
"111.

:.....i ',1..i._. .. ~ .J~0'.0,._~---1-,, TL.,T""--1J I t:.t

57540 EOC4 02 LD
57541 E0CS 08 DEC
57542 E0C6 04 INC

(BC) I A
BC
B

57543 E0C7 0603 LD B,n
57545 E0C9 CDD5E0 CALL hn

nn 111'-l!I; 5 75 48 E0CC C21AFD JP

1 Pilil &IFD I AM AT ION:
~ 57559 E0D7 4F LD C,A

E0D5
FDlA

57560 E0D8 FE04 CP n
57562 E0DA 2008 JR NZ e

: i;li M~BR ~:·'7' DAM
57571 E0E3 79 LD A,~ Y
57572 E0E4 FE02 CP n

:,iiiiik!PI; bRERS
57580 E0EC 2801 JR z,e (
57582 E0EE 29 ADD HL,HL)

'- 5 7583 E0EF EB EX • DE, HL
57584 E0F0 E3 EX (SP),HL
57585 E0Fl 29 ADD HL,HL

• l 57586 E0F2 29 • ADD HL, HL
)
)
(
)

57587 E0F3 2801 JR z,e
57589 E0FS 29 ADD HL,HL

.-:. !..._ 57590 E0F6 E3 EX (SP),HL
57591 E0F7 79 LD A,C
57592 E0F8 0164FD LD BC,nn

\:. 5 759 5 E0FB ES PUSH HL
57596 E0FC 2600 LD H,n
57598 E0FE 6F LD L,A

' \ 57599 EOFF 29 ADD HL,HL

,.,

57600 El00 09 ADD HL,BC
57601 El0l 7E LD A, (HL)

'- 57602 El02 23 INC HL
57603 El03 66 LD H, (HL)
57604 El04 6F LD . L,A

'- 5/605 El05 19 ADD HL,DE
57606 El06 EB EX DE,HL

. 57607 El07 El POP HL
'-· 5 760 8 El08 Cl POP BC

57609 El09 C9 RET
57610 El0A ES PUSH

~ 57611 El0B CB7A BIT
57613 El0D 2804 JR
57615 El0F 26FF LD

~ 57617 Elll 1802 JR
57619 Ell3 2600 LD
57621 Ell5 6A LD

t.. 57622 Ell6 29 ADD
57623 Ell7 29 ADD

• 5 76 2•4 El 15 23 lillD

HL
7,D
z,e
H, n
e
H,n
L,D
HL,HL
HL,HL
tlL, m:.i

";~ 57625 Ell9 29 ADD HL,HL
57626 EllA 29 ADD
57627 EllB CB7B BIT

~ 57629 EllD 2804 JR
57631 EllF }6FF LD
5 76 3 3~- J:l 21 1802 JR

HL,HL
7,E
z,e
D,n
e

FD64
y
d

&
0

)

f
0

z
(

&

&
j
)
)
)
)
)

Information for ADAM Explorers

by Peter Hinkle

Published by the author.

117 Northview Rd.

Ithaca N.Y. 14850

$9.95

60 7- .J J-r - I 2 1 2---

73 -1 's i (
bO 7-- ;;_

Copyright (c) 1984 Peter Hinkle

TABLE OF CONTENTS

1. Introduction l

2 . Numbers 3

3 . Z80 8

4. Memory Map 19

5 . Disassembler 22

6. BASIC 30

7. Sound 32

8. Video 36

9. Pinouts 48

:;

CHAPTER 1, INTRODUCTION

All home computer owners try to understand their machines and get

the most out of them. Of course, some try harder than others. The

increasing emphasis on fancy commercial programs does not really

change-things. For home use a microcomputer will always have a strong

hobby element that inspires the budding hacker. Eventually many ADAi"1

owners will discover that the best game for the ADAM is the ADAH

itself, delving into the labyrinth of subroutines in RA.M, making

music, better graphics, cheap tapes, etc.

John Dvorak recently analysed the history of the microcomputer

industry in InfoWorld, and concluded that the only factors unique to

the two clearly successful machines, Apple and IBM, were complete

documentation and encouragement of independent software and hardware

developers. Thus it has been disappointing to ADAM owners that Coleco

has not released a technical manual to the general public. I hope

they still will, but meanwhile I got tired of waiting. This booklet

is not a proper technical manual, but it will give owners a good start

and some tools for exploring on their own. It is intended to be

intelligible to people without technical training, but who have some

familiarity with computers. The Z80 instruction set will be given,

assuming that you do not have other books on the subject. The

emphasis will be on how the major chips work, and how to analyze

machine language using the disassembler. A circuit diagram may

eventually be added to allow design of boards to plug into the bus

connectors, but as of now I do not encourage people to mess with the

hardware. It is too fragile. Pinouts of most chips in the ADAM are

given in the last chapter, however.

A rudamentary outline of the AD.At~ circuitry is shown below.

The Z80 microprocessor is the central processor, communicating with

the 64K RAM via data and address buses, and with the sound, video and

6801 chips via the data bus and decoded lines in a special in/ out

address space.

PRINTER KEYBOt .. RD

The 6801 chips which run the printer, keyboard and tape are

mi croprocessors of the Motorola 6800 family which have 128 bytes of

RAH and 2K of ROM on the chip. The operating system and word

processor are stored in ROM but the operating system, at least, is

copied into the 64K RAM when BASIC is loaded, because it can be

modified, indicating it is not in read only memory.

• In addition to the obvious things that ADAM owners would like to

know, such as how to make sounds and sprites, there are projects you

could work on that are less obvious. Figure out how to control the

tape drive directly so that files from the word processor can be read

by BASIC and printed out with full justification, as a proper word

processor should. A BASIC program can easily be written to insert

extra spaces between words to make all lines the same length. Better

yet, it maybe possible to control the printer directly so that the

spaces between letters can be changed to create proportional spacing.

Such things are probably run by the 6801 in the printer, however, and

are not accessible to the Z80. A problem for ADA.i.'1 owners that others

with BASIC in ROM do not have is that various versions of BASIC exist :

and the memory map will depend on which version you have. If you buy

another BASIC tape all addresses could be changed, although probably

not by much. An advantage of having BASIC on tape, however, is that

you can change it if you want (and can figure out how). In any case,

there ar.e many reasons to learn more about the 1;.DAM, and I hope you

find these notes and the disassembler useful in your explorations.

. -
::

CHAPTER 2. Numbers

Several ways of representing numbers are used with computers , which

may be a pain at first but is convenient. The numbers actually handled

by the Z80 and stored in RAM are in binary (base 2), where O is

represented by Oto 0.5 volts and 1 is represented by 4 to 5 volts.

Thus binary is the natural number system for computers because they

have two states, just as decimal is the natural number system for us

because we have ten fingers. Binary numbers are not used directly to

program the ADAH, however, because they are quite awkward. Instead

several number systems are used, called hexadecimal (base 16), two's

complement, and floating point, in addition to ·the,usual decimal used

in BASIC . . The easiest way to convert numbers from binary to decimal or

vice versa is to first convert binary to hexadecimal and then

hexadecimal to decimal. Conversion of hexadecimal to decimal is done

using the table or subroutine for programs shown later. Such

subroutines ar~ never there when you need them, however, and the best

way to solve the number problem is to buy a hexadecimal-decimal

calculator.

BINARY

The binary numbers in the ADAM are stored in 8 bit units called

bytes. The

represented

significant

binary (the

decimal

0

1

2

3

4

5

6

7

8

9

10

digits represent powers of 2 (l,2,4,8,16,32,64,128),

with the most significant bit (128) on the left and least

bit (1) on the right. The first 16 numbers in decimal,

lowest 4 bits), and hexadecimal are shown below.

binary hexadecimal

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

11

12

13

14

15

1011

1100

1101

1110

1111

B

C

D

F

Examples of 8 bit binary numbers are 178 = 10110010 = B2, 55 =

00110111 = $37, 239 =11101111 = EF, 17 = 00010001 = $11. Hexadecimal

numbers are indicated by$ when necessary. Binary numbers are not

used often by programmers except when certain bits have to be changed

or when making shape tabl~s (unless you use a shape-maker ~rogram).

Variables in BASIC that are specified as integers by following the

name with% (eg. DIM A%(30)),are stored as 2 byte binary numbers, the

least significant byte first. Thus the range of possible values is

from O to FFFF, or O to 65,535 decimal. Strings of letters, numbers (0

to 9), and symbols are stored as one byte bin~ry numbers which

correspond to the letters etc. according to ASCII code (see the Coleco

BASI C manual).

BEXADECIMAL

Hexadecimal representation is convenient when programing in

machine language because each digit corresponds to 4 bits in binary,

and a byte can always be represented by two hexadecimal digits.

Furthermore, addresses in memory are often divided into pages of 256

bytes, and all 64K (65,535) bytes of RAM can be specified by four

hexadecimal digits (0000 to FFFF). The problem comes, however, when

BASIC is used, since all access to memory (PEEK and POKE) are in

decimal. Conversions between hexadecimal and decimal can be made with

the table below, finding the decimal number in the table from the

first and second hexadecimal digits in the lefthand column and top

row, respectively. The reverse conversion is also convenient. Four

digit hexadecimal numbers can be easily converted to decimal by

looking up the left two digits, multiplying the decimal equivalent

t i mes 256, and adding the result to the decimal equivalent of the

right two digits.

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

0 1
0 1

16 17
32 33
48 49
64 65
80 81
96 97

112 113
128 129
144 145
160 161
1 76 1 77
192 193
208 209
224 225
240 241

Hexadecimal to decimal conversion.

2 3
2 3

18 19
34 35
50 51
66 67
82 83
98 99

114 115
13.0 131
146 14 7
162 163
1 78 1 79
194 195
210 211
2 26 22 7
242 243

4 5 6
4 5 6

20 21 22
36 37 38
52 53 54
68 69 70
84 85 86

100 101 102
116 117 118
132 133 134
148 149 150
164 165 166
180 181 182
196 197 198
212 213 214
228 229 230
244 245 246

7
7

23
39
55
71
87

103
119
135
151
167
183
199
215
231
247

8 9
8 9

24 25
40 41
56 57
72 73
88 89

104 105
120 121
136 137
152 153
168 169
184 185
200 201
216 217
232 233
248 249

A B C
10 11 12
26 27 28
42 43 44
58 59 60
74 75 76
90 91 92

106 107 108
122 123 124
138 139 140
154 155 156
1 70 1 71 1 72
186 187 188
202 203'204
218 219 220
234 235 236
250 251 252

5

D
13
29
45
61
77
93

109
125
141
157
1 73
189
205
221
23 7
253

E F
14 15
30 31
46 47
62 63
78 79
94 95

110 111
126 127
142 143
158 159
1 74 1 75
190 191
206 207
222 223
238 239
254 255

The table was generated by the following program in 3ASIC. The "NOT"

statements are needed to line up the columns because the TAB command

only works to 31, appropriate for the screen but not the printer. It

is probably worth printing some of these tables so you can always have

one handy.

3 PR #1
4 PRINT
5 h$ = "0123456789ABCDEF"
7 PRINT " 11

;

10 FOR x = 1 TO 16
20 PRINT MID$ (h$, x, 1); 11

30 NEXT: PRINT
40 FOR x = 1 TO 16
5 0 PR I NT MID$ (h $, x , 1) ; 11 11

;

6 0 FOR y = 1 TO 16
65 PRINT 11 11

;

II •
I

70 IF NOT INT(n/100) THEN PRINT
80 IF . NOT INT(n/10) THEN PRINT
90 PRINT n; : n = n+l

100 NEXT y: PRINT: NEXT x

If 11 •
I

II II

TWO'S COMPLEMENT BINARY.

This convention is used to represent positive and negative

numbers in binary or hexadecimal, and is used for relative jumps on

the Z80. Positive numbers Oto 127 decimal (01111111 or 7F) are the

same as usual for 8 bits. Negative numbers are made by pretending tha t

the byte is the odometer on your car and driving backwards starting at

zero. Thus -1 = 1 1111111, -2 = 1111110, etc. To complement a binary

number means to change all the 1 's to O's and O's to 1 's. Doing just

that is called 1 's complement. 2's complement is 1 's complement plus

1, and the 2's complement of a number from (decimal) 1 to 127 is the

negative of the number. Thus in decimal 255 to 128 are negative

numbers in this convention. This is logical because arithmatic in 2's

complement works if you ignore the carry. For example: adding +9 and

-2 gives +7.

+9

-2

+7

00001001

11111110

00000111

Relative jumps on the Z80 are a little more complicated (as usual)

because +2 is added to the offset before the jump.

FLOATING POINT

Numerical variables that are not followed by% are stored in

floating point representation, which allows a wide range of values.

It is similar to "scientific notation" of calculators or BASIC, with a

mantissa times the number base to a power or exponent. For most

practical purposes the scale can be regarded as continuous, but it is

actually 2 40 discrete numbers, half of which are between -1 and +l.

Zero cannot be represented exactly. The mantissa can take values

between 1/2 and (almost) 1, in binary 0.10000 ... and 0.11111 .. (the U 11

being the binary equivalent to a decimal point) ,positive or negative.

The exponent is from Oto 127, positive or negative. There are many

different formats for the actual representation in RAM. On the ADAH

the mantissa is four bytes and the exponent one by t e wi th the

f o llowing format. The mantissa bytes are stored in R.~i'.-1 in reverse

order, with the least significant first. The most significant byte is

strange in that the top bit (left) is assumed to be 1 for the purpose

of calculating the number but is in fact used to specify the

sign,l=-,0=+. The sign of the exponent is specified by the to~ bit

(l=+, 0=-). thus $80=0, $81=1 , $78=-2, etc. The following examples

should make this clear. To try other numbers add a line to the 7

_prinbnem program 1-vhich sets a variable to the number and then look on

,;,? age 206 or 207 for the number in ~~M (see BASIC chapter).
dee i 1nal

1

2

3

4

5

6

7

8

9

10

o.s
0.25

0.001

100

-1

-10

-0.25

floating point (hex)

00 00 00 00 81

00 00 00 00 82

00 00 00 40 82

00 00 00 00 83

00 00 00 20 83

00 00 00 40 83

00 00 00 60 83

00 00 00 00 84

00 00 00 10 84

00 00 00 20 84

00 00 00 00 80

FF FF FF 7F 7E

98 6E 12 03 77

00 00 00 48 87

00 00 00 80 81

00 00 00 AO 84

7FF FF F~

top 4 bits

1000

1000

1100

1000

1010

1100

1110

1000

1001

1010·

1000

decimal

1/2 * 2"+1

1/2 * 2"+2

3/4 * 2"+2

1/2 * 2"+3

5/8 * 2"+3

3/4 * 2"+3

7/ 8 * 2"+3

1/2 * 2"+4

9/16* 2"+4

5/8 * 2"+4

1/2 * 2"+0

lllletc. 1 * 2"-2

* 2"-9

11001 100/128*2"+7

1000 -1/2 * 2"+1

1010 -5/8 * 2~+4

1111 -1 * 2"-2

lways 1
c:tissa ~:;o::~:

sign
To translate a floating point number into hexadecimal, write it

out in binary, set the top bit, and place the binary point. Then

return to hexadecimal starting at the binary point. For example, the

number in the floating point accumulator printed out by ?rintmem is:

00 00 90 7C 8E. Why?

