The Hacker's Guide To Adam, vol. 2

by Ben Hinkle

Published by Peter and Ben Hinkie
117 Northview Rd.
Ithaca, NY 14850

© Ben Hinkle, 1986

Forward

in the year since Ben and | wrote Vol. 1 of the Hacker's Guide (available from us
for $12.95, postpaid), we have actually spent less time with our Adam than |
anticipated. We have many CP/M programs, but have not used them much, largely
because we never have the manuals. We also got a Macintosh (as you can see),
which has been a distraction. There is a lot of activity in the Adam community,
however, largely with modems and CP/M, and anyone interested should write to
the user groups advertized in Family Computing.

Our major project with Adarn has been Ben's interpretation of a disassembly
printout of SmartBASIC. He took it on out of curiosity last fail, using the information
in Vol. 1 and general information from "How to program the Z80" by Rodnay Zaks,
"Mapping the Commodore 64" by Seldon Leemon, and "Microsoft BASIC decoded
and other mysteries for the TRS-80" by James Lee Farvour. Ben wrote it up, but
had to leave for summer schoel, so Maija and | made the last corrections and
printed it out (something that seems to have taken forever). The imperfect copy
came from my lack of patience with files that refused to print, and the like. 1 hope
there are not too many errors. If you find any, please let us know.

I think that the Adam is an excellent computer, and a fine introduction to the
computer world. This book should be very helpful to anyone who wants to learn
SmartBASIC really well, and get beneath the superficial layer of any higher
language, into the actual machine. Ben has tried to make vol. 2 more
understandable to the novice than vol. 1 was, but you should realize that he is only
in the tenth grade, and parts are bound to be hard to follow. If you have questions,
please include a SASE in your letter.

Peter Hinkle, July, 1986

Al the second printing we thank George Havach and Carl Cummings for
pointing out many typos and other errors that hav_e now heen corrected.

CONTENTS

1. BASIC Overview

2. Zero Page

3. Keywords

4. Math Routines

5. BASIC Commands
6. Parser

7. Data Table

8. Screen Routines

. Tape Routines

10. Graphics

11. BASIC Changes
Appendix 1. Programs
Appendix 2. Hello code
Appendix 3. Schematics
Glossary

w

13
14
19
29
40
51
58
64
73
77
89
80
28
104

Chapter 1: BASIC Overview

When you load in SmartBASIC by putting the tape in the drive and hitting
reset, three things happen: the machine language program that is SmartBASIC is
stored in RAM by the boot routine, the Program Counter register of the Z80
microprocessor is set to $100 and the whole thing goes into the labyrinth of
subroutines and loops. First it goes to the routine at $4061, which is later replaced
by the input buffer. This setup routine writes the interrupt routines to zero page,
clears the screen and tape buffers, then iooks for and loads the HELLO program
from the tape, or, if none exists, prints the message at $043C ("COLECO
SmartBASIC V1.0") on the screen. This is what you first see when BASIC is loaded
from tape. After the setup routine introduces you to BASIC, it falls into the
immediate mode at $3EA3. | call this routine the "Central loop” because it is the
heart of BASIC, controlling the flow of execution when you are either typing in a
command, waiting as a command is executed, or just watching while the cursor
blinks at you. As outlined on the following page, the Central loop reads the
keyboard and interprets the line of input.

The Central loop

The Central loop begins by resetting the Z80 Stack Pointer, IX and IY registers
to $D380. This clears any GOSUB or FOR...NEXT loops (pointed to by 1X and IY),
and is used after a program or command has executed, when the stack could have
some garbage which is no longer needed. The loop accomplishes this task by
calling $1757. After the stacks are reset and the HELLO program or copywrite
statement printed, the routine at $2F76 is called to generate the next thing you see
on the screen: a return character and a prompt (1), which provides you with visual
feedback that the loop is working.

