 6D 70

6C 65 74 65 0D 0A 00 0D 0A 0A 46 69 6C 65 20 45 78 69 73 74

73 2G 20 75 73 65 20 61 6E 6F 74 68 65 72 20 6E 61 6D 65 00

0D 0A 0A 49 6E 70 75 74 2O 46 69 6C 65 20 4E 61 6D 65 3A 20

00 0D 0A 46 69 6C 65 20 4E 6F 74 20 46 6F 75 6E 64 2C 20 74

72 79 20 61 67 61 69 6E 00 0D 0A 00 07 01 0F 01 07 0C

Adam News Network: Supporting the Coleco Adam since 1992. Founder Barry Wilson.

159

EOS DIRECTORY STRUCTURE

 When looking at BLOCK 1 (The Directory), group the bytes into groups of 26 bytes. The first 26 bytes is

the VOLUME-RECORD. The next groups of 26 bytes are the FILE-RECORDS. The last FILE-RECORD has a

filename of BLOCKS LEFT. This indicates the end and indicates how much is left on the tape/disk.

VOLUME-RECORD

 VOLUME-NAME 12 BYTES

 Inited name that shows up on catalog as VOLUME.

 DIRECTORY-SIZE 1 BYTE

 VOLUME ATTRIBUTE BIT 7

 VOL. DIRECTORY SIZE BITS 6 – 0

 A 1 in the attribute indicates delete protected.

 The directory size is shown as # of blocks.

 DIRECTORY-CHECK 4 BYTES

 Unique code 55 AA 00 FF indicates a directory exists on tape/disk.

 VOLUME-SIZE 4 BYTES

 Total # of blocks allocated.

 Unused ? 2 BYTES

 DATE (CREATION ?) 3 BYTES

 1 each for Year, Month and Day.

FILE-RECORD

 FILE-NAME 12 BYTES

 Name of file, usually followed by file type (A, A, H, H), then a HEX 03.

 FILE-ATTRIBUTE 1 BYTE

 1 in the bit position indicates true conditions as:

 7 – Perm. (DELETED) Protected
 6 – Write Protected
 5 – Read Protected
 4 – User File
 3 – System File
 2- File flagged as deleted
 1 – Execute protected (1 is no execute)

160

 0 – Not a file (See BLOCKS-LEFT entry)
 START-BLOCK 4 BYTES

 Starting block number for file. Left (Hi-order) bytes usually has the value, other 3 are 00.

 ALLOCATED-SIZE 2 BYTES

 Number of blocks actually allocated.

 USED-SIZE 2 BYTES

 Number of blocks used (Full + Partial)

 BYTES-IN-LAST-BLOCK 2 BYTES

 Number of bytes in last block. Max value in here is 00 04. This would indicate 1024

 bytes (full).

 DATE (CREATED ?) 3 BYTES

 1 for Year, Month and Day.

NOTE: For START-BLOCK, ALLOC/USED SIZE and BYTES-LAST.

 The 2 bytes are always shown as lo-value/hi-value.

 The value = left byte + (right byte * 256).

 I.e. 00 04 is 0 + (4 * 256) = 1024

 This coding is fairly standard in Z*) coding.

Things to look for:

 DIRECTORY-SIZE most are 81 (1000 0001) which indicates delete protect, 1 block directory.

 VOLUME-SIZE Tape normally FF 00 or 00 01. Disk A0. If using PACKCOPY, the copied disk from
 tape gets the tape FF 00.

FILE-NAME Sometimes you see parts of the name BLOCKS-LEFT remaining at the right end.
This is ignored as the system reads up to the first HEX 03 (left to right). If it is a USER-FILE, the

 character to the left of the HEX 03 is the FILE-TYPE. Some system files have a HEX 02 here. This
shows up under DISK-MGR as a circle with bars in it.

FILE-ATTRIBUTE This is where you need to break the hex into the bit patterns. This is what the
system determines what files are printed under CATALOG. Deleted files still exist but not
accessible from BASIC. You can BLOCK-READ then and dump them out. LOCKED files set on the
first 3 protects.