Convert to binary:

7 C 9 0 .---. ~ r-"'-\
0111 1100 1001 0000

Oetc

0000 . . .

Set the top bit and place the point at 14 (8E):

~2-1 2]~81 , 00,/ 00 0000
3 F 2 4

3F24 is the address of the "90" byte of the _ number in ~A.M, so the ??

accumulator held the address being PEEKed and was changing with each

P 1<'..,, ,.,. ,~ 1· n c e only the " 9 O " 'o • e of • 'n e a cc m 1 t ' • d • ,_,.!:.,.._,. ..., y ·c i: u1 u a or "1as cnang1ng ur1ng

the program at that point, the accumulator was caught at the r1umber of

the 11 90 11 address.

CHAPTER 3. The Z80

The Z80 microprocessor is the central processing unit (CPU) of

the ADAM, It steps along programs in RAM, executing simple machine

language instructions, much as a calculator is programmed by pushing

buttons. The machine language instructions are a series of 8 bit

numbers that represent operations that move 8 bit numbers from one

register to another, or add two 8 bit numbers, etc. For people to

understand what is going on, these operations are usually represented

in "assembly language", a series of mnemonics for the instructions

which correspond to the machine language numbers. A program which

takes mnemonics and turns them into machine language numbers is called

an assembler. A program which takes machine language and turns it into

mnemonics is called a disassembler. A disassembler, which is given in

chapter 5, is useful to print out the machine language programs in the

ADAM, which are BASIC and the operating system, in a form that is

reasonable to understand. This chapter will give a brief outline of

the Z80 which should be enough to allow understanding of a disassembly

listing and simple machine language programming. If more advanced

information is needed a complete book on the Z80 such as Rodnay Zaks'

"How to program the Z80" should be consulted.

The ZBO has several registers, as shown below. The A register,

or accumulator, is . the central register and is used in most arithmetic

operations. The F register contains flags, or bits that are set to 1

when certain results of operations occur. The flags are

C,Z,P/V,S,N,H,

C=carry flag. C=l on overflow of arithemitic operations.

Z=zero flag. Z=l if result of operation is zero.

S=sign flag. S=l if the MSB of result isl.

P/V= parity or overflow flag. For parity P/V=l if the result is

even, O if it is odd. For overflow, P/V=l if operation produces

overflow.

H=half carry flag. H=l if add or subtract produce carry or borrow

from bit 4 of the accumulator.

N=add/subtract flag. N=l if the operation was subtract.

MAIN REG SET AL TERNA TE REG SET
A

\

ACCUMULATOR FLAGS ACCUMULATOR
A F A '

8 C B'

D E D'

H L H'

INTERRUPT MEMORY
VECTOR REFRESH
I R

INDEX REGISTER IX

INDEX REGISTER IY

STACK POINTER SP

PROGRAM COUNTER PC

Z80 Registers

,.

,..

FLAGS
F'

C'

E'

L'

SPECIAL
> PURPOSE

REGISTERS

"

,

GENERAL
PURPOSE
REGISTERS

9

The B,C,D,E,H, and L registers are general purpose and are used

individually as 8 bits in some instructions and in pairs (DE, BC, HL)

as 16 bits in others. The I (interrupt vector) and R (memory refresh)

registers are for special purposes and can be ignored for most

applications. The IX and IY registers are 16 bit index registers that

are used in some instructions to point to and step through tables etc .

The SP (stack pointer) register points to the memory location that is

the top of the stack, a last-in-first-out memory area similar to the

stack in BASIC that stores addresses to return to after GOSUB's, etc.

The PC(program counter) register points to the next location in memory

for execution of machine language instructions. All of the special

purpose registers (F,I,R,IX,IY,SP,PC) essentially take care of

themselves in most short programs and can be ignored.

ADDRESSING MODES

•rhe most complicated aspect of the Z80 is the addressing modes.

The address in R~M or the Z80 registers can be specified in various

ways. The following types of addressing are described and illustrated

with examples. To understand the e xamples better it will probably

help to look ahead where mnemonics are described. An important

convention to understand is that if a register or number is enclosed

in parentheses, . eg. (HL) or (nn) , then the number used i s th e number

stored at the address in R.~·,! given by the register or the number

following the op code.

Ii"lPLIED ADDRESSING

I n this mode the address is implied by the instruction. Examples

a r e "LD A,B" which copies the B register into the accumulator , and

"AND H" which ands the Hand A registers , the A register being

implied.

IMMEDIATE ADDRESS ING

In this mode the number to be used is specified in the machine

code. Examples are "LD A,n" which copies the next number in R.A.1'1 into

the accumulator, and "LD HL,nn" which copies the 16 bit number nn into

the HL register .

ABSOLUTE ADDRESSING

In this mode the address in RAM to be used is specified in the

two bytes following the op code in machine language. Examples are "LD

A, (nn)" which copies the contents of the memory location with address

nn to the A register, and "JP nn" which jumps the program to address

nn. The 8 bit numbers of the address are put in memory in reverse

order with the low order byte before the high order byte. Thus the

instruction "JP 34A8" in machine code is "C3 A8 34" (in hexadecimal).

RELATIVE ADDRESSING

In this mode the byte following the op code is a two's complement

number which is added to the program counter+ 2 to cause a relative

jump. -~n example is "JR z , e", jump relative on result zero. Values of

e from Oto 7F cause a forward jump and values from 80 to FF cause a

backward jump .

INDEXED ADDRESSING

In this mode the address is formed by adding the byte following

the op code (called the displacement, or d) to the number i n an index

register (IX or IY) . An example i s "LD A, (IX+d) 11 which loads the

number in RAM location specifi ed by addi ng the contents o f index

register IX to the displacement d into the A register.

INDIRECT ADDRESSING

In this mode the address is the number in a 16 oit register pair

(BC,DE, or HL). An example is "LDA,(BC)" which loads the contents of

the memory location speci fied by the BC register into the A register .

::.

11

BIT ADDRESSING

A single bit in a byte may be set to 1 (SET), reset to O (RES),

or tested to set the zero flag (BIT). Various addressing modes may be

used to specify the byte. Examples are "SET 3, (HL) 11
, "RES 4,A" and

"BIT 7, (IY+d)". The numbers after the mnemonic specify the bit to be

acted upon.

INSTRUCTION SET

After addressing modes, all there is to learn about the Z80 is

the instruction set mnemonics. A list of these with definitions

follows.

ADC Add with carry two specified registers. 8 bit additions are

made between the A register and any other register or memory location

with the result left in the A register. 16 bit additions are between

the HL register and other 16 bit registers with the result in HL. In

each case th~arry flag is added to the result and the carry flag is

set if the result exceeds the size of the register.

ADD Add without carry. This instruction is similar to ADC except

that the carry flag is not added to the result. The carry flag is set

if the result exceeds the size of the register.

AL"JD Logical "AL"JD" the A register with the specified register,

number or memory location. Logical AND gives a result where bits in

binary are 1 only if they are 1 in both numbers. For example, in

binary 10110001 AND 01101001 = 00100001, or in hexadecimal Bl AND 69 =

21: or in decimal 177 AND 105 = 33.

BIT tests the specified bit of the register or memory location

addressed and sets the zero flag if the result is zero.

C...A.LL Call subroutine. The program counter is stored on the stack

and the address given after the CALL instruction is loaded into the

program counter. CALLs may also be conditional.

CCF Complement (reverse) the carry flag.

CP Compare register or memory location with the accumulator. Sets

zero flag if the numbers are equal.

CPD Compare with decrement. A is compared with the memory

location specified by HL and HL and BC are decremented by 1. The zero

f 1 a g i s s et i f A = (HL) .

CPDR Block compare with decrement. Like CPD but continues until a

,natch is found (A= (HL)) or BC= 0.

CPI Compare with increment. Compares A with (BL), sets zero :Elag

if equal, increments HL by 1 and decrements BC by 1.

CPIR Block compare with increment. Like CPI but continues unti l A

= (HL) or BC= 0.

CPL Complement accumulator. All bits that are 1 are set to O and

vice versa.

DDA Decimal adjust accumulator. Used in binary coded decimal

arithmetic.

DEC

DI

!)JJ\TZ

Decrement register or memory.

Disable interrupts.

Decrement Band jump relative on nonzero .

Enable interrupts. EI

sx
EXX

Exchange specified registers.

Exchange BC, DE, and HL registers with the alternative set.

HALT CPU executes NOP's until an interrupt or reset.

IM Set interrupt mode.

IN Input number to register from port specified by the C

register, (C), or number, (n).

INC Increment register or memory location.

IND Input with decrement. Loads (HL) with input from (C),

dec~ements Band decrements HL,

INDR

o.
Block input with decrement. Like IND but repeats until B =

INI Input with increment. Loads (HL) with input from (C),

increments HL and decrements B.

INIR

0 .

Block input with increment. Like INI but repeats until B =

J'P Jump.

J'R ,Jump relative.

LD Load or copy the contents of a register or memory location to

another.

LDD Load with decrement. HL loaded to memory location (DE), OE,

HL, and BC are decremented.

LDDR Block load with decrement. Like LDD but repeats until 3C =

0 .

LDI Load with increment. (HL) is copied to (DE), DE and nL are

13
incremented and BC is decremented.

LDIR Block load with increment. Repeats LDI until BC= o.
N'.EG ~egate accumulator in two's complement.

NOP No operation. Fills in spaces in machine code and delays

about 1 microsecond.

OR Logical OR accumulator with specified register. Logical OR acts

on bits. For example,in binary, 10101100 OR 00010111 = 10111111. In

hexadecimal, AC OR 17 = BF. In decimal, 172 OR 23 = 191 (same example

each time). 1 OR 1, 1 OR O,and O OR 1 all equal 1, 0 ORO= O.

OTDR

B=O.

OTIR

B=O.

Block output with decrement. Like OUTD but repeated until

Block output with increment. Like OUTI but repeated unt il

OUT Output register specified to port given by the C register,

(c), or number, (n).

OUTD Output with decrement. The memory location addressed by the

HL register is outputted to the C port. The Band HL registers are

decremented.

output with increment. The memory location addressed by the

HL register is outputted to port c. The HL register is incremented

and the B register decremented.

POP Pop specified register (16 bit) from stack, as in BASIC.

PUSH Push register (16 bit) to stack.

RES Reset. The specified bit is set to zero.

RET Return from subroutine. The program counter is popped from

the stack, low byte, high byte.

RETI Return from interrupt . Like RET,

RETN Return from non-maskable interrupt. Like RET,

RL Rotate register left through carry flag. re.- 7~·0:'tJ
RLCA Rotate accumulator left with branch carry. c.,-1:.;.:.:·o~
RLC Rotate register or memory location left with branch carry.

~
RLD Rotate left decimal (for BCD).

RR Rotate register or memory location right through carry flag.

RRC

RRD

c: ~-r ~·a:,
Rotate right with branch carry.

Rotate right decimal (for BCD).

RSTp

SBC

SCF

Restart at location p*8 in zero page.

Subtract with borrow.

Set carry flag.

SET Set to 1 specified bit of register or memory .
.. . . ---

SLA Arithmetic shift left. C~7~04=-0 This multiplies the

register or memory location by 2.

SRA Arithmetic shift right. t~J::,;o-..c
SRL Logical shift right. 0➔7::;;·o ➔C

SUB Subtract register specified from the accumulator, the result

appearing in the accumulator.

XOR Exclusive OR accumulator and specified register. For example,

in binary 10110100 XOR 100011io = 00111010, or in hexadecimal 84 XOR

8E=3A, or in decimal 180 XOR 142 = 58. XOR A is used to set the

accumulator to zero.

How do you use all these codes? To start with you hand assemble

some machine language. Some people think you need an assembler to

write machine language, but starting with an assembler woul.d be like

starting to write english with a word processor. Its unnecessarily

complicated.

To illustrate a short machine language program I will show a way

around the limitation in BASIC that POKE will not work above 54160. To

POKE to higher memory the load commands of the Z80 worl< fine. In

assembly language we write a subroutine as follows:

LD A,n

LD (nn) ,A

RET

The code for LD A,n found in the alphabetical assembly language table

that follows, is $3E ·(or 62 in decimal) followed by the 8 bit value of

n. The code for LD (nn),A which loads the first n that is now in the

accumulator into memory location nn, is $32 (or 50 in decimal). The

code for RET (return from subroutine) is $C9 (or 201 in decimal). ••ve

can now POKE the decimal numbers into pokable memory as shown in the

first five lines of the following program:

5 REM HIPOKZR

10 DATA 62,0,50,0,0,201

20 FOR x = 0 TO 5

30 READ d

40 POKE 210+x, d

50 NEXT

60 INPUT "start address high byte"; adh

70 INPUT "start address low byte"; alo

80 INPUT "number"; n

90 POKE 211,n :POKE 213, alo :POKE 214, adh

100 CALL 210

110 PRINT n; " 11
; PEEK(adh*256+alo)

120 alo = alo+l

130 GOTO 80

15

In this case the program was stored in an unused part of zero page .

You can put them anywhere they do not erase a necessary part of BASIC

or the operating system

page 4, for example).

(the copywrite statement and "hi Cathy" on

Most programs would be best in the same area as

shape tables, above BASIC and below the stack (see pages C-16 and C-20

in the BASIC manual). Such an area must be reserved with a HIMEM

command at the beginning of the BASIC program.

It is not necessary to PUSH registers on the stack at the

beginning of a routine called from BASIC and POP them at the end,

because the CALL routine does that for you.

The following table gives a complete list of op codes in

alphabetical order which can be used for hand assembly of short

machine language routines. The disassembler in this book could also

be modified to be a simple assembler to look up op codes for you.