The Central loop then calls the subroutine at $2F7F to scan the keyboard for a
command or line. This is the routine that is executing when you are in the
immediate mode and the cursor is blinking or you are typing in a command. When
a program is loaded from tape or disk, the same routine is used but it looks at the
tape instead of the keyboard on AdamNet (see vol 1, p. 49). The characters
received from the input device are put in a buffer at $3F77 and also printed on the
screen. It also acts on any control ASClI you type (e.g. , tab, left arrow, or any other
ASCII code in the table at $3051). When a "return” character is received the Z80
returns to the Central loop and parses the line (Parse means interpret. For
explanation of jargon please see the glossary). But the loop must first decide if you

actually typed in a line or just pressed the return key without typing anything
beforehand. Spaces also don't count as a line. If the line is empty, it prints the
prompt again and restarts reading the keyboard. But if the line contains some sort
of non-space ASCII, the Central loop calls $3565 to check for the presence of a
line number, indicating a program line. This would happen if you were typing in a
program, or srasing any unwanted line previously typed in. If a line number is
present, it then decides if you want to erase a line (indicated by only typing in the
line number). The loop does this by seeing if you typed in anything after the line
number. If you didn', it calls $31EE to erase the line from the tables that store your
program as you type or load it in. But if a command follows the line number, it calls
$3609 to parse the rest of the line, and then calls $314A to store the line in your
growing program tables.

Reset
Stacks
Fy !' 1757
Print |
Prompt
+ 2F76
Immediate mode Getline Entering BASIC
command 2F7F program lines
-}
Parse line
* 3609
execute i
o Parse line
17E0 + 3809
Erase line enter line
[} from tables into tables
31EE 314A

Flowchart of
Central Loop

I the Central loop does not find a line number at the beginning of the line, it
assumes that you have entered an immediate command (e.g. , SAVE) and it parses
the line by calling $3609 and executes the line by calling $17E0, returning to the
Central loop when finished.

The Parser

Parsing is the process of replacing the ASCIl codes you type in with shorter,
more compact tokens in a form called crunch code. It helps speed up execution of
the command bscause less time is spent converting your ASCII line as the
command executes. While the speed difference is not noticeable in the immediate
mode, it is in programs. This is due to the execution of immediate mode commands
directly after parsing, while in programs, the lines are parsed as you type them in.
When you RUN the program , the lines are fully parsed and therefore are faster.
The routine that parses the input you type in is called "Parse line", or the Parser,
and is at $3609. The parser is called by the Central loop, and, after it is done
translating the line, returns to the loop, as seen in the flowchart on the following
page.

The "Parse line" routine reads the first word in the line and compares it with
words in the primary word table at $110. This table has the format of: 1. token, 2.
address of vectors in parse vector table lo, hi, 3. number of letters in the command,
4. ASCHI of the command. Each command has a different tokan, which is used
during execution. The Parse routine compares the ASCII of the first word with the
ASCII of the first command. If they don't match, then it compares it with the second
command. This repeats until a match is found or it reaches the end

of the table, when it assumes the first word is a variable and parses it like LET.
When a match is found, the routine puts the token of the matched command in a
buffer called the Crunch code buffer (e.g. , it would put a ‘7' in the buffer for a
'PRINT' command because the token for PRINT is 7), and looks at the command's
"address of vectors in parse vector table” (2nd and 3rd bytes in primary word table).
This address in the parse vector table lists the number of parse vecters for the
syntax of that command, followed by the vectors to those Parse routines. An
example of this would be "GOTO 30". After finding the GOTO, the Parser only
needs to check for a line number, so the entries in the parse vector table that GOTO
points 10 would contain 01 for the number of items that need to be parsed (in this
case the line number) followed by the vector to the Parse routine that parses the
syntax {in this case the "Parse line number” routing). The reason for doing this is to
shorten the amount of space taken up, because many commands share syntax, like

x

get first word
from input buffer

Assume a
variable +
Parse LET
]
Put token
in buffer
Lookup

parse vector

To Central Loop
Call next A
vector
end buffer
witha 0
yes

Flowchart of
Parse Line

GOSUB 30" and "GOTO 50". Instead of listing the vectors over and over in the
primary table, Coleco listed them once, and had the commands point to the
required type of syntax.