START-BLOCK This will tell you what block to start reading from. Remember to do a HEX
convert.

DATE (CREATE) This may contain values.

161

BLOCKS-LEFT This is the last filename entry. Its is marked as ATTRIBUTE (01) not a file. The
START-BLOCK shows the next available block for storage. ALLOCATED-SIZE shows the number of
available blocks left.

Interleave Chart

Type Size Heads Tracks Sectors/Track Interleave

Standard 5.25" 160K 1 40 8 5

Double sided 5.25" 320K 2 40 8 5

Quad size 5.25" 640K 2 80 8 4

Double sided 3.5" 720K 2 80 9 4

High density 3.5" 1.44M 2 80 18 4

160K Disk Interleave Example

Track 0

0 200 400 600 800 A00 C00 E00

Block 0
low

Block 2
high

Block 1
low

Block 3
high

Block 2
low

Block 0
high

Block 3
low

Block 1
high

Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6 Sector 7 Sector 8

Track 1

1000 1200 1400 1600 1800 1A00 1C00 1E00

Block 4
low

Block 6
high

Block 5
low

Block 7
high

Block 6
low

Block 4
high

Block 7
low

Block 5
high

Track 2

2000 2200 2400 2600 2800 2A00 2C00 2E00

Block 8
low

Block 10
high

Block 9
low

Block 11
high

Block 10
low

Block 8
high

Block 11
low

Block 9
high

Track 3

3000 3200 3400 3600 3800 3A00 3C00 3E00

Block 12
low

Block 14
high

Block 13
low

Block 15
high

Block 14
low

Block 12
high

Block 15
low

Block 13
high

 directory file file

Track 4

4000 4200 4400 4600 4800 4A00 4C00 4E00

Block 16
low

Block 18
high

Block 17
low

Block 19
high

Block 18
low

Block 16
high

Block 19
low

Block 17
high

file file file file file file file

5000 5200 5400 5600 5800 5A00 5C00 5E00

Block 20
low

Block 22
high

Block 21
low

Block 23
high

Block 22
low

Block 20
high

Block 23
low

Block 21
high

162

file file file file file

163

ASCII CHART

DEC HEX CHARACTER MEANING DEC HEX CHARACTER MEANING

0 00 CONTROL-@ 39 27 '
1 01 CONTROL-A 40 28 (
2 02 CONTROL-B 41 29)
3 03 CONTROL-C 42 2A *
4 04 CONTROL-D 43 2B +
5 05 CONTROL-E 44 2C '
6 06 CONTROL-F 45 2D -
7 07 CONTROL-G BELL 46 2E .
8 08 CONTROL-H BACKSPACE 47 2F /
9 09 CONTROL-I HORIZ TAB 48 30 0

10 0A CONTROL-J LINE FEED 49 31 1
11 0B CONTROL-K 50 32 2

12 0C CONTROL-L
CLEAR
SCREEN 51 33 3

13 0D CONTROL-M RETURN 52 34 4
14 0E CONTROL-N 53 35 5
15 0F CONTROL-O 54 36 6
16 10 CONTROL-P DUMP TO PRT 55 37 7
17 11 CONTROL-Q 56 38 8
18 12 CONTROL-R 57 39 9
19 13 CONTROL-S PAUSE 58 3A :
20 14 CONTROL-T 59 3B ;
21 15 CONTROL-U 60 3C <
22 16 CONTROL-V 61 3D =
23 17 CONTROL-W 62 3E >
24 18 CONTROL-X 63 3F ?
25 19 CONTROL-Y 64 40 @
26 1A CONTROL-Z 65 41 A
27 1B CONTROL-[ESCAPE/WP 66 42 B
28 1C CONTROL-\ 67 43 C
29 1D CONTROL-] 68 44 D
30 1E CONTROL-^ 69 45 E
31 1F CONTROL-_ 70 46 F
32 20 SPACE 71 47 G
33 21 ! 72 48 H
34 22 " 73 49 I
35 23 # 74 4A J
36 24 $ 75 4B K
37 25 % 76 4C L
38 26 & 77 4D M