Z80 op codes {Courtesy of Zilog} 05=d, 8405=nn, 20==n, 2E=e

BE AOC A,(Hll E620 ANO
CB63 BIT 4,E

EOBI CPIR

n

008E05 AOC A.IIX•dl CB46 BIT O,fHLI
CB64 BIT 4.H

EOA1 CPI

F08E05 AOC A,IIV•dl OOCB0546 BIT
CB65 BIT 4,L

2F CPL

D.IIX•dl

BF AOC • A ,A FOCB0546 BIT
C86E BIT 5,IHLI

21 OAA

88 AOC A.B
O.IIV+dl

35 DEC IHLI

CB47 - BIT 0 ,A
OOCB056E BIT 5,IIX•dl

89 AOC A,C CB40 BIT 0,8
FOCB056E BIT 5,IIV•dl

003505 DEC flX•dl

BA ADC A,0 CB41 BIT
CB6F BIT

F03505 DEC IIY • dl

O,C
5,A

BB AOC A,E CB42
C868

JO DEC A

BIT 0 ,0
Bl T 5.B

BC ADC A ,H

05 DEC B

CB4J BIT O,E CB69 BIT 5.C

80 AOC A ,L

OB DEC BC

CB44 BIT O,H C86A BIT 5.0

CE20 AOC A,n

00 DEC C

CB45 BIT O,L CB6B BIT 5,E 15 DEC

E04A AOC Hl.BC CB4E BIT 1 (HU CB6C BIT 5,H
D

E05A AOC HL,OE

18 DEC OE

ODCB054E BIT 1,IIX+dl CB60 BIT 5.L

ED6A AOC HL,HL

ID DEC E

FOCB054E BIT 1.(IV+dl
C876 BIT 6,(HU

ED7A AOC HL.SP

25 OEC fl

CB4F BIT l,A
OOCB0576 BIT 6,flX•dl

86 ADO A ,(HLI

28 DEC Hl

CB48 BIT I .II
FOCB0576 BIT 6.flY•dl

008605 .\,IIX•dl

0028 DEC IX

ADO CB49 BIT l ,C
C877 BIT 6,A

F08605 ADO A,CIV+dl

F02B DEC IV

CB4A BIT 1,0
CB70 BIT 6.B

87 ADO A.A

20 DEC L

CB4B BIT l,E
CB71 BIT 6,C

BO ADO A,B
CB72

3B DEC SP

CB4C BIT l,H
BIT 6,0 FJ 01

Bl ADO A,C CB40 BIT 1,L
C07J BIT 6,E 102E OJNZ

82 ADO A,0 CB56 BIT 2.IHU
CB74 BIT 6.H FD El

83 ADO A ,E . OOCB0556 BIT 2.flX+dl
C875 BIT 6 ,L EJ EX iSPl,HL

84 ADO A ,H FDCB0556 BIT 2.flY•dl
C87E BIT 7.IHLI DOEJ EX ISPl,IX

85 ADO A,L C857 BIT 2,A
OOC8057E BIT 7.flX+dl

FOEJ EX ISPl,IY

C620 n ADO A,n C850 BIT 2 ,B
FOC8057E BIT 7.IIV•dl 08 EX AF .AF'

09 ADO HL,BC CB51 BIT 2.C
C87F BIT 7,A

EB EX OE .Ht.

19 ADO HL.OE CB52 BIT 2.0
CB78 BIT 7,8

09 EXX

29 ADO HL,HL CB53 BIT 2,E
C879 BIT 7,C

76 HALT

39 ADO HL.SP CB54 BIT 2.H
CB7A BIT 1,0

E046 IM 0

0009 ADO IX .BC COSS BIT 2 ,L
CB7B BIT 7,E E056 IM I

0019 ADO IX .OE CB5E BIT J.(HLI
CB7C BIT 7.H

E05E IM 2

0029 ADO IX .IX ODCB055E BIT J,flX•dl
CB70 BIT 7,L E078 IN A .ICI

0039 ADO IX ,SP FOC8055E BIT l.flV+dl
OCMU5 CALL C.nn E040 IN B.ICI

F009 ADO IY,tlC CB5F BIT J,A
FC8405 CALL M,nn .E048 IN C,ICI

FD19 ADO IY,OE CB58 BIT 3,8
048405 CALL NC,nn ED50 IN D.ICI

f029 ADO IY ,IY CB59 BIT J,C
C48405 CALL NZ.nn E058 IN E.ICI

F039 ADO IV.SP CB5A BIT 3,0
F48405 CALL P,nn E060 IN H _ICI-

A6 AND (HU CB5B BIT J,E
EC:8405 CALL PE,nn E068 IN L.ICI

OOA605 ANO CIXtdl CB5C BIT J ,H
E48405 CALL PO .on

34 INC IHI.I

FOA605 ANO flV+dl CB50 BIT J,L
CC8405 CALL Z.nn

003405 INC flX•dl

A7 ANO A CB66 BIi 4 ,(HLI
C08405 CALL

""
FOJ405 INC IIV•<ll

AO ANO B OOCB0566 BIT 4,IIX•dl
3F CCF JC INC A

Al ANO C FOCB0566 BIT 4,HV•dl
BE CP (Hll 04 INC B

A2 ANO .o C867 BIT 4,A
OOBE05 CP' flX•dl OJ INC BC

AJ ANO E CB60 BIT 4,8
FOBE05 CP HV •dl oc INC C

A4 ANO H CB61 BIT 4,C
BF CP A 14 INC 0

A5 ANO L CB62 BIT 4,0
88 CP B 13 INC DE

89 CP C
IC INC E

BA CP 0
24 INC l·t

BB CP E 23 INC Ill

BC CP H 0D23 INC IX

BO CP l.
F023 INC IY

FE20 CP
2C INC l

EOA9 CPO 33 INC SP

EOB9 CPOA Oll20 IN A .I nl

Z80 op codes (Courtesy of Zilog) 05=d, 8405=nn, 20=n, 2E=e

[IJ /\ 1\ INIJ DOIE05 1.0 A.tlX•dl

EIJBI\ INDH

58 LO E.E EOBJ

F07f.05 LO A.tlY•dl

OTIR

5C LO E;H E079 OUT !Cl .I\

[IJA } INI JA8405 LO A .Inn!
f 087 !NIil

5D LD E.L ED41 OUT

CJ8405
7F LO A,/\ 1E20 LO En

ICI .B

JP on

ED49 OUT

E9
78 L D A.B 66 Lil H.IHLI

ICI .C

JP IHI.I

ED5 1 OUT

79 l.D A.C

ICI.D

DDE9 JP II XI
D06605 LO H.(IX•dl ED59 OUT

7 A LO A.D FD6605

ICI .E
LO H.(IY•dl ED61 OUT ICI.H

FDE9 JP II YI 78 LO A.E
IJA8405 JP C. nn

67 LO I-I .A E069 OUT

JC LO A.H

ICI .L

F A8405 JP M ,nn
60 LO H .B D320 OUT (nl .A

028405
ED57 LO A.I 61 LO H.C

JP NC,nn 70 LO A.L

EDAB OUTD
62 LO H.D

C28405 JP NZ.no JE20 LO A,n

EDAJ OUTI

F28405 .IP P,n n

63 LO H .E fl

EDSF LO A,R
64 LO H.H

POP A F

EA8405 JP PE,nn 46 LO B .(HLI 65 LO H.L
Cl POP BC

E28405 JP PO,nn D04605 Lil B .tlX•dl 2620 LO H,n
Ill POP D E

CA8405 JP Z,nn f 04605 LO B.(IY•dl 21\8405 LO lll ,(nnl
El POP HL

J82E Jll C '·~

DDEl POP

, ,t '. 47 LO B.A 218405 LO Hl ,nn
IX

J02E Jll NC,t! 40 Lil B.B ED47 LO I.A
FOE! POP IY

202E JI! NZ.e 41 LO B.C DD2A8405 IX .(nnl
F5 PUSH AF

LO

20n Jfl
• r -~; :tL

4, LO B .D 0D218405 IX .nn
cs PUSH BC

LO

182E Jn 43 Lil B.E . FO~AB405
D5- PUSH DE

LO IY,lnnl

02 LO ltJC1 .A 44 LO B .H
E5 PUSH HL

FD218405 LO IV .nn

l2 I.I) ([)EI .A 45 LO B.L
ODE5 PUSH IX

6E LO UHi.i

77 I.I) IIILl ,A 0620 LO B.n
FDE5 PUSH IV

70 Lil
ED4BB405 LO BC ,(nnl

DD6E05 LO L.(IX t dl CBB6 RES 0.IHLI

IHI.I .B

71 LO
018405 LO

FD6E05 LO L,(IYtdl ODCB0586 RES O.UX•dl

IHLI .C
BC,nn

72 Lil
4E LO C.IHLI

6F LO L .A FOCB0586 RES O.tlY•dl

IHI I.D
68 LO L .B

73 LO IHLI .E
D04E05 LO C.tlX•dl 69 LO L,C

CB87 RES 0 .A

74 LO IHLI .H
FD4E05 LO C.tlY•dl 6A LO L.D

CB80 RES 0 .B

75· LO ll!ll .L
4F LO C.A 68 LO L .E

CBBl RES o.c

3620 LI> IHLl.n 48 LO C.B 6C LO L.H
CB82 RES 0 .D

007705 LU (IX t dl ,A 49 LO c.c 6D LO L.L
CB8J RES O.E

D07005 1. D tlX•dl.B 4A Lil C.D 2E20 LO L ,n
CB84 RES O,H

DD7105 LO (IX•dl,C . 4B Lil C.E ED4F LO R,A
CB85 RES O.L

007205 I. D (IX•dl .D 4C LO C.H E07BB405 LO SP,(nnl
CBBE RES 1.IHLI

007305 10 (IX•dl .E 40 LO C.L F9 LO SP.HL
ODCB058E RES 1.IIX • dl

001405 LO (IX•dl ,H OE20 LO C.n OOF9 LO SP .IX
FOCB058E RES 1,(IY •di

007505 LO tlX•dl .L 56 Lil D.(Hll FOF9 LO SP.IV
CBBF RES 1,A

DDJ60520 LO IIX • dl.n 005605 LO D,tlX•dl 318405 LO SP .on
CBB8 RES l,B

f 07705 - l.O (IY•dl ,A FD5605 LO O,(IY •dl EDA8 LOO
CB89 RES l ,C

F D7005 L O (IY • dl .B 57 LO D,A EDBB LODA
CBBA RES 1 ,D

F 07105 LO (IY•dl ,C 50 LO D,B EOAO LOI
CBBB RES 1 ,E

FD7205 LO (IY•dl ,O 51 LO D.C
EOBO LOIA

CB8C RES 1.H

F D7305 LO (IY • dl ,E 52 LO D,D
ED44 NEG CB8D RES 1.L

F D7405 LO (IY•dl ,H SJ LO O.E
00 NOP C896 RES 2 ,IHLI

f D7505 LO (IY • dl.L 54 LO D.H
86 OR IHI.I DDCB0596 RES 2.IIX•dl

f 0360520 LO IIY•dl.n 55 LO D.L
D08605 OR tlX •dl FDC80596 RES 2,IIYtdl

328405 LO (nnl,A 1620 LO D,n
FOB605 OR tlY+dl CB97 R ES 2 .A

E04J8405 LO (nnl.BC ED5B8405 LO DE ,lnnl
87 OR A CB90 RES 2 .8

ED5J8405- LO lnnl .DE 118405 Lil DE .on
BO OR B CB91 RES 2 .C

228405 LO lnnl .HL SE LO E.IHLI
Bl OR C CB92 RES 2,0

D0218405 LO (nnl,IX DD5E05 LO E.UX•dl
B2 OR D CB9J RES 2.E

f 0228405 t D lnnl ,IY F05E05 LO E.IIY •dl
BJ OR E CB94 R ES 2,H

ED738405 LO lnnl.SP SF LO E, A
B4 OR H CB95 RES 2.L

OA LO A,IBCI SB LO E,B
85 OR L CB9E RES J ,IHLI

IA LO A.IOEI 59 Lil E.C
F620 OR n DDC8059E R ES 3.IIX•dl

EDBB OTDR FDCB059E RES 3.IIY •dl

7E LO A .CHU SA Lil E.D I-'
--.J

Z80 op codes {Courtesy of Zilog)
CB9F
CB98
CB99
CB9A
CB9B
CB9C
CB90
CBA6

OOCB05A6
FOCB05A6
CBA7
CBAO
CBAI
CBA'.2
CBA3
CBA4
CBA5
CBAE
DDCB05AE
FOCB05AE
CBAF
CBAB
CBA9
CBAA
CBAB
CBAC
CBAO
CBB6

OOCB05B6
fOCB05B6
CBB7
CBBO
CBB1
CBB2
CBBJ
CBB4
CBB5
CBBE
OOCB05BE
FOCB05BE
CBBF
CBBB
CBB9
CBBA
CBBB
CBBC
CBBD
C9
08
FB
DO
co
FO
EB
EO
CB

"

RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

RES
RES
RES
RES
RES
RES
RES
RES
RES
AES
RES
AES
RES
AES
AES
RES

RES
RES
RES
R'ET
AET
RET
RET
RET

AET
AET
AET
RET

3,A
3,B
3.C
3,0
3,E
3,H
3.L
4,fHLI
4,flX +dl
4,flY+dl
4,A

4 .B
4,C
4,0
4 ,E
4 .H
4.L
5,fHLI
5.flX+dl
5,flY+dJ
5.A
5.B
5,C
5,0
5.E
5 ,H
5,L
6,fHLI

6,flX+dl
6,flY•dl
6.A
6.B
6 ,C
6,0
6 .E
6,H
6,L
7,fHLI
7,flX•dl
7,(IY+dl
7,A
7,8
7,C
7,0
7,E
7.H
7.L

C

M
NC
NZ
p

PE
PO
z

E040
ED45
CB16
DOCB0516
FDCB0516
CB17
CBIO
CB11
CB12
CBl3
CB14
CB15
17
CB06
ODCB0506
FOCB0506
CB07
CBOO
CBOI
CB02
CB03
CB04
CB05
07
E06F
CB1E
OOCB051E
FOCB051E
CB1F
CB18
CB19
CB1A
C818
CB1C
CB10
IF
CBOE
OOCB050E
FOCB050E
CBOF
CBOB
CB09
CBOA
CBOB
CBOC
CBOO
OF
E067
C7
CF
07
OF
E7
EF
f7
FF
OE20

RETI
RETN
AL IHLI
AL flX•dl
AL flY•dl
AL A
AL B
AL C
AL 0
AL E
AL H
AL L
ALA
RLC IHLI
ALC flX+dl
ALC flY+dl
RLC A