After the Parser finds the vectors to the command, it calls them in the order in
which they are listed. The parse vectors are then responsible for doing most of the
parsing. Many times these vectors are locking for commas, equal signs, or words
like "at" or "then". These words, and other symbols used only after the commands,
are stored in the secondary word table at $0332. Since they are used by Parse
routines, they have the format: 1. token, 2. length of word's ASCII, 3. ASCII of word
or symbol. As before, when the Parser locked for the command in the primary word
table, the parse vectors look for symbols in the secondary word table. But if the

symbol does not match one in the table, an error is printed, and the Z80 returns to
the Central loop to get more input from the keyboard. There are some words, like
MID, SIN, or POS, called variable commands, that are not in this table. This is
probably due to the fact that they require some execution, while words like "at" or
commas are only for syntax and do not perform any other function.

As mentioned sarlier, the Parser changes the line into a form called crunch
code. This code is important if you want to look at execution routines, or if you want
to write a new command, because the execution routines use only this form of the
line you typed in on the keyboard. A line of crunch code consists of the following:
1. the number of bytes in the crunch code command, 2. the command's crunch
code, and 3. a 0 (zero) showing the end of the iine. If the line had multiple
commands separated by colons, then each command is listed as if it were alone,
but with the zero following the last command (e.g. , "PRINT: PRINT: PRINT" would
be 1,7,1,7,1,7,0). The crunch code of the command always starts with the token of
the command. When you define variables without using LET, the LET token is put
in the buffer anyway. What follows the token varies with what you type in, but the
symbols in the secondary word table are also listed by their token. For example,
"COLOR =-..." would start out with: 1. number of bytes in line (depends on what the
COLOR equals), 2. $3A (token for COLORY}, 3. AA (token for "=")}, 4. whatever it
equals (in crunch code).

Crunch Code Numbers

This brings us to how numbers are stored in crunch code. If the number is a
whole number, and is from 0 to 9, then it is the number + $80. Thus 7 becomes
$87. I the number is above $A and below $100, then it takes up two bytes: 1. $8A,
2. number in hex. Thus 100 becomes $8A, $64. The $8A and the $80 for the
integers are called number types. You can tell what kind of number any number in
crunch code is by looking at the number type. Numbers from $100 to $FFFF take
three bytes: 1. $8B, 2. number in hex lo, hi. Thus 256 becomes $8B, $00, $01 and
50000 becomes $8B, $50, $C3. Negative numbers that fall into any of the above
formats are preceded by $A1 (token for "-"). Any number above $FFFF, in scientific
notation, or with a decimal peint is stored as a floating point number and has a
number type of $82. Thus 1000000 becomes $92, $00, $00, $24, $74, $94.

Crunch Code Variables

Variables are stored in crunch code by -assigning a number to any varfable
you type in. Variables you type first have smaller numbers than later variables, but
if you use a variable again later in the program, it still has the same number (e.g. , if
the number for variable "x" in line 50 is $20, then if "x" is used again, it still has $20
as its number). Although it would be logical that the first variable you use is
assigned the variable number of 1, it isn, because some ($1B) commands are
stored as variables. So the number of the first variable is $01C, and the maximum
number is $3FF. The variable is stored in crunch code by adding $8C to the top
byte of the variable number (e.g. , $127 becomes $8D, $27). After the number is

5

stored, it enters any ASCIl from the variable name other than the first two
characters (e.g. , the "ges" of "pages”) in the form: 1. number of characters, 2.
ASCII of characters. Thus a variable "point” with a variable number of $01C is
stored as: $8C, $1C, $03, $69, $6E, $74. In addition to being stored in crunch
code; variables are placed by the Parser in a variable table pointed to by $3EDF.
This table is used in execution, and is later explained more fully. String, integer, or
dimensioned variables are specified in the variable tables, and not in the crunch
code. For example, the crunch code for the line "atom (10, 4) = 3" is $0OE, $01, $8C,
$1D, $02, $6F, $6D, $B7, $BA, $0A, $B9, $84, $B8, $AA, $83, $00. The
interpretation is as follows:

crunch code meaning
$0E length of line in bytes
$01 token for LET
$8C, $1D, $02, $6F, $6D "atom"
$B7 ("
$8A, S0A "10"
$B9
$84 "4
$B88 ")
$AA H_m
$83 "3
$00 end of line