mailto:CONTROL-@

164

DEC HEX CHARACTER MEANING DEC HEX CHARACTER MEANING

78 4E N 110 6E n
79 4F O 111 6F o
80 50 P 112 70 p
81 51 Q 113 71 q
82 52 R 114 72 r
83 53 S 115 73 s
84 54 T 116 74 t
85 55 U 117 75 u
86 56 V 118 76 v
87 57 W 119 77 w
88 58 X 120 78 x
89 59 Y 121 79 y
90 5A Z 122 7A z
91 5B [123 7B {
92 5C \ 124 7C |
93 5D] 125 7D }
94 5E ^ 126 7E ~
95 5F _ 127 7F DELETE
96 60 ' 128 80 HOME
97 61 a 129 81 FUNCTION I
98 62 b 130 82 FUNCTION II

99 63 c 131 83
FUNCTION

III

100 64 d 132 84
FUNCTION

IV
101 65 e 133 85 FUNCTION V

102 66 f 134 86
FUNCTION

VI
103 67 g 135 87
104 68 h 136 88

105 69 i 137 89
SHIFT

FUNCTION 1

106 6A j 138 8A
SHIFT

FUNCTION II

107 6B k 139 8B

SHIFT
FUNCTION

III

108 6C l 140 8C

SHIFT
FUNCTION

IV

109 6D m 141 8D
SHIFT

FUNCTION V

165

DEC HEX CHARACTER MEANING

141 8D
SHIFT FUNCTION

V

142 8E
SHIFT FUNCTION

VI
143 8F

144 90 WILDCARD
145 91 UNDO
146 92 COPY
147 93 GET
148 94 INSERT
149 95 PRINT
150 96 CLEAR
151 97 DELETE
152 98 SHIFT WILDCARD
153 99 SHIFT UNDO
154 9A SHIFT MOVE
155 9B SHIFT STORE
156 9C SHIFT INSERT
157 9D SHIFT PRINT
158 9E SHIFT DELETE
159 9F

160 A0 ARROW UP
161 A1 ARROW RIGHT
162 A2 ARROW DOWN
163 A3 ARROW LEFT

COLOR PALETTE

0 Transparent 8 Medium Red

1 Black 9 Light Red

2 Medium Green 10 Dark Yellow

3 Light Green 11 Light Yellow

4 Dark Blue 12 Dark Green

5 Light Blue 13 Purple

6 Dark Red 14 Gray

7 Cyan 15 White

166

MEMORY BANK SWITCHES

The Z80 can only address 64K (216) memory locations but can change blocks of memory by a technique

known as bank switching. The ADAM contains about 40K of ROM (Read Only Memory) with Smartwriter

and two operating system, EOS and OS7 that can be switched into the upper or power 32K of memory

space. Expansion RAM (if you have it) and game cartridge ROM can also be switched in and out of the

active memory space. Memory is normally all RAM in BASIC, the OS having been copied from ROM to

RAM.

 The bank switch is an OUT 7F,x command, where the lower nibble of x selects the following options:

Lower 32 K D1 D0 Upper 32K D3 D2

Smartwriter, EOS 0 0 32K RAM 0 0

32K RAM 0 1 Expansion ROM 0 1

Expansion RAM 1 0 Expansion RAM 1 0

OS7+24K RAM 1 1 Cartridge ROM 1 1

For example, to select normal RAM for both the upper and lower blocks the number in binary is 0001, or

1. To select 32K of RAM on the bottom and cartridge ROM on the top, the number is 1101, or 13 (dec).

A D1 and D) of 0 will access wither Smartwriter or the EOS ROM, depending upon another in/out

command. Performing OUT 3F,2 before the OUT 7F,0 will access the EOS ROM. OUT 3F,0 causes OUT

7F,0 to access the Smartwriter ROM.