ALC B
ALC C
ALC 0
RLC E
RLC H
ALC L
ALCA
ALO
RA fHLI
RA flX+dJ
RA IIY+dl
AA A
AR B
AA C
AA 0
AA E
AA H
RA L
AAA
RAC fHLI
RAC ftX+dJ
RAC IJY+dl
RAC A .
RAC B
RAC C
RAC 0
RAC E
ARC H
ARC L
ARCA
ARO
AST OOH
AST OBH
AST 10H
AST 1BH
AST 20H
AST 28H
AST 30H
AST JBH
SBC A,n

OS=d, 8405=nn, 20=n, 2E=e

9E
009E05
F 09E05
9F
98
99
9A
9fl
9C
90
E04i
E052
E062
E072
37
CBC6
DOCB05C6
FOCB05C6
CBC7
coco
CBCI
CBC2
CBC3
CBC4
CBC5
CBCE
OOCB05CE
FOCB05CE
CBCF
CBCB
CBC9
CBCA
CBCB
CBCC
CBCO
CB06
OOCB0506
FOCB0506
CB07
CBOO
CBOI
CB02
CBOJ
CB04
CB05
CBOB
CBOE
OOCB050E
FOCB050E
CBOF
CBD9
CBOA
CBOB
CBOC
CBOO
CBE6

SflC
SBC
SBC
snc
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SCF
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

' SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

I\.IIH I

A.flX•<II
A,flY•dl
A.fl

l\,B

I\.C

A,U
A .f
11.H
11.L
l~L.BC
i~ L.OE
HL.HL
HL ,SP

0 .IHU
O.flX •<IJ
O,flY•rll
0,A
CJ.fl
o.c
0.0
0.E
O.H
O.L
l.(HLI
1.flX•dl
1.IIY•dl
1,A
1,B
1.C
1,0
1.E
1.H
1.L
2 ,fHLI
2.flX•rll
2.flY•dl
2.A
2.B
2 .C
2.0
2 ,E
2.H
2.L
J.B
J.IHLI
J,IIX•dl

3.IIY• dl
3,A
J.C
3,0
J.E
3.H
3.L
4,IHLI

OOCB05E6
FOCB05E6
CBE7
CIJEO
CBE1
CBE2
CBEJ
CBE4
CBE5
CBEE
DOCB05H
FOCB05EE
CBEF
CBEB
CBE9
CBEA
CBEB
CBEC
CBEO
CBF5
OOCB05F6
FOCB05F6
CBF7
CBFO
CBF1
CBF2
CBF3
CBF4
CBF5
CBFE
OOCB05FE
FOCB05FE
CBFF
CBFB
CBF9
CBFA
CBFB
CBFC
CBFO
CB26
DDCB0526
FOCB0526
CB27
CB20
CB21
CB22
CB2J
CB24
CB25
CB2E
OOCB052E
FOCB052E
CB2F
CB28
CB29
CB2A

SEl
SET
SH
SET
SET
SET
SET
SfT
SET
SET
SET
SET
SET

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SRA
SRA
SRA
SRA
SRA
SRA
SRA

4.flx,,n
4,flY•dl
4,/1

4,B
4.C
4,0
4.E
4.H
4.L
5 .fHLI

. 5,flX•dl
5,flY•,tJ
5./1

5.8
5,C
5.D
5.E
5.H
5.L
6.fHLI
6.IIX•dl
6,flY•dl

6.A
6.B
6,C
6.D
6.E
6 .H
6.L
7,fHLI
7,flX•dJ
7.flY•dl
7.A
7.B
7,C
7,0
7.E
7,H
7.L
IHLI
flX•dl
flY•dl
A

B
C
0
E

H

L
IHLI
IIX•dl
IIY•dl
A

B

C
0

CB2B Sf111
CB2C SRI\
CB2D SRA
CBJE SRL
ODC0053E SRL
FOCB05JE Sfll
CBJF SAL
CB38 SAL
CBJ9 SA L
CB3A SRL
CBJO SRL
CBJC SAL
CB3D SRL
96 SUfl
009605 sun
F09605 SUB
97 SUB
90 SUB
91 SUB
92 SUB
93 SUB
94 SUB
95 SUB
0620 SUB
AE XOR
OOAE05 XOR
FOIIE05 XOR
AF XOR
AB XOR
A9 XOR
AA XOR

AB XOR
AC XOR
AO XOR
EE20 XOR

E
H

I.
IIILI

flX•rll
IIY•dl
A

B
C

D
E
H

L
IHLI

flX •dl
(IY•dl
A

fl
C
D
E
H

L

IHL)

flX•dl
IIY•dl
A

B

C
0

E
H

l

CHAPTER 4 . Memory Map (all numbers hexadecimal).

0000-
00FF

0100

0101-
0104

010B-
03A8

03A9-
041F

0420-
047F

0480-
05B7

05B8-
3ED8

3ED9

3EDE

3EE3

3EED

3EEF

3EF3

3EFE

3F01

3F02

Zero page. interrupt routines.
except at 66-AB.

Start of BASIC

All C9 (return)

Pointers for version of Basic. See Coleco manual
p.C23 My version has A3 3E CJ 4F here.

Basic word table. Format: token (1 byte), address in
address table (2 bytes), number of letters in word

(1 byte), word.

Routine address table. Format: number of addresses
(1 byte), address(es) (2 bytes each).

Hi Cathy and copyright statement.

Error messages. Format: number of letters (1 byte) ,
message in ASCII.

Basic routines.
tables.

Himem pointer.

Lomem pointer.

Identify from word and address

Pointer to start of numeric variables.

Pointer to end of numeric variables.

Pointer to start of string space.

Pointer to end of string space.

Line number for ONERR GOTO.

Speed (FF) .

USR address. CALL is better that USR. Forget it .

3F04 @ address.

3F22- FP accumulator (see chap . 2).
3F26

19

3F2B- FP operand.
3F2F

3F32 number of digits in FP result.

3F40- scratch pad?
3FA3

3FA4-
4045

4EAA-
4F4E

4F4F-
4FAS

Basic words, math.
88 or A8, address.

Format: number of letters, word,

Tape word table. Format: number of letters, word,
address table pointer (1 byte), which gives the
offset of the address from the beginning of address
table.

Tape address table. Format: 2 byte address of
routine. Pointed to by offset in word table.

4FA6- Tape routines. see tape word and address tables.
5E3F

5E40-
5EE8

6B00

6BOO

6B00

6COO

CEOO­
CFOO

CFOO-

D200-

Tape error messages.
message.

Format: number of letters,

Approximate location of string variable table.
Format: 03 21 address (2 bytes), name (2 bytes).

After string table is the numeric variable table.
Format: 03 01, address (2 bytes), name (2 bytes) .

After numeric table is Basic math word table.

String space. Format: address in table, number of
~etters (bytes), string.

Numeric variables (see chap. 2). Numbers are
preceded by letters of the name after first two .

Tokenized BASIC program (see chap. 6) .

Stack

D400- Buffer from tape: catalog. Format: name, type, 17
D700 bytes (sectors on tape?).

D800- Buffer from tape: last program loaded.

.::

.:

EOOO Start of operating system (OS).

8010- General block output.

E02A- General block input.

EOCF- Printer.

EOD5- Output to VRAM.

FC18- Pointers, VR..2\.M table numbers, out addresses.
FC2C

FC30- Start of OS jump table.
FDSE

FD75 Keyboard input byte.

IN/OUT space.

60-7F Bus for printer, tape .

AO-BF Video display processor .

EO-FF Sound generator.

21

CHAPTER 5. A DISASSEMBLER

The disassembler listing which follows will translate machine

code into assembly language. It is ~ssentially several tables of

pointers by which the machine language op code points to the assembly

language mnemonic and register or address information. These tables

are entered as data statements of letters and symbols which are

converted to numbers by the ASCII code because it is shorter and

requires less typing. The information is then put into string arrays

which are: nm$= mnemonics, t$= names of registers etc.; a$(x), b$(x),

c$(x) which have pointers to nm$,t$,t$, respectively;d$(x),e$(x) and

f$(x) like a$,b$,c$ when the op code begins with ED; and g$, h$, i$,

for op codes which begin with CB. Line 23 prints the address in

hexadecimal. Line 25 prints the op code. Lines 30-60 check for

special codes and gosub appropriately. In lines 100 and 110 n is the

number of bytes expected following the op code. The variables

pa,pb,and pc are the pointers as numbers extracted from the string

arrays. Lines 3000 to 4000 fill the string arrays when the program is

first run. Lines 5000 to 5095 are a decimal to hexadecimal conversion

subroutine.

When you run the program it asks for a starting address, which

should be in decimal. It then prints out the disassembled listing

until you stop it by typing controls or c. If you have fan-fold

paper you can leave it going for hours (plan on leaving the house if

you have sensitive ears). To avoid disassembling ASCII, tables and

garbage etc., consult the memory map and print out relevant areas of

RAM with printmem first because it is much faster. Typical output

lines are as follows:

2010 07DA 79 LD A,C y
2011 07DB 08 EX AF,AF'
2012 07DC 48 LD C,B H
2013 07DD 43 LD B,E C
2014 07DE SA LD E,D z
2015 07DF 1600 LD D,n
2017 07El C9 RET

address op code mnemonic ASCII

The address is first printed in decimal and then in hexadecimal.

The op code is then printed in hexadecimal, followed by the mnemonic.

On the for right the ASCII symbol of the op code is printed to help

identify words in ASCII wh ich were not intended to be op codes.

23

If you type the program in and it runs alright you may still have

made an error by adding an extra data element. To check for that type

"? i$(255)" in the immediate mode after running the program. The

result should be"@''. Checking for substitution errors could be done

by driving the program with a for-next loop to generate all op codes

and comparing them with the listing at the end of chapter 3.

There may be more efficient ways to write a disassembler for the

Z80, but this one works and was enough trouble to write that I am not

going to change it. It has some illogical aspects, such as the

listing of the mnemonic CPIR twice, that are slightly embarrassing,

but still not worth changing. On the other hand it can easily be

modified to print addresses instead of "nn" or to input hex numbers,

etc. which you are welcome to do. It could even be turned into an

assembler by creating string arrays of complete mnemonic statements

(complete lines) to be searched through for a match to lines typed in.

It would be slow but useful. The major work of designing and typing

in the data for the op code tables would be done already for the

disassembler.

Printmem is a short program that prints out RAH in a convenient

format to interpret before disassembling. The ASCII equivalents of

the numbers are printed on the left with= signs for non-ASCII

numbers. Lines of 16 hexadecimal numbers are then printed in pages of

256. The format is particularly useful for interpreting tables and

variable or string areas. A sample printout of page 4 is shown

following the program.

Viewer is a very short program which displays pages of RAM on the

screen as ASCII and graphics characters. It is a good one to start

with.

Viewchr is a minor modification of viewer, which allows you to see the

graphics characters on the screen. The ASCII values can be seen from

the position on the screen.

J

2 REIi Z80 disassembler by P. Hinkle, ' larch 1984
5 GOTO 1000

10 INPUT "start addr"; ad
11 PR #1
20 PRIN'I': op = PEEK(ad)
21 n = 0 : nl = 0: de= 0
22 PRINT ad; TA3(7);
23 GOSUB 5000
25 GOSUB 120
30 IF op= 203 THEN
40 IF op= 221 THEN
50 IF op= 237 THEN

GOSU8
GOSUB
GOSUB

60 IF op= 253 THEN GOSUB
56 GOSUB 70
67 GOTO 150
70 pa= ASC(a$(op))
80 pb = ASC(b$(op))

200:
400:
600:
800:

90 pc= ASC(c$(op))
100 IF pb = 78 OR pb
110 IF pb = 86 OR pb

94 OR pc
71 OR pb

GOTO
GOTO
GOTO
GOTO

150
150
150
150

78 OR pc =
89 OR oc

94 THEN
86 OR pc

n = 2: nl = 2
= 71 OR pc = 89

= 1: nl = 1
115 RETURN
118 ad= ad+l: op= PEEK(ad)
120 PRINT /1ID$(x$, INT(op/16)+1, l);
130 PRINT MID$(x$, (op/ 16-INT(op/1 6))*16+1, l);
140 RETURN
150 IF n > 0 THEN
160 IF n > 0 THEN
170 PRINT TAB(23)

ad= ad+l: n = n-1: op= PEEK(ad): GOSUB 120
ad= ad+l: op= PEEK(ad): GOSUB 120

180 PRINT nm$(pa-49); TAB(29); t$(pb-64);
181 IF pc= 117 THEN GOTO 185
183 PRINT ", "; t$ (pc-64);
185 IF nl = 2 THEN PRINT SPC(4): GOSUB 120: op
187 pp= POS(O)

PEEK(ad-1): GOSUB 120

'188 IF pp < 20 THEN pp = pp+31
139 PRINT SPC(60-pp);
190 IF nl = 2 THEN GOSUB 5100
192 IF nl = l THEN GOSUB 5100
194 GOSUB 5100
199 ad= ad+l: GOTO 20
200 REM
210 GOSUB 118
2 3 0 pa = ASC (g $ (op))
240 pb = ASC(h$(op))
250 pc= ASC(i$(op))
260 GOSUB 100: RBTURN

CB routine

400 REM DD routine
420 GOSUB 118
430 H' op = 203 THEN
440 GOSUB 70

GOSUB 118: GOSUB

450 IF pb = 95 THEN
452 IF pb 72 THEN
454 IF pc 95 THEN
456 IF pc 72 THEN
460 RETURN'
o00 REM
610 GOSUB 118

pb
pb
pc
pc

530 pa = ASC (d$ (op-64))
640 pb = ASC(eS(op-64))
650 pc= ASC (f$(op-64))
660 GOSUB 100: RETURN

=
=
=

96: IF de =
76
96: IF de =
76

ED routine

200: de = 1: GOTO 450

0 THEN GOSUB 118

0 THEN GOSUB 118

n

] 800 REM
810 GOSUB
820 IF op
830 GOSUB
850 IF pb
852 IF pb
854 IF pc
856 IF pc
860 RETURN