Other types of data that need storing are strings and DATA or REM data.
Strings are stored in the following form: 1. $91, 2. number of bytes in the string, 3.
ASCIl of the string. Thus “hello” becomes $91, $05, $68, $65, $6C, $6C, $6F.
Things foilowing REM or DATA are similarly stored: 1. $90, 2. number of bytes in
DATA, 3. ASCll of DATA. The Parse routine that handles REM and DATA has a
bug. For the fix of this DATA Bump Bug, see chapter 11. The following table shows
the code that indicates each type of data possible in a line with the length of bytes
that follows that type of data.

code (§) meaning number of bytes
0- 64 primary word token 1 byte

80-89 number from Q0 to 9 1 byte

8A number from $CA to $FF 2 bytes

88 number from $100 to $FFFF 3 bytes

8C-8F variable at least 3 bytes
90 DATA or REM at least 2 bytes
91 string at least 2 bytes
92 floating peoint number 6 bytes

AQ-BD secondary word token 1 byte

If you are confused about crunch code, there is a program in Appendix 1 that
allows you to experiment with it. Even if you are comfortable with crunch cods, the
program lets you see the crunch code of any command, which heips when you are
tracing a command's execution.

Program tables

Once the Parser finishes parsing the line into crunch code, it returns to the
Central loop, where it either executes the command, if it is an immediate mode
command, or enters it into the program tables. Let us first look at a program line,
which is specified by having the first word of ASCIl in the line be a number. The
Central loop, after calling $3609 to parse the fine, calls $314A to enter the crunch
code for the line into the program tables, which store your program. The first table,
called the crunch code table, is pointed to by $3EES5, and is usualily high up in
RAM. This is where the crunch code for the line you typed in is stored with all the
previous program lines of crunch code. The lines are in descending order, with
the first line you typed in being highest in memory. Note that these lines are not in
numeric order, but in the order that you typed them in. The crunch code in this
table is exactly like the code from the Parser, so it does not include the line number.
Line numbers are stored in a table pointed to by $3ED9. The line numbers in this
table are in numeric order, and it is usually stored just beneath the crunch code
table. The entries have the form: 1. line number lo, hi, 2. address of that line's
crunch code in the crunch code tabls lo, hi. Thus the line numbers are stored in
one table, used for optimum speed in finding line numbers for GOTO or GOSUB,
and the crunch code for that line is stored in a separate table, as seen in the
following diagram.

Line Number Table Crynch Code Table
tine number (] 14 »{ 04 |— %of bytes in tine
20 7 +— taken for PRINT
2A 31
ddress of ¢.c. E D1 o1] crunch code for ™5"
R 47

_ - 0Q f— =nd of line
line rumber |: S0 :

01
— | 33 |— *of bytes in line
address of c.c. [—EA e o
essofo.c. [| = T4 |— token for COLOR
: AA |-~ token for =
a7 — trunch code for 7

rQ = end of line

Diagram of some sample
praogram lines

Command Execution

If the line typed in has no line number, then the line requires immediate
execution. In these cases, the Central loop calls $17E0, which later falls into
$182E, the main execution loop. These routines take the command's token from
crunch code put there by the Parser, and pointed to by the DE Z80 register, uses it
as an offset to look up the execute routine vector from the table at $1917 and calls it
(e.g., for GOTO, which has a token of 03, the loop would call the third vector in the
table). When the command is over, the Z80 returns to the Central loop to read the
keyboard for another line of input. If the command is "RUN", the 280 jumps to a
loop at $17EQ which is the "Execution loop”. This is called the Program mode
because it executes your program. This lcop gets tokens from the crunch code
table, as pointed to by the line number table, and executes them until an error
occurs or it reaches the end of the line number table. When the program ends the
280 returns to the Central loop to look for keyboard input. The flowchart for the
Execution loop is as follows:

+ to Central
Loop
get token 4
call vector

increment to
next line

y

Flowchart of Execution loop

While executing a command or program, variables used in the command can
change by being assigned a new value or string (e.g. , LET a=6 or INPUT y$). This