118
= 203
70
= 95
= 72
= 95
= 72

THEN

THEN
THEN
THEN
THEN

FD routine

GOSUB 118: GOSUB 200: de= 1: GOTO 850

pb
pb
pc
pc

= 97:
= 77
= 97:
= 77

IF de

IF de

= 0 THEN GOSUB 118

= 0 THEN GOSUB 118

1000 x$ = "0123456789ABCDEF"
2000 DATA A,B,C,D,E,H,L,n,HL,BC,DE,SP,IX,IY,nn,M,NC,NZ,P,PE,PO,Z,e, (S

P) , (C) , (n) , (IX)
2001 DATA (IY), (BC), (DE), (nn), (HL), (IX+d), (IY+d),O,l,2,3,4,5,6,7,I,R,00H,08H

,10H,18H,20H,28H,30H,38H,?, ,AE,AE', (A), (HL)
2002 DATA ADC,ADD,AND,BIT,CALL,CCF,CP,CPD,CPDR,CPIR,CPI,CPL,DAA,DEC,DI,DJNZ,

EI, EX,EXX,HALT
2003 DATA IM,IN,INC,IND,INDR,INI,INIR,JP,JR,LD,LDD,LDDR,LDI,LDIR,NEG,NOP,OR,

OTDR,OTIR,OUT,OUTD
2004 DATA OUTI,POP,PUSH,RES,RET,RETI,RETN,RL,RLA,RLC,RLCA,RLD,RR,RRA,RRC,RRC

A,RRD,RST,SBC,SCF
2005 DATA SET,SLA,SRA,SRL,SUB , XOR,RETI,? , CPIR
2010 DATA T , N,N , G, G, >, N,d,B , 2,N ,>, G,> , N,i,@ , N,N , G, G,>,N,b,M , 2 , N, >, G,> , N, g,M,N

, N,G,G,>,N
2011 DATA·
2012 DATA
2013 DATA
2014 DATA
2015 DATA
2016 DATA
2017 DATA
2020 DATA

=,M,2,N,>,G,>,N,<,M,N,N,G,G,>,N,m,M,2,N,>,G,>,N,6
N,N
N,D,N,N,N,N,N,N,N,N,N
2,2,2,2,2,2,2,2,l,l,l,l,l,l,l,l,r,r,r,r,r,r,r,r,l,l,l,l,l,l,l,l
3,3,3,3,3,3,3,3,s,s,s,s,s,s,s,s,U,U,U,U,U,U,U,U,7,7,7,7,7,7,7,7
A,[,L,L,S,\,2,k,A,A,L,t,s,s,1,k,A,[,L,X,S,\,r,k,A,c,L,F,5,t,l,k
A,[,L,B,5,\,3,k,A,L,L,B,5,t,s,k,A,[,L,?,S,\,U,k,k,N,L,A,5,t,7,k
u,I,\,I,A,A,A,u,v,H,@,I,B,B,B,u,V,J,],J,C,C,C,u,V,H,@,J,D,D,D,u,Q,

H
2021 DATA
2022 DATA
2023 DATA
2024 DATA
2025 DATA
2027 DATA
2028 DATA

A,H,E,E,E,u,U,H,H,H,F,F,F,u,P,K,A,K, , , ,u,B,H,@,K,@,@,@,u
A,A,A,A,A,A,A,A,B,B,B,B,B,B,B,B,C,C,C,C,C,C,C,C,D,D,D,D,D,D,D,D
E,E,E,E,E,E,E,E,F,F,F,F,F,F,F,F, , , , , , ,u, ,@,@ , @,@,@,@,@,@
@,@,@,@,@,@,@,@,@,@,@,@,@~@,@,@,X,a,c,o,E,F, ,@,@,@,@,@,@,@,@,@
A,B,C,D,E,F, ,@,A,B,C,O,E,F, ,@,A,B,C,D,E,F,-,@,A,B,C,D,E,F, ,@
Q,I,Q,N,Q,I,@,l,U,u,U,t,U,N,@,m,P,J,P,Y;P,J,G,n,B,u,B,@,B,t,@
o,T,H,T,W,T,H,G,p,S, ,S,J,S,t,G,q,R,v,R,u,R,v,G,r,o,K,O,u,o,u,G,s

2030 DATA u,N,@,u,u,u,G,u,w,I,\,u,u,u,G,u,u,N,@,u,u,u,G,u,u,J,],u,u,u,G,u,V,
~,H,u,u,u,G,u,V,H

2031 OATA A,u,u,u,G,u,V,N,@,u,u,u,G,u,V,K,A,u,u,u,G,u
2040 DATA A,B , C,D,E,F, ,@,A,B ',C,D,E,F, ,@,A,B,C,.D,E,F, ,@,A,B,C,D,E,F, , @
2041 DATA A,B,C,D,E , F,-,@,A,B,C,D,E,F,-,@,A,B,C,D,E,F,u,@,A,B,C,D,E,F,-,@
2050 DATA A,B,C,D,E,F,-,@,A,B,C,D,E,F,-,@,u,u,u,u,u,u,u,u,A,B , C,D,E,F,-,@
2051 DATA u,u,u,u,u,u,u,u,u,u,u,u,u,u , u,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u
2060 DATA u,u,N,u,N,u,G,u,u,u,N,t,N,u,G,u,u,u,N,@,N,u,u,u,u,u,N,G,N,t,G , u,u,

u,N,H,N,u,u,u,u,u
2061 DATA N,H,N,t,u,u,u,u,N,u,N,u,u,u,u,H,N,u,N,u,u,u
2070 DATA F,X,l , N,S, ',E,N,F,X,l,N,u, ,u,N,F,X,l,N,u,u,E,N,F,X,l,N,u,u,E , N,F

, x ,1,u,u,u,u,j , F,X,l , u,u,u,u
2071 DATA e,u,u , l,N,u,u,u,u,F,X,l,N,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u
2072 DATA . V,u,Q,; ,J,Z,u,u,u,u
2073 D.ATA 0,8,H,Y,u,u,u,u,R,v,K,W,u,u,u,u,P,9,I
2079 DATA A,X,H , A,u,u,b,j,B,X,H,I,u,u,u,k,C,X,H
2080 OATA A,u,u,c,@,D,X,H,J,u,u,d,@,E,X,H,u,u,u,u,u,F,X,H,u,u,u,u,u,u,u,H,A

,u,u,u,u,@
2081 DATA X,H,K,u

,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u
2082 DATA u,u,u,u,u,u,u,u,u,u,u,u , ~,u,u
2083 OATA X,A,I,I,u,u,@,u,X,B,I,A,u,u,u,@,X,C,J,J,u,u,u,j,X,D,J,A,u,u,u,k,X

,E,H,u,u,u,u,u,X,F,H , u,u,u,u,u,u,u,K,K
2084 DA'rA u, u, u, u, X, @, K, A, u, u·, u

, u
2085 DATA

u,u,u,u
2086 DATA
2087 DATA
2088 DATA
2')89 DATA
20 9 0 DATA
2091 DAT A
2092 DA.TA
2093 Di\TA

u,

c, c, c, c, c, c, c, c, h, h, h, h, h, h, h, h, a, a, a, a, a, a, a, a, f, f, f, f, f, f, f, f
o,o,o,o,o,o,o,o,p,p,p,p,p,p,p,p,u,u,u,u , u,u,u,u,q,q,q,q,q,q,q,q
4,4
4,4,4, 4 ,4,4,4,4,4,4,4,4,4,4,4,4, 4 ,4,4,4,4,4, 4 , 4 ,4,4,4,4,4,4,4, 4
].],] ,],],],],],],].],],],],].],],],],],], J,.J.].].], J.]. J.], J. J
J. J,],],], J, J,],],].], J.],],].],],],], J,],],],].].].],].], J.],]
n,n,n,n,n,n,n,n,n,n,n,n,n,n,n, n ,n,n,n, n ,n,n,n , n,n, n , n , n ,n,n, n ,n
n, n ,n,n,n,n,n,n,n,n,n, n ,n,n,n, n ,n, n , n , n ,n,n, n ,n, n , n , n , n , n , n , n , n

-

2100
210 l
2110
2111
2112
2113
2114
2115
2120
2121
2122
2123
2124
2125
2126
212 7
3000
3001
3002
3003
3004
3005
JOlO
3020
3021
302'.2
302 3
3030
303 1
3032
3040
3041
3042
4000
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5092
5095
5100
SllO
:312 0

]

DATA ~,B,C,O,E,F, ,@,A,B,C,D,E,F, , @, A,B,C,D , E,F , , @, A,B,C,O,E,F, , @
DATA A,B,C , D,E,F,-,@,A,B , C, D,E,F,-, @, t,t ,t,t ,t , t , t , t , A,B,C,D,E , F , - , @
JATA b,b,b,b,b,b,b,b,c,c,c,c,c,c,c,c,d,d, d,d,d , d,d,d,e,e , e,e,e,e , e,e
DATA f,f,f,f,f,f,f,f,g,g,g,g,g,g,g,g,h,h,h,h,h , h,h,h, i ,i,i,i,i,i,i,i
DATA b,b,b,b,b,b,b,b,c,c,c,c,c,c,c,c,d, d,d,d,d,d , d , d,e,e,e , e,e,e,e,e
DATA f,f , f,f,f,f,f,f,g,g,g,g,g,g,g,g,h , h,h,h,h , h , h,h ,i, i,i,i , i,i,i,i
DATA b,b,b,b , b,b,b,b,c,c,c,c,c,c,c,c , d , d,d,d,d,d , d,d,e,e,e,e,e,e,e,e
DATA f,f,f,f,f,f , f,f,g,g,g,g,g,g,g , g , h,h,h,h , h,h , h,h,i,i , i,i , i,i,i,i
DATA u , u,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u , u , u,u,u , u , u , u ,u ,u,u , u , u,u,u
DATA u , u,u,u,u , u,u,u,u,u,u,u , u,u,u,u , u,u,u , u,u,u,u,u,u , u,u,u , u , u , u,u
DATA A,B,C,O,E,F, , @,A,B,C,D,E,F, ,@ , A,B , C,D,E,F, ,@,A,B,C,D,E,F , ,@
DATA A,B,c·,D,E , F7 ,@,A,B,C,D,E , F7 ,@,A,B,C,D,E , F7 ,@,A,B,C,D,E,F7 ,@
DATA A. , B,C , D,E , F, -;"@,A,B,C , D,E,F , ';-@,A,B,C , D,E,F, '7@,A,B,C,D,E,F , 7@
DATA A,B,C,D,E,F , -,@ , A,B,C,D,E,F , -,@,A,B,C,D,E,F,-,@,A,B,C,D , E , F,-,@
DATA A, B,C,O,E,F,-,@,A,B,C,D , E,F,-,@ , A,B,C,D,E,F , -,@,A,B,C,D , E,F, - ,@
DATA A, B,C,D,E , F ,-, @,A,B,C,D,E , F,-, @,A,B,C,D,E,F,-,@,A,B,C,D,E,F,-,@
DIU nm$(69) - - , - -
DIM t$ (57)
DI'.1 a$ (255)
DIM b$(255):
Drn d$(122):
DIM g$(255):
FOR x == 0 TO
FOR x = 0 TO
E'OR x = 0 TO
FOR X = ·o TO
;?QR x = 0 TO
f'OR x = 0 TO
?OR x = 0 TO
'?OR x O TO
E'OR X =
?OR X =
E'OR X =
GOTO 10

0 TO
0 TO
0 TO

DIM c$ (255)
DIM e$(122): DIM f$(122)
DIM h$(255): DIM i$(255)
57: READ t$(x): NEXT
69: READ nm$(x): NEXT
255: READ a$(x): NEXT
255: READ b$(x): NEXT
255: READ c$ (x): :rnXT
122: R8AD d$(x): ~EXT
122: READ e$(x): NEXT
122: RBAD f$(x): NEXT
2 5 5 : READ g $ (x) : cV!:XT
255: READ h$(x): NEXT
255: READ i$(x): NEXT

a = rnT(ad/4096)
P:UNT ,HD$(x$, a+l, 1):
b = ad-a*4096 •
c = INT(b/256)
~RINT MID$(x$, c+l, 1):
d = b-c*256
e = IHT(d/16)
PRINT MID$(x$, e+l, 1):
f = d-e*l6
PRH.J'r ;1ID$(x$, INT(f)+l, 1):
P~INT II

11
;

RETURN
jj PEEK(ad-nl)
!J'c j > 33 A~TD jj < 123 T'!EN PlUrJ'r CHR$(jj):
n l n l-1: a~TURN

A sample disassembly is shown on the ne x t page.

27

5 7344 EOOO cs PUSH BC
5 7345 EOOl EB EX DE,HL
57346 E002 CDE9El · cALL nn ElE9
57349 E005 69 LD L,C i
57350 E006 Cl POP BC
57351 E007 EB EX DE , HL
57352 E008 79 LD A,C y
5 7353 E009 4B LD C,E K
57354 EOOA 50 LD D,B p
57355 EOOB 14 INC D
57356 EOOC 47 LD B,A G
5735 7 EOOD B7 OR A
57358 EOOE 2806 JR z,e (
57360 EOlO EDA3 OUTI
57362 E012 00 NOP
57363 E013 00 NOP
57364 E014 20FA JR NZ,e
57366 E016 15 DEC D
5 7367 E017 20F7 JR NZ,e
57369 E019 C9 RET
5 7370 EOlA cs PUSB BC
5 7371 EOlB EB EX DE,HL
57372 EOlC CDE7El CALL nn ElE7
57375 EOlF 69 LD L,C i
57376 E020 Cl POP BC
5 7377 E021 EB EX DE,HL
5 7378 E022 79 LD A,C y
57379 E023 4B LD C,E K
57380 E024 50 LD D,B p
57381 E025 14 INC D
57382 E026 47 LD B,A G
57383 E027 B7 OR A
57384 E028 2806 JR Z,e
57386 E02A EDA2 INI
57388 E02C 00 NOP
57389 E02D 00 NOP
57390 E02E 20FA JR NZ,e
57392 E030 15 DEC D
57393 E031 20F7 JR NZ,e
57395 E033 C9 RET
57396 E034 59 LD E,C y

57397 E035 3A29FC LD A, (nn) FC29 :)
57400 E038 4F LD C,A 0
57401 E039 ED59 OUT (C), E y
57403 E03B 78 LD A,B X
57404 E03C F680 OR n
57406 E03E ED79 OUT (C), A y
57408 E040 78 LD A,B X
57409 E041 B7 OR A
57410 E042 7B LD A,E
57411 E043 2004 JR NZ,e
57413 E045 3261FD LD (nn), A FD61 2a
57416 E048 C9 RET
57417 E049 05 DEC B
57418 E04A co RET NZ
57419 E04B 3262FD LD (nn), A FD62 2b
57422 E04E. C9 RET
i:;7LI?< ,;,nLt.;i <Z:.?Ql.'("' r.n A . (nn) FC29 :)

J

l RSM PRINTMEi\I by P. Hinkle
2 PR #1
3 h$ = "0123456789ABCDEF"
:) INPUT "page"; p
,,.

PRINT p v
10 FOR j = 0 TO 240 STEP 16
15 PRINT II II .

I

20 FOR i = 0 TO 15
30 X = p*256+i+j
40 t = PEEK(x)
41 IF t < 32 OR t > 126 THEN t = 61
50 PRINT CHR$ (t) ;
60 N'EXT i
65 GOSUB 200
70 PRINT
80 NEXT j
85 PRINT: PRINT: PRINT: PRINT: PRINT
90 p = p+l: GOTO 6

200 PRINT TAB(30);
210 FOR i = 0 TO 15
220 a = PEEK (p*256+i+ j)
230 b = a/16
240 C = IHT(b)
25 0 GOSUB 300
260 C = (b-INT (b)) *16
2 70 GOSUB 300
280 PRINT II II •

I

290 NEXT i
2 95 RETURN
300 C = c+l
310 d$ = MID$ (h$, c, l)
.;;1s • 1 Ii JO PR:IJ (9t"
320 PRINT d$;
330 RETURN

==:=~==:C>=:i>=: 02 lB 3A 80 3A 05 lB 3A 43 3E lB 3A 69 3E lB 3A
=6>=:=N>=:='>=:= 02 36 3E lB 3A 02 4E 3E lB 3A 02 27 3E 1B 3A 04
ni Cathy=FATAL S 48 69 20 43 61 74 68 79 12 46 41 54 41 4C 20 53
YSTEM .ERROR== 59 53 54 45 4D 20 45 52 52 4F 52 lC oc 20 20 20

Coleco Sma1tBA 20 20 43 6F 6C 65 63 6F 20 53 6D 61 72 74 42 41
SIC Vl.0 (c) 198 53 49 43 20 56 31 2E 30 20 28 63 29 20 31 39 38
3 I Lazer Mi croSy 33 2C 20 4C 61 7A 65 72 20 4D 69 63 72 6F 53 79
stems Inc=]==:== 73 74 65 6D 73 20 49 6E 63 01 SD 00 01 3A 01 OD
=NEXT without FO 10 4E 45 58 54 20 77 69 74 68 6F 75 74 20 46 4F
?..=Syntax=RETURN 52 06 53 79 6E 74 61 78 14 52 45 54 55 52 4E 20
without GOSUB=Ou 77 69 74 68 6F 75 74 20 47 4F 53 55 42 OB 4F 75
t of DATA=Illega 74 20 6F 66 20 44 41 54 41 10 49 6C 6C 65 67 61
l Quantity=Overf 6C 20 51 75 61 6E 74 69 74 79 08 4F 76 65 72 66
l ow=Out of Memor 6C 6F 77 OD 4F 75 74 20 6F 66 20 4D 65 6D 6F 72
Y=Stack overflow 79 OE 53 74 61 63 6B 20 4F 76 65 72 66 6C 6F 77
=Undefined State 13 55 6E 64 65 66 69 6E 65 64 20 53 74 61 74 65

J Hinkle 1 REM VIEWER by p.

5 INPUT "page"; p
10 FOR j = 0 TO 240 STEP 16

15 PRINT II II
i

20 FOR i = 0 TO 15
30 X = p*256+i+j
40 t = PEEK(x)

OR t 128 OR OR t 13 OR t = 16 =
41 IF t = 12 =

7 OR t 8 OR t = 9 THEN t
42 IF t = 0 OR t = =

43 IF t 22 OR t = 24 OR t = 28 THEN t = 61 =
44 IF t > 159 AND t < 164 THEN t = 61

45 IF t = 148 OR t = 151 THEN t = 61

50 PRINT CHR$(t);
60 NEXT i
70 • PRINT
80 NEXT j
90 GOTO 5

1 REM VIEWCHR
10 FOR j = 0 TO 240 STEP 16
15 PRINT II II •

I

20 FOR i = 0 TO 15
40 t = X
41 IF t = 12 OR t = 13 OR t = 16 OR t = 128
42 IF t = 0 OR t = 7 OR t = 8 OR t = 9 T'"rl&~
43 IF t = 22 OR t = 24 OR t = 28 THEN t =
4.a. IF t > 159 AND t < 164 THEN t = 61
45 IF t = 148 OR t = 151 THEN t = 61
50 PRINT CHR$ (t) ;
51 X = x+l
60 NEXT i
70 PRINT
80 NEXT j

100 INPUT x: PRINT CHR$ (x); GOTO 100

t
=

OR
t

61

29

= 10 THEN t = 61
61

t = 10 THEN t = 61
= 61

CHAPTER 6. BASIC

BASIC and the "OS" or operating system are in the 64K R~M space

as outlined in the memory map. The best approach to identify routines

where different commands are carried out is to decipher the tables of

words which point to R~. These routines can then be called from

machine language programs, although in most cases it is easier to do

everything in machine language yourself because the routines from

BASIC require extensive setup.

The first table is on pages 1-3, beginning with GOSUB, GOTO, etc.

Print out these pages of RA.M with printmem and you will see the

following pattern: number of word (token), address (2 bytes reversed),

number of letters in word, word. For example, 02 AD 03 05 47 4F 53 55

42, means 2=token, 03AD=address, 5 letters, and GOSUB in ASCII. Token

l has no letters and the same address as LET, which presumably means
11 ignore it·". The address of GO SUB, 03AD, is to a table in page 3

after the word table which gives the number of routines (in this case

1), and the address (in this case 3D8C). In this way all the routine

addresses can be obtained, except a group including STOP, NEW, etc.

that have 03D0 which points to a 0, ie. no address. At the end of the

word table there are some words and symbols which are used in

conjunction with other words. These are given tokens only, with no

addresses.

The next table of BASIC words is on page 3F (63), which also

holds various pointers, the floating point accmulator (3F22-6), etc.

This table of math functions is organized as: number of letters, word,
88 or A8, address.

A table of tape key words is on pages 4E and 4F. These words

(OPEN, APPEND, READ, etc.) do not have tokens, and the address of each

command is listed in order in the address table following the name

table. Thus in my copy of BASIC OPEN is at 4E03, APPEND at 4E0F, etc.

If you experiment with these routines do not use a tape you care

about.

BASIC programs are stored in RA.Mon page CF (207) by line number

(2 bytes reversed), followed by an address in page DO, Dl or higher.

At the address is the tokenized line, based on the tokens in the first

BASIC table and others. Print out pages 207-209 wit~1 _pt"intmem and

compare it with a listing of printmem. Add new lines which do not do

31

anything and print pages 207-209 again to see how the new line is

stored.

Numeric variables are stored in pages CF, CE, etc. just below the

tokenized program. The first two letters of each variable are in a

table in page 6B (107) which lists the address of the variable. If

variables have more that two letters, the remaining letters are in

page CF (207) or vacinity. String variables are also listed in the

variable table on page 6B, and are stored on page 6C and following.

All these tables are in different locations if HIMEM or LOMEM are

used, but they still point to each other in the same way.

Input from tape is stored directly in a buffer in pages D4 (212)

to DB (216). This area contains the CATALOG of the last tape and the

last program loaded, which appears exactly as it was typed in. The

CAT}i.LOG lists the name of a file, the type, and 17 bytes beginning

with 03 which presumably give information about where the file is on

tape. This information plus disassembling the tape routines pointed

to by the key words, should allow a complete analysis of the tape

operating system (TOS), except that the tape is actually run by a 6801

with 2K ROM which is not accessible.

The operating system in RAM from EOOO on is a series of routines

called by BASIC and TOS which do inout functions, etc. The addresses

of important routines (but not names!) are listed in a jump table

starting at FC30. This table was made so that the OS could be changed

without changing the entry points, which are the jump table. The OS

does not seem to have been changed so far, unlike BASIC, as early and

recent ADAMS have the same jump addresses. In general, routines from

FCSD to FC9C have to do with the printer and routines from FD14 to

FD3B have to do with the screen. Identifying these routines is a major

task, however, which is best approached by analyzing them when they

are called by BASIC.

One simple way to modify BASIC that can be fun to surprise people
who know BASIC, is to change the key words in tables by poking new

ASCII into RAJv1. It is easiest if the number of letters is not
' changed. After such changes BASIC will only respond to the new words.

CHAPTER 7. Sound

The sound chip on the Colecovision (top) board is the Texas

Instruments SN76489A. I learned about this chip from a rt icles in t}1e

December, 1980 Kilobaud Mi crocomputing by Steve .Marum and in the ,July,

1982 Byte by Steve Ciarcia. It has three square wave tone generators

and a noise generator, not nearly as sophisticated as the Commodore

CID chip, but definately fun to play with. A bl6ck diagram of the

chip is shown below.

CL.OCK
REF

07

D6

05

04

D3

D2

01

DO

ii£
er

READY ,/

-----~ ATTENUATION
TONE
GENERATORS .,

I ATTENUA TI ON

I
I L ________________ _

The SN76489 sound chip

7

I,

i
I
I
I
I
I
I
I
I
I
I

1--1--_j '6 I

Vee GNO

AUDIO
OUTPUT

Texas Instruments uses an odd convention for describing the order of

bits in a byte and calls the most significant bit (MSB) 0, or DO for

the data bus, instead of 7, or D7. In this description I have changed

the TI nomenclature to the conventional designation of the MSB as 7

and the least significant bit (LSB) as 0. The pin numbers of the

SN76489A are also shown in the figure. The chip is addressed via the

WE (write enable), CE (chip enable) and ready inputs. It is mapped i n

the IN/OUT address space of the Z80 at F0 (actually the lower 5 bits

are not decoded so any number between E0 and FF, or 224 and 255 in

decimal, will access the chip using "OUT" instructions in machine

l anguage). There is only one port to address and the various functions

are accessed by the numbers given to the port. These 8 bit numbers

are divided up, as shown below, to give a 10 bit frequency value

(divided between two bytes of input), a 3 bit control register which

spe cifies eight functions, a 4 bit attenuator value which control s

t he volume, a noise type bit and a 2 bit noise clock value.

UPDATE FREQUENCY (2 BYTE TRANSFER) 33

REG ADDA DATA DATA

AO A1 R2 F6 F7 FB F9 X1 F0 F1 F2 F3 F4 F5

FIASTBYTE SECOND BYTE

UPDATE NOISE SOURCE (SINGLE BYTE TRANSFER)

REG ADDA SHIFT
1

RO I R1 I R2 X FB NF0 I NF1

UPDATE ATTENUATOR (SINGLE BYTE TRANSFER)

REG ADDA DAT A

RO R1 R2 AO A1 A2 A3

Types of data bytes sent to the SN76489.

w.nen the MSB is 1 the next three bits are the control register that

specifies the meaning of the lower 4 bits. When the MSB is O the

lower 6 bits are the most significant bits of the 10 bit f requency

value for the most recently specified tone generator . The frequency

of the square wave produced is the clock frequency divided by 32 times

the 10 bit number specified as the frequency value.

The control register, specified by RO, Rl, and R2 indicates the

following functions:--

0 tone 1 frequency

1 tone 1 volume

2 tone 2 frequency

3 tone 2 volume

4 tone 3 frequency

5 tone 3 volume

6 noise type

7 noise volume

The noise generator can be controlled to produce different t ypes

of noise at dif :Eerent volumes. The types are white (hiss) and perodic_

(motors). The frequency generating both noise types has 4 values

specified by the 2 bit number formed by NFl and NFO, or can be driven

by voice 3, allowing continuously variable noise frequencies of phaser

type sounds.

In practice it is likely that you will program the SN76489A i n

BASIC via a short machine language subroutine, and so the numbers you

will use will be decimal. The table below shows the numbers used to

control the chip in decimal.

sound control numbers in decimal.

Pitch Volume

first byte second byte high off

voice 1 128-143 0-63 144-159

voice 2 160-175 0-63 176-191

voice 3 192-207 0-63 208-223

noise 224-227 perodic (227=voice 3)

228-231 white

240-255 volume

Pitch control

I=frequency value =Oto 1023

note frequency= clock /32*I

(23l=voice 3)

(255=off)

for voice 1: byte 1 (128-143) = 128*I-INT(I/16)*16

byte 2 (0-63) = INT(I/16)

For voice 2 or 3 start with 160 or 192 for ~he first byte, instead of

128. For a chromatic scale use

I=l20,127,134,142,150,159,169,179,190,201,213,225,240 and multiples of

these numbers. This scale was generated by dividing an octave

(factor of two in frequency) into twelve notes spaced equally on a

logrithmic scale. The frequency of the next note (half step) is the

frequency of the current note times the twelth root of two.

To pass numbers to the SN76489 from BASIC a short machine

language subroutine is needed. A simple example is:

LD A,n

LD C,FO

OUT (C), A

RET

This code can be poked into R..~ as illustrated in the -following

programs. The first can be used to experiment with the chip, and the

second is an interesting random music generator.

J 5
6

10
14
lS
20
30
40

100
110
120
130

J

J
5
6

10
14
15
20
30
40

190
199
200
202
205
210
220
2 30
240
250
260

.,

REr1 30UNDTEST

HIMEM : 53000
REM poke in machine code
DATA 62,0,14,245,237,121,201
FOJ~ x = l TO 7
RE~D d: POKE 53000+x, d
~;J"EXT
INPUT "number (0-255)"; n
POKE 53002, n
CALL 5.3001
GOTO 100

REM RNDMUSIC
REM
HIMEM :53000
REM poke in machine code
DATA 62,0,14,245,237,121,201
FOR X = 1 TO 7
READ d: POKE 53000+x, d
NEXT
FOR t = 300 TO 1 STEP -1
REM think of note
V = RND(9)*255
IF V > 223 AND V < 240 THEN V = 23--r 2 ': 7
REM play note
POKE 53002, V

CALL 53001
REM delay
FOR w = 1 TO t: NEXT
NEXT t
GOTO 190

35

CHAPTER 8. The Video Display Processor

The video signal to the TV' is produced in the ADAM by the Texas

Instruments video display processor (VDP), TMS9918A. It is very

different from the Apple graphics in BASIC, and has modes, pat t erns,

backgrounds, and sprites. I learned about this chip from an article

in August, 1982 Byte by Steve Ciarcia and from a book sent free from

Texas Instruments, Semiconductor Group, P.O.Box 1143, Houston TX,

77001. This book is hard to relate to the ADAM, and has all examples

in 9900 assembly language, but it has all the facts. I will try to

distill them into these notes.