8

is accomplished by changing certain tables: variable table, string space, or the
variable value table. The most important of these is the variable table, because it
points to the other two. When you create a new variable by typing it in, the Parser
makes an entry in this table for some of the variable's essential data. Each entry
has the following form: 1. variable type byte, 2. pointer to variable's string or value
lo, hi, 3. first two characters of the variable’s name (03 if a character isn't present).
The type byte has various bits set according to the variable, as follows (a typical
numeric variable has a type byte of $01 or $02, strings have $21 or $22):

meaning

variable command (e.g. , MID)
variable function (FN)

string variable ($)

integer variable (%)
dimensioned array

unused

two characters in the name
one character in name

O-—*I\)Q)-P-U‘IG)‘\]E

The second and third bytes of the entry point to the definition of the variable
{string or number). if the variable is a string, then it points to the variable's string in
the string space. String space, pointed to by $3EF3 (beginning) and $3EEF (end),
has entries in the format: 1. pointer to variable in variable table, 2. number of
characters in string, 3. ASClI string. If the variable is a null string, the variable table
points to $3F52. If the variable is numeric, then the entry in the variable table
points to its value in the variable value table. Ail the numbers in this tabie, pointed
to by $3EED, are in floating point format. The fourth and fifth bytes of the entry store
the variable's ASCII according to bits 0 and 1 of the type byte. Values of integer
variables are stored in the variable table as two bytes. Dimensicned arrays are
stored in the value table in the format: 1. number of dimensions, 2. depth for each
dimension lo, hi, 3. floating point number, pointer to string, or integer number for
every entry of the array. This allows for string arrays as well as numeric ones. In
defined function variables, the pointer to the string or value points to the function
equation in crunch code.

For some strange reason, some commands that can be used in equations are
also stored as variables. | call them variable commands, and they take up the first
$1B variable entries in the variable table. Instead of the pointer to the string or
value, there is a vector to the execution routine of the command. Furthermore, the
ASCII characters are replaced by the command's offset into the variable command
name table, which stores each command's ASCIl characters in the format: 1.
number of letters in word, 2. word. This table is pointed to by $3EE1 and $3EE3.
The diagram on the following page shows how the variable tables point to each
other with some sample variable data.

Variable table Variable command nsme table

— 38 | type 031 « of letters
command E4 :l 41
vector
varisble gg - _%__:] ASCHt of command
offset -
120 - Varisble value table
t — 01 — type .
numeric 04
variable 22 :' adaress —
70 String space 12 f1. pt. number
L ™03 :lASCN of name : 5
: : 7
—_22_I— type > g‘;] address in variable table |
string 27] address 02 | #of latters
variabie % 38 11 ASCl of string
| 33—] ASCIH of name 53

Diagram of some sample varisbles

The BASIC Stack

The stack in BASIC, when executing a command, has two purposes in
addition to being a temporary placs to save registers and addresses. It keeps track
of nested FOR-NEXT loops and GOSUB commands. When the FOR-NEXT data is
pushed to the stack by the FOR routine, IY is pointed to the end of the data, thus
indicating the current FOR-NEXT data section as the rest of the
stack continues. If IY was already pointing to another section {nested loops), then it
is also pushed with the new section, thus preserving it. When the loop is over, it
pops off the old IY and continues with that loop. The same theory applies to
GOSUB and the IX register. For the exact data pushed, see the FOR or GOSUB
commands.
The stack is also used when BASIC computes equations, for priority values (e.g. ,
2+3"5=17, not 25). Priority is understood by ail of us, but how does the stack fit n?
Wall, BASIC evaluates the equation by comparing the priority of terms as it goes
through the line from left to right. Lower priority terms are pushed to the stack to be
later popped off when the higher part of the equation is completed. In the example
2+3"5, it first looks at the "2+". Since this is the first term of the equation, nothing is
done, yet. It then looks at "3™. Since multiplication has priority over addition, the
"2+" is pushed onto the stack and the "3*" now is the current term. When it sees "5
end of equation”, it calls the multiplication routine to compute 3*5, pops the "2+" off
the stack and adds that to the resulting product, thus getting 17. Variabies and
commands in equations may seem complex, but they can always be replaced by a
single number to {et the equation evaluation move on.

Z80 Registers in BASIC
While executing a command, seme registers hold data that is used very often

10

and would slow down BASIC if it were stored in RAM. These registers are
“universal®. That is, they are not used casually by one routine to store temporary
data. They contain things needed by many routines. If a routine needs the register
to hold some temporary data, it pushes the old register to the stack, uses the
register for its own purpose, and then pops the original register, thus preserving it
for other routines. The table below shows each register with the data it holds.
Note that the DE register points to the Input Buffer, and not the crunch code, while
BASIC is parsing a line. DE is then set to the crunch code after the fine is parsed.

reqister function

DE points to current address in crunch code
DE' points to the start of the parsed line

HL points to the current line number

c' number of bytes Ieft in crunch code line
B’ status byte in BASIC

IX points to a Gosub section on the stack
Y points to a For-Next section on the stack

The status byte (B') is used as a flag register. The following table shows each
bit with its function:

functign

trace (1=0n)

mode (1=program)

For-Next loop started (1=yes)
nobreak (1=o0n)

clear variables (1=yes)

clear subroutines or loops (1=yes)
Onerr executing (1=yes)

Onerr {(1=0n)

O—*I\J(»J-P-U‘IO)\IE

Tape commands

You may have noticed that the primary word table does not include any tape
commands. Instead, tape commands are stored in their own section at the end of
BASIC. | don't know why this is, because it wouid be easier to include them as
primary words. BASIC executes them by doing the following: when you type in
the fine, it goes to the Parser; this is normal. But when the Parser doesn't find the
tape word in the primary word table, assumes it is a variable and doesn't find an
equal sign, it calls a routine at $4DAC to see if it is a tape word. If not, it returns to
the Parser to print an error and then back to the Central loop. But if the tape
command exists, it calls the command's execution routine (found in the vector table
at $4F4F). The cemmand is responsible for parsing the rest of the line and
executing it. [t then returns to the Central loop.

Tape commands from a program are specified by using ctrl-d. When you print

11

a control-d, the routine at $4COF sees it, and starts putting anything else printed
into the ctrl-d buffer at $4279. When a "return" character is received, it looks up the
word as before, and calls it, only this time the command rstums to the Print routine
instead of the Central loop.

Important tables .

Scattered throughout BASIC are tables that would interest the programmer. |
have mentioned many of them already, because they are an essential part of
BASIC and its functions. They are listed again below to refresh your memory, and
provide a lookup chart for the tables that you may use in your programs. The tape
and execution error tables store the ASCII of the errors that are printed on the
screen when something goes wrong. Parse errors are located in the Parse section,
but are not organized into one table. The data table stores many pointers, vectors
and buffers, and is fully described in chapter 7.

table address

Primary word table (commands) $0110

Tape word table $4EAA

Variable command table {e.g. , COS) pointed to by $3EET
Secondary word table (e.g., THEN, ;) $0332

Variable table pointed to by $3EDF
String space pointed to by $3EF3
Value table pointed to by $3EED
Parse vector table $03AA

Line number table pointed to by $3ED9
Crunch code table pointed to by $3EES
Tape errors $SE3E

Execution errors $0480

Data table $3EDS

The following chapters give a detailed description of the routines in
SmartBASIC. | hope the above outline will be sufficient to introduce you to this
detail. Questions that arise should be answered by disassembling the routine and
following the actual assembly language of the routine, which is how | figured out
everything in this book. The operating system routines listed in volume 1 are also
important in understanding the disassembled output, since in/out and tape
routines use the OS in many cases.

12

Chapter 2: Zero Page

Zero page is devoted to interrupts. There are three kinds of interrupts for the
Z80 microprocessor: a regular interrupt which can be ignored or masked (INT), a
nonmaskable interrupt (NMI), and a bus request (BUSRQ). All of these interrupts
consist of signals sent from some external device to the appropriate pin of the Z80
CPU. When the Z80 receives a NMI signal, it pushes the pregram counter to the
stack and jumps to $66 in RAM. An INT is more complicated and can either cause
the Z80 to put out an in/out request and jump to $38, or perform an indirect jump to
an address formed from the | register and a number provided by the external
device. The bus request pin causes the Z80 to stop operations and not use the
bus until the signal is removed. The pin is used for direct memory access (DMA)
such as that by the master 6801 on the Adam.