The VDP is organized as multiple screens (or planes) in series,

as shown below. The sprites are in the foreground and can be used for

moving or stat i onary objects. Sprites can be moved by simply changi ng

their x and y coordinates in a table. They move cleanly without

changing the colors of nearby objects, as occurs with Coleco's

implementation of Apple graphics.

EXTERNAL VOP

BACK DROP PLANE

SPRITE 8 ~

SPRITE?~

SPRITE 6

SPRITE 5

SPRITE• 0

SPRITE 2

SPRITE 1 0

SPRITE 0
(Courtesy of Texas Instruments)

Behind the 32 spr ites is a pattern plane which is a matrix of blocks,

each 8x8 pixels that can be def ined by the user. These pattern blocks

are used to form the text in BASIC, but could also be used for

landscapes etc. Behind the pattern plane i s a backdrop plane which
specifies the color of all pixels not set by the previous planes .

:::

•

37

Throughout, transparency is a possible "color''. Finally, . behind the

background plane is the possibility, not implemented on the ADAM, of

having the output of the VDP viewed on top of any other TV picture.

With a TV camera, video recorder and a minor modification to the

ADAl-1, you could make home videos of your children playing with

sprites!

After some experiments where I could change the screen output b u t

wasn't sure why (eg. CALL 57545), I looked inside and found that the

three address lines of the VDP are connect .ed to the Z80 as fallows:

mode to AO of the Z80, CSR (chip select read) and CSW (write) to AS,

A6, WR (write read), and IORQ (inout request) of the Z80 via a 74138

decoder such that the chip appears in the inout space as 160, 161 to

190 or 191 decimal even-odd pairs. I will use 190 and 191. Knowing

this allowed tests with short machine language subroutines illustrated

later. I will first describe the VDP chip and then give examples of

how to use -it directly.

The 9918A is a very complex chip which is connected to 16K of

RAM, "VRAM", for its own use. It has four modes of opera ti on which,

together with the arrangement of tables in VRAH and a few other

things, are specified by eight control registers which can be written

to but not read. The control registers, a read-only register, and

VR.~M are accessed by the Z80 according to the following table.

Operation Bits CSW CSR Mode inout

write to register

byte l:data D7------------D0 0 l 1 191

byte 2:reg.sel. l 0 0 0 0R2RlRO 0 1 1 191

Write to VRAM

byte l:address A7------------AO 0 1 1 191

byte 2:address 0 1 Al3------A8 0 1 1 191

byte 3:data D7------------DO 0 1 0 190

Read from register 8

byte l:data D7------------D0 1 0 1 191

Read from VRAM

b y te l:address A 7------•··- ·----AO 0 1 l 191

byte 2:address 0 0 Al3------A8 0 1 1 191

byte 3:data D7-------------DO 1 0 0 190

Bytes land 2 of the write to VRA.M procedure are needed for

onl y the first byte transfered. Additional data bytes are
automatically put into the next higher addresses. In addition, I

have not yet made the read from VRAM procedure work on the ADAM,

which may be because of some timing problems.

CONTROL REGISTERS

Register 0,

contains two option control bits.

bit 1, M3=1 specifies graphics mode 2

bit 0, EV=l enables external input. Keep EV=O.

Register 1,

contains seven option control bits.

bit 7, 4/16K R.A.M . Keep at 1 (16K).

bit 6, 0 blanks display. Keep at 1.

bit 5, interrupt enable. l= enabled.

bit 4, Ml=l specifies text mode.

bit 3, M2=1 specifies multicolor mode.

bit 2 always =O.

bit 1, size. O= BxB sprites, l= 16xl6 sprites.

bit O, mag . O= sprites xl, l= sprites x2.

Register 2 .

The upper 4 bits are always 0. The number in the lower 4 bits (0

to 15) times $400 (1024) is the base address in VR.~M of the

pat tern name table. Each byte in the name table corresponds to a

region on the screen, and the number in the table specifies the

pattern to be displayed there.

Register 3.

This number (0 to 255) times $40 (64) is the base address in

VR.~M o f t he color table.

39

Register 4 .

This number (0 to 7) times $800 (2048) is the base address in

VR.!\.M of the pattern generator table .

Register 5.

This number (0 to 127) times $80 (128) is the base address i n

VRAM of the sprite attribute table .

Register 6 .

This number (0 to 7) times $800 (2048) is the base address i n

VRA.M of the sprite pattern generator table, where shapes of

sprites are defined.

Register 7.

The upper 4 bits (0 to 15)xl6 specify the color of text in the

text mode (not used by Coleco). The lower 4 bits (0 to 15)

specify the background color in text mode and backdrop color in

other modes.

Register 8.

This is the status, read-only register. It contains three

flags and a fifth sprite number and can be read during programs

to check certain conditions. Reading the register clears all

flags to O.

bit 7, flag F . Interrupt flag, is set to 1 at the end of the

last raster scan on the TV .

bit 6, fifth sprite flag (5s). Only four sprites are allowed

on any given horizontal scan line. When a fifth sprite crosses a

horizontal line this flag is set to 1 and the number of the

sprite is placed in the lower 5 bits of the register .

bit 5, flag c. This coincidence or collision flag is set to 1

when two sprites collide . Collisions are checked only 60 times

per second and so may be missed.

COLOR CODES
1rhe colors that are specified for sprites, backgrounds, etc.

have the following codes.

0 transparent 8 medium red

1 black 9 light red

2 medium green 10 dark yellow

3 light green 11 light yellow

4 dark blue 12 dark green

5 light blue 13 magenta

6 dark red 14 gray

7 cyan 15 white

MODES

Graphics mode 1. (Ml,M2,M3=0)

This is the simplest graphics mode and, strangely, is used by

BASIC to display text. The pattern plane is divided into 32

columns by 24 rows of blocks (768) each containing 8x8 pixels.

Three tables in VR.~M are used to create the pattern plane, as

shown below.

BASE ADDRESS 0
1

2
0
1

2 BASE
AOORESS

N M
SM

8M .. 7

766
767

PATTERN 2046
NAME iABLE 2047

0

._4M/8I

31

PATTERN r'OSIT1ON 0

ATTERN =
8 BYTES)

PATTERN

PATTERN

t------i---,~~ITION

PATTERN PLANE

GENERATOR TABLE

COLOR1 COLOR

PATTERN
POSITION ::31

i
24 POSITIONS

i
ATTERN

POSITION
767

(Courtesy of Texas Instruments)
PATTERN
CULOR TABLE

The pattern name table is a 768 byte block of VR~M beginning on a

lK boundary point ed to by control register 2. Each byte

corresponds to a region of the screen (ordered from left to right

and top to bottom) and specifies the number of the pattern in the

pattern generator table and then/8th entry in the pattern color

table to be displayed at that point. ~ore that one pattern name

table can be made, allowing rapid switching between pattern

planes by simply changing the number in control register 2. The

color table has only 32 numbers, and is pointed to by control

register 3 times $40. Each number specifies the color of 1 'sin

the pattern by the top 4 bits and of o's by the bottom 4 bits.

One number in the color table applies to 8 patterns in the

pattern generator table, so patterns of the same colors should be

grouped together.

The pattern generator table, pointed to by control register 4,

consists of 8 bytes which form an 8x8 matrix of 1 'sand O's as

illustrated below.

BYTE BINARY HEX

0 l 1 3C

1 1 7E

2 1 l 1 FB

3 1 1 1 1 1 1 1 1 FF

4 1 1 1 1 1 0 F8

5 1 1 0 FC

6 1 1 0 7E

7 1 1 0 3C

The same type of 8x8 matrix is used for sprites. As many as 256

patterns can be defined, taking 2048 bytes, but any smaller

number can also be defined. An all-0 pattern should be included

to point to for blank areas of the screen. Sprites can be used in

all graphics modes, and the only limitation in mode 1 is that

each 8x8 block in the pattern plane can have only two coiors.

Graphics mode 2 (M3=1,M2 and Ml=O)

Graphics mode 2 enhances the resolution over mode 1 by

increasing the length of the pattern generator table from 2048

bytes to 6114 bytes (x3), and increasing the color table from 32

bytes to 6144 bytes. This allows every pixel to be set

independantly and the color to be specified every 4 pixels (equal

numbers of pattern and color bytes means 4 bits of color, or 1

color,for 4 bits of pattern, .or 4 pixels). The pattern groups of

8 bytes are addressed by the name table as shown below.

41

a

767

..,

--
Id

.,,
112

,a

., ~

l'2 ~~

l'2

•ATTIIIN-
TA8U

0

,aTTIIIN _,
IIIYT!SI

-7 - ,&TTIIIN-- 118\'TUI --- ,aTTIIIIN-
IIIYTUI -

l1CI

•ATTIIIN CIINIRATOIII
TA81.1

0

,aTTIRN_,1
11 IYTISI

_, -

,an•IIIN-..Z
IIIYTISI --

I.-., •ATTIIIN-a ----11 IYTISI

.,..,
,,_ TTll'IN COLOR

TA&LE

Ir
•&TTIIIN l'OSIT10N 0 r ~ATTIRN POSITION i

LLl
,,_ •&TTIRN l'OSITION
- "N1-

r
l..

r

1'A'n"lRN
P0$lTION
l1

L...-•&TTIIIN l'OSIT10N lM I
1'2~ •&TTIR.~;?SITION ~

C,--111AnERN flOSITION 512

P31......... 1'A TT'!AN IIOSITION
"N:r"

PATT!RN PLANE

r

FJt.nERN

-- l'OSITION
511

PATT'eRN
I'"- POSITION

767

(Courtesy of Texas Instruments)

This mode is used for hires in BASIC but is awkward for such use

because it was designed for backgrounds only. Sprites can be

used in mode 2, and it is ideal to combine sprite routines with

BASIC hires.

Multicolor Mode (M2=1, Ml and M3=0)

This mode is like lores graphics in BASIC, but gives a 64x48

block (of 4x4 pixels) display with pny color allowed for any

block. The blocks are specified as shown below.

ROW0

NAME

ROW23

PATTERN NAME
TABLE

~~
8 BYTES

0

2047 "'------""'

. 5:±E ROW0

LJ
/~.~,
\~J K L. ROW 2

PATTERN GENERATOR
TABLE

n

ROW0
0

F
ROW 1

ROW2

M N
ROW3

0 p

VIDEO OISPLA Y

(Courtesy of Texas Instruments) lffi ROW3

BYTES POINTED TO
RY NAMES

An entry in the pattern name table specifies 4 blocks, such as

ABCD in row O. If a byte in the name table which is in row 1

addresses the same pattern generator block, the colors will be

EFGH, given by the third and forth bytes in the pattern. The

first two bytes in a pattern apply to rows 0,4,8,12,16,20. The

second two bytes apply to rows 1,5,9,13,17,21, etc.

Text Mode (Ml=l, M2 and M3=0)

43

In this mode the screen is divided into a grid of 40x24

patterns (presumably letters and numbers), and the colors are

specified by control register 7. Each pattern is 6 pixels across

by 8 down, and the lowest two bits of each byte in the pattern

generator table are ignored.The mapping in text mode is shown

below. Sprites are not available in text mode.

0
1

2

N

958
959

SPRITES

M

PATTERN
NAME TABLE

0
1

2

SM

SM+ 7

2046
2047

TEXT POSITION Q

I -40 POSITI_ONS - ~E

w L

TEXT
POSITION

11
"N" •

i I
TEXT
PATTERN
" M" r

I

XT POSITION 39

r
I
I

24 POSITIONS

I
I

t

TEXT POSIT! ON 959

PATTERN
GENERATOR (
TABLE Courtesy of Texas Instruments)

COLOR 1 I COLOR 0

VDP REGISTER 7

Sprites are controlled by 4 bytes in the sprite attribute

table, which specify the position of the sprite on an

approximately 256x92 grid, point to the sprite generator table

block, and specify the color of the sprite. The addressing

mechanism is shown below.

VRAM

SPRITE
ATTRIBUTE

TABLE

SPRITE
GENERATOR

TABLE

(Courtesy of Texas Instruments)
.,

In the sprite attribute table a sprite is defined by 4 bytes. The

first byte is the vertical position, and the second byte is the

horizontal position. The third byte is the sprite name which

points to an 8 byte block in the sprite generator table. The

forth byte has the sprite color in the lower 4 bits, o's in bits

4,5, and 6, and something called the early clock bit in the top

bit. When this bit is 1 the sprite is moved 32 pixels to the

left, and it can probably be safely ignored. The sprite

attribute table is ended by the number 208 decimal, so that the

number of sprites showing can easily be changed from a maximum of

32 to less by inserting 208 in the vertical position byte of one

sprite, blocking display of it and all further sprites in the

attribute table.

The size and resolution of spr i tes is controlled by the size
and mag bits in control register 1, as follows.

SIZE t1AG Area Resolution Bytes/pattern

0 0 8x8 single pixel 8

1 0 16xl6 single pixel 32

0 l 16xl6 2x2 pixels 8

1 l 32x32 2x2 pixels 32

To use the VDP you must first decide where the various

t ables will be in VRAJ-1, and then fill them. To integrate your

own graphics with BASIC graphics you must avoid using the same

areas of VRi\M that BASIC uses. This wou ld logically be done by

reading VRA.M to see what is there, but as I mentioned earlier

this doesn't work. Combining sprites with hires (HGR or HGR2)

works, however, if all tables are as high as possible.

If you lose control of a program and cannot see why because the

screen is in an altered mode, typing control c, (return), and

TEXT once or twice will often restore control because the TEXT

command puts all the proper tables in VRAM.

The program below makes a sprite and moves it on the HGR2

screen. The second program is ·a good shape table maker, and the

third a sprite editor which makes sprite generator tables and

bsaves them on tape to be used in your programs. The latter two

were written by my son who is fourteen.

5 REM SPRI'r:ti: Dt:MO

:51399
6 HGR2

10 HV·1BM
19 REM
20 DATA
30 FOR x
34 RE)>l

load machine language code
62,0,211,191,201,62,00,211,190,201

= 51400 TO 51409: READ p: POKE x, p: NEXT

35 REM background
36 FOR s = 1 TO 25

aco.r..,or~. = s 37
38
39
40
50

81?LO'r 100+1 * s, 0
NEXT

TO lO*s, 191

REM
REM load sprite generator .