On the Adam a non-maskable interrupt is sent 60 times per second from the
video chip to the Z80. It is serviced by the routine at $66 (102), which switches
pointers to two tables in VRAM to create the blinking letters of the FLASH
command. This routine is called every 16.7 ms and can cause problems with
bankswitching or exact timing requirements. The interrupts from the VDP can be
prevented by resetting bit 6 of register 1 of the VDP. The most interesting thing to
do with this FLASH routine ($66-$AB) is to change the counter that controls the
flash rate. The number at address 159 does this. Itis normally 12, and poking it to
3 will cause Flash to definitely get your attention.

Eight memory locations at 0,8,186, etc. are $C9, return from interrupt, which
presumably are in case of an INT interrupt, although | am not aware of any. All of
Zero page except 102-171 is available space for your routines.

Chapter 3: Keywords

A series of tables are stored from $100 to $5CB, including the Primary word
table, Secondary word table, Error and Parse tables. The most important of these
is the Primary word table at $110, the storage area for the ASCII of the non-tape
command keywords (e.g., GOTO, RUN, PRINT). It is used during parsing, when
each primary word is compared to the words in the Input butfer. Changing the
ASCIl of a command in this table allows you to customize commands or keep out
nosy people (e.g., changing the ASCII of LIST to HAHA). Printing out this area with
Printmem (vol. 1) helps with this task. Its tocken or crunch code is together with the
ASCIL. This number is put in the Crunch code buffer by the Parser to save space
and speed up execution. The token is used also as an offset into the Command
vector table at $1917, which contains the vectors to the execution routine of every
command. The Parse vector table at $3AA points to the routines to do this for
each command, by having the command in the Primary word table point to the
desired group of vectors. The relationship between the Primary word table, the
Parse vector table and the Command vector table is shown in the following
diagram of a sample command (FOR).

Execute table

fr— e

Prlmary word table —
Y : 37 [_] vector to execution
DA |~ token for FOR
oBg 1 pointer to parse vectors Parse vector table
03— # of letters in word -
46 .
4F :] ASCI of word 04 = # of parse vectors
22 gi] parse vector #1
gE] parse vector #2
;2] parse vector #3

gg] parse vector #4

Diagram of a sample primary word

14

Another table, similar to the Primary word table, is the Secondary word table at
$332. it contains the ASCII of most of the symbols that could follow a primary word
(e. g., =, THEN, :). They, too, are translated by the Parser into their tokens and put
in the Crunch code buffer with the rest of the line.

Ending this section is the ASCII table of execution errors. Changing this table
allows your errors to look like anything you want, though, like the Primary word
table, the new error should be as long as the one it is replacing. Note that these
errors don't include the Parser or Tape errors.

$0100-0102 (256-258) Start Vector
The tape loads JP $3E3D, the cold start address, at $100 but the cold start routine
at $4061 changes the address at $101-102 to $3EA3 which is the Centra) loop.

$0106-010F (262-271) Numbers
The numbers 10000, 1000, 100, 10, 1, are in integer (two byte) format.

$0110-0331 (272-817) Primary word table

This table of BASIC words is in the format: token, pointer to parse vectors, number
of letters, word. The token points to the execution address in a table at $1917. The
following table gives this information in more convenient form.

Ioken($) Word Execute($) Execute(dec) Parse($)