55 a= 0:
60 DATA

GOSUB 1000: a= 120: GOSUB 1000
60,126,195,219,219,195,126,60

70 FOR x = 1 TO 8
80 READ d: GOSUB 1100
90 NEXT

100 REM
110 a=
120 d =
121 d =
199 REM
200 REM
230 a=
240 a=
250 a=
260 a=
299 REM

load sprite attribute
128: GOSUB 1000: a= 127: GOSUB 1000
70: GOSUB 1100: GOSUB ilOO: d = 0: GOSUB 1100
7: GOSUB 1100: d = 208: GOSUB 1100

load control
127: GOSUB 1000
133: GOSUB 1000
7: GOSUB 1000
134: GOSUB 1000

300 REM HOVE IT
310 t = t+.05
320 x = 60*SIN(t)+70
330 y = 60*COS(t)+70
340 a= 128: GOSUB 1000
350 a= 127: GOSUB 1000
360 d = INT(x): GOSUB 1100
370 d = INT(y): GOSUB 1100
380 GOTO 310
999 REM

1000 POKE 51401, a
1010 CALL 51400
1020 RETURN.
1100 POKE 51406, d
1110 CALL 51405
1120 RETURN

registers

45

J
1 REM -shape table maker by Ben Hinkle.modified from program by ~ark ?elcza

rski in Soft t alk, Ju ly 1982
5 HIMEM : 51455
7 INPUT "how many shapes in the shape table?"; e

10 w = 51456 : POKE w, e: POK'E w+l, 0: POK'E w+ 2, 2*e+2: POKB w+3, 0: w = w+4:
POKE 16766, 0: POKE 16767, 201

15 w = (2*e+2)+51456: il = 2*e+2: sn = 1: st= 51460
20 p = 0: POKE w, 0: POKE w+l, 0: sw 1: GR
22 X = 20: y = 20
23 PRINT "use the arrow keys to move, 'home' to plot,and 'f'to f i nish the

shape. 11
;

24 PRINT "This is shape#"; sn: PRINT "you are now at (x,y):" ;
25 il = w-51456
27 VTAB 24: HTAB 22: PRINT "
28 PRINT x; ","; y;

"; : VTAB 24: HTAB 22

90 COLOR = 13: PLOT x, y
100 GET a$: a= ASC(a$)
110 IF a$ = "f" THEN 300
1 1 1 COLOR = 0: PLOT x, y
113 IF p = 0 THEN 120
115 COLOR = 4: PLOT x, y
120 IF a= 128 THEN p 4:
130 IF a= 1 60 THEN m = 0 :
1 40 IF a 161 THEN m l:
1 50 IF a 162 THEN m 2 :
160 IF a 163 THEN m = 3:
180 GOTO 25
200 V = m+p
205 p = 0

GOTO 90
y = y- 1 :
x = x+l:
y y+l:
X = X-1:

GOTO
GOTO
GOTO
GOTO

200
200
200
200

210 IF sw = 1 THEN sw = 2: vl = v: POKE w, v: POKE w+l, 0: GOTO 25
220 IF v+vl = 0 THEN POKE w, 88: w = w+l : POKE w, 0: vl = 0: GOTO 25
230 IF v = 0 THEN POKE w, vl+l92: w = w+l : POKE w, 0 : vl = 1: GOTO 25
240 v = v*8+vl: POKE w, v: w ~ w+l
250 SW= 1: POKE w, 0
260 GOTO 25
300 IF sw = 2 THEN POKE w, vl: w
305 POKE w, 0
310 GOSUB 2000

w+l

311 HOME : INPUT "are you satified with this shape (y/n)?"; a$: IF a$
N 315

31 2
313
315
317
318
320
330
340

IF PEEK(w-1) = 0 THEN GR: GOTO 22
w = w- 1: GOTO 312
w = w+ l: il = w-51456
IF sn < e THEN 350
HOME: INPUT "Do you want to save it (y/n)?"; x$: IF x$
INPUT "Shape table name?"; a$
PRINT CHR$(4); "bsave "; a$; " ,a51456 , l"; w-51455
TEXT : PRINT "done 11

345 END
35 0 sn = sn+l

J

360
3 70
400
410
420

2000
2010
2020

p = INT(il/256)
POKE st+l, p: POKE
st= st+2

st, il-p

GR
GOTO 22
HGR: HCOLOR = 12: SCALE
DRAW sn AT 100, 100
RETURN

= 1: ROT

l'J;;.. 7• J 7 /

= 0

"n" THEN

"y" THE

END

J
2
3
4
5

n:
10
12

s
20
30
50
60
70
80
90
95

100
110
120
130
140
150
155
160
165
16 7
l 70
180
190
200
210
22 0
230
240
250
260
270
280
290
300
310
320
400
410
420
430
435
440
450
500

a$
510
::i 2U
530
540
550

REM sprite editor by Ben Hinkle
REH
HIMEM :50999: ra = 51000
TEXT: PRINT: PRINT: INPUT "How many sprites would you like to have (1-32)?
IF n < l OR n > 32 THEN 5
PRINT: PRINT: PRINT: PRINT "Would you like to have:": PRINT
PRINT" l.8x8 sprites": PRINT" 2.16xl6 sprites": PRINT: INPUT "(1,2)?";

IF s < 1 OR s > 2 THEN TEXT: GOTO 10
ro = s*8+11: bb = s*B+l: FOR d = 1 TO n
GR: COLOR = 10: x = 11: y = 1
VLIN 0, bb AT 10: VLIN 0, bb AT rb: HLIN 10, rb AT 0 : HLIN 10, rb ~T bb
PRINT " arrow keys to move cursur"
PRINT "'a'-plot", "'d'-erase"
PRINT "'return' when done with sprite"
PRINT "sprite#"; d;
COLOR = 12: PLOT x, y
GET.a$: p = ASC(a$)
IF e = 1 THEN COLOR = 8: PLOT x, y: GOTO 140
COLOR = 0: PLOT x, y
IF p = 97 THEN COLOR = 8: PLOT x, y
IF p = 100 THEN COLOR = 0: PLOT x, y: e = 0
IF p = 13 THEN 200
IF p = 163 AND x-1 > 10 THEN
IF p = 161 AND x+l < rb THEN
IF p = 160 AND y-1 > 0 THEN
·IF p 162 AND y+l < bb THEN
IF SCRN(x, y) = 8 THEN e = 1
GOTO 100
IF s = 2 THEN 280
aa = 8: ab= 1: ac = 18: ad
NEXT d: GOTO 400
FOR y = ab TO aa: i = 0
FOR x = ac TO ad STEP -1

x = x-1: e = 0 .
x = x+l: e = 0

y = y-1: e = O
y = y+l: e = 0

11: GOSUB 230

IF SCRN(x, y) = 8 THEN i = i+2~(ac-x)
NEXT x: POKE ra, i: ra = ra+l: NEXT y
RETURN
aa 8: ab= 1: ac = 18: ad= 11: GOSUB 230
aa = 16: ab= 9: ac = 18: ad= 11: GOSUB 230
aa 8: ab= 1: ac = 26: ad= 19: GOSUB 230
aa 16: ab= 9: ac ~ 26: ad= 19: GOSUB 230
t<EXT d
TEXT: PRINT: PRINT: INPUT "Would you like to print out the sprites?"; a$
IF a$ <> "y" AND a$ <> "n" THEN 400
IF a$= "n" THEN 500
PR #1: FOR m = 51000 TO ra-1 STEP 8
FOR h = 0 TO 7
?RiliT PEEK(m+h); " "; : NEXT h: PRINT: NEXT m
PR #0
TEXT: PRINT: PRINT: INPUT "Would you like to save the

IF a$ <> "y" AND a$ <> "n" THEN 500
IP a$ = "n" THEN PRINT "End of program": END
INPUT "Type in the name for the file:"; a$: ra = ra-51000
PRit,T Cl-!R$(4); "bsave "; a$; ",a51000,l"; ra
P "l.INT "done"

Yi . •1'>ln Li: 1,,,,

r /1 J. ~ vt.- i:,,tt.1 .1.) LI i'/ 7

sprites (y/ n)?";

/Jla-»J.- /·t fl :)7'{,7
I

l/

47

CHAPTER 9. Pinouts

The following chips are diagramed:

Z80 microprocessor

TMS9918A video display processor

SN76489A sound generator

7400 quad NAL~D gates

7402 quad NOR gates

7404, 7405 hex inverters

7474 dual flip-flops

74126 3-state bus driver

74138 3 to 8 line decoder

74157 quad data selectors

74541 octal bus driver

A I I

A- l 1..

,+ I ..3

/+-II,(

A Is-

C./o<:.k

l)o

CJ I

()1-.

03

+s-v
C'f

DS'

Oc
D7

/Ni -NMI

HA-Li

MRco.
-----!OR.G.

:t..

3

'1

s-
6

7

g'

'I Z30 IO

II

/ 2-

I 3

I 'f

/~

I (,

17

/ f

I f

1.0

'{ 0 A 10

'3 9 A,
is /'rt
'3 71)r 7

'3 6' ,4,'

3S' A5

3~ ~ '1

'3 J A3

3 2. AZ.

'3 I Al

3 o A-0

'l. '¥ GND
'2.. 8 R.l=-5H

7. 7 Ml

2. 6 R~r
2.5 8U.SRQ.

'Z. 'i ~T'

1. 3 13u.SAJc

:1. :1 w°i<.
2. I R.D

..

49

y,~M [Us I if O ')t.l.1-
S+n>b~ _

Y. L I CAS 1 19

LSB AC7 3 1 S' c.P<A C!cCJ<

A-0, I(37 '/rt) ~I CU<

VJ"J..AM AOS- S" ~ 3 6 VIC 01.\T"

ltMRES,. AOlf 6 l ?, :; t'F v,·~
lll

,4 I.) 3 7 3 '(·R~er ..c
AD, 5 -...0 3) -+S"V
AD I

.....
MS.8

,
~

'32. RI> o

MSB "°Do /0 > '3t R. 0 I

R.!w
VRAIM

II -;o R D2
I""') (),+'TA

(;NP '1- < 2. 'f /t/)3

MooG 13 t, '2..'i I/../) 'f - --v c:sw l i{
""'-/ 2.7 RDS-

CSR. tS- 2' RD b
INT 16 7.. S" /{() 7 L.5 B

LSS cc,; 17 2 'f c~o MS8
co, 18' z .3 <:.C> I Z.'9"0

<:. () S" I 't '2.Z C0'2.
t),,.'T',4

iSus
~ t:O'I "'2..0 'l. I CD3

3+r>~ 1:,,e_

~,~~ [~ I /6 .+S-V. f.)e.c. oc.l ~ r-S

L 15 YO
G.o,4.LA. Scl~'t A+ ~t✓

?. '! flf y,
(GI "'c;,2.4i-{i>t ~ w all H

[

G2A 'I ~ 13 '{'2-
"" H .,.

" ')It - oce,:>t
€.,°'bl&- G-2. B

I-

" ~ '>' "' yo Sp«c;{;.,I.) !" n. '(3 M ,_ ,_ '- '-

"'
,_ '- ,_ H YI

C!- I 6 II 'r'f H '- l- H ,_ Y2-
H '- L. M t-f Y3

'(7 1 ID '(~ H '- H '- '- Y'1

' H L- H L- H .,, s-
GMD i ., Y6 '-f l- H 1-f '- Ye

H ,_ M M H · Y7

IY I /'f +S-v
+NOR

IA ~ -.1 13 'IY ~D-Y ~ -1:

LB l O /2. 'U3
t'

1-Y '(II 'I A Y=A1--S
2A S' /0 ~y

'2-[3 ' er 3B

GNO 1 ,s ~A

1A I I 'f ~S"V H~-x tN Vt:i<Tl~<. s

l'< 2. ..J /3 ,A
A--[:>o-Y 'l-.,4 3 -t IZ. 6Y

0
"L '(., .,t II ~A

'(~ A 0
s-Y '!A S' 1 10

~ '(" "' ~ YA
7'foS- ko..:, Of~-

GNO 7 ' "IY
c.llec..-t..- o,~r'-t:s

~

D Ufl L f:ltl;;-1-t. oP
CLR,t I I'{ +~'I.

:IN~"~~ C>i...T~,s
r • " //:) 'l .J. 13 1 CLR PR. CLR. Ck /) Q. Q ..t

I CJ<. 3 ..J 11 'l., () L H X)(1-4 J,..
~ H '-)(. ')('- H I PR. 'f II ?. c,.l.,c '- L. .,.)(,~ :. ?~

,.. H .,,. M H '-~ '" 14 ... ~ L,. L,. H

' 0. '"' H L }(~o ~1:1 ~ Cf z. a
G(tl{> -, 8 2,Q

IC. I 'I +s-v QUA-£) i3 u. s (3 « ff. l:R..
I

OUTp<.tTS 3 - S'1-t\-k
IA Z. .J 13 lf c_

.t
I 'f 3 /'2. 4 A A-l>--Y I"
2.C:. '(0\ II &fY
~A s- /0 'Jc.., e,_

'Z.. y ' 'I 'l,.4 Y=-A-1 0 I.A.'t r"' 'j- I '5
GN() 7 i' 1Y

d,i s o.bl.LJ t.N~C..,'sLow.

51

QuAD 2 'fu / ;,-,,~
Se/.u,T I ,, +~v

t>A-1"-.,+ S'elc.c. t-o rs
IA ~ .._, I s~b-L

18 , ~ 1"1 'f A s~ Se/u.t A- 8 O'-'Tl Y)

J '(4f ~ 11 "ID H ')(1-)(L
L '- L.]I. L..

2.A ~ /1 1./Y L. '- H t ~ L. M)'
'Z-8 ' If 3A L H)C H H
"2. '(..,

10 38

GJvD i " '?. y

G,/ I ~o +!>V. oc.,A-L..- B v.. ~ !=- € I<. 5

Al t.. ,, ~2.. '3 - s i-a.. tot ouiPt.t rs
h'2.. '3 ..J ,, YI NoN - tNVE"1t.riN<:::-

-t . It) .,
~

,, Yl. -
AC{ , /6 Y3

I!:

AS" ' IS' Y'I
AG ,

'" Y5
)r..., f /3 Y6
A-i 'f / 2, Y7
C-ND 10 II '(J

Oi I ,, +!:"'I
+S-Y -+ NAND IA- I rt

I) I J. fl' IS" 03
18 4,S :::[),-Y %. ...J /3 Do 3 ~ l'f elock

.J I '(! -t /Z. I{,+
Re~y 'I Ch /~ 0'1 C)

Y= AB 4: ~A t(() II ~y
WE s - /1. OS'

'l.8 G" as -0 /0
CE 6). // D6

'J..Y & , 3A
A1,-cVo 7 lo 07

'3Y GNO 7 8 :,

G-Nt::, 8' , f-J~

..

,.
II .,
,.
I

	NextDocument
	NextDocument (1)