01 1867 6247 3AAC

02 GOSuUB 20EB 8427 3D08C

03 GOTO 2096 8342 3D8C

04 INPUT 22FD 8957 3CB7

05 LET 1867 6247 3AAC

06 NEXT 226B 8811 3CCF

07 PRINT 1EAE 7854 3CDC

08 READ 251B 9499 3CDs

09 REM 20E3 11747 30C9

CA FOR 216D 8557 3A8F 3ES5B
3A1B 3AF5

0B I 1E19 7705 3A63 3ABB

oC DATA 20E3 8419 3DCé

oD DIM 1B1E 6942 3CDs

OE ON 20BD 8381 3A1B 3B69

OF ONERR 1FB2 8114 3E77 3D8C

10 STOP 18EA 6378

1 RETURN 211D 8477

12 END 179F 6047

13 DEF 2034 8244 3B15

15

14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21

22
23
24
25
26
27
28
29
2A
2B
2C
2D

2E

2F
30

31
32
33
34
35
36

37
38

CLEAR
RESUME
NEW
POP
RUN
LIST
TRACE
NOTRACE
DEL
CALL
CONT
CLRERR
GET
POKE

RESTORE
HOME
DRAW
XDRAW
FLASH
INVERSE
NORMAL
TEXT
GR

HGR
HGR2
HLIN

VLIN

HPLOT
PLOT

HTAB
VTAB
SHLOAD
RECALL
STORE
WAIT

SPEED
ROT

1FCD
2079
18D4
212D
180F
1CEF
18C0
18C5
1D83
273A
18F3
1FAD
24A2
2778

250A
2B52
2C5E
2C94
2B2A
2B2F
2B34
2B39
2B3E
2B43
2B48
2BA2

2BD3

2CDF
2B83

2038
2C42
2B4D
2DF4
2DEC
278E

2A50
2CC3

16

8141
8313
6356
8493
6159
7407
6336
6341
7555
10042
6387
8109
9378
10104

9482

11090
11358
11412
11050
11065
11060
11065
11070
11075
11080
11170

11219

11487
11139

11320
11330
11085
11764
11756
10126

10832
11459

3880
3B8B

3B8F
3A1B

3C04
3A1B
3A1B

3A1B
3A1B

3A1B
3A1B
3A1B
3A1B
3A1B
3A1B
3AFE
3A1B
3A1B
3A1B
3A1B

3C04
3C04
3A1B
3A1B
3E36
3E36

3E43

3A80
3A80

3E43
3E69

3E43
3E69

3E43

3E43
3A79
3A1B
3A1B

39
3A
38
3C
3D
3E
3F
40
41

07
42

SCALE
COLOR
HCOLOR
IN

PR
HIMEM
LOMEM
BREAK

NOBREAK
?

&

KEYWCHDS

2CD1
2B5B
2B6F
2F34
2F1A
2B02
2A76
18CA
18CF
1EAE
27B4

$0332-03A9 (818-937) Secondary word table
These words occur following other words and are always found by a Parse routine.
The table is simpler than the previous one, and is arranged: token, number of

letters, word.

Token
AD

Al
A2
A3
A4
A5
AB
A7

A8
A9

[oken Word
AA =

AB AND
AC OR
AD NOT
AE GOTO
AF GOSuB
BO STEP
B1 AT

B2 THEN
B3 THEN

$03AA-041F {938-1055) Parse vector table
These vectors are listed in the table above, along with the commands that point to
them. The format is: number of vectors, vectors. Each vector points to a Parse

routine that parses a portion of the command's syntax.

$0420-0478 (1056-1144) Copywrite
This space contains the message printed when you boot BASIC. Since it is not

used after the boot, you can use it to store your own data.

$0479-047F (1145-1151)], :;, CR
Symbols used in print statements. To change the BASIC prompt from a right

17

11473
11099
11119
12084
12058
11010
10870
6346

6351

7854

10164

Token
B4
BS
B6
B7
B8
B9
BA
BB

BC
BD

3E36 3A1B
3E36 3A1B
3E36 3A1B
3E4E 3A1B
3E4E 3A1B
3E27 3A1B
3E27 3A1B

3CDC
3DC9

%

“ - = \-_#ﬁ—\#-

"
v

KEYWORDS

bracket (]) to something else, Poke 1145, X, where X is the ASCII of the new
symbol.

$0480-05B7 (1152-1463) Error Message Table

Command errors that can occur during RUN or execution are gathered here in the
format: number of letters, message. Errors that occur during parsing are scattered
throughout the Parse routines, and tape errors are in the tape section.

$05B8-05CB (1464-1483) Offset Table for Error Messages

This list of one byte numbers is used to find messages in the previous table. For
example, the third message is $2A into the table.

18

Chapter 4: Math Routines

The math routines are interesting to disassemble just to see how they work.
The information given here should be snough to make the disassembler output
interpretable. The calculations are made on numbers in the floating point
accumulators (FPA1 and FPA2), which are in floating point format. This format is
described in vol. 1, and consists of 4 mantissa bytes and one exponent byte. To
experiment with floating point numbers use the program in Appendix 1, which
prints out floating point numbers from decimal input (e.g., 5= 00 00 00 20 83). The
program enters a number and then PEEKSs the variable value table to print out the
floating point representation.

. Each function (e.g., SIN, LOG, stc.) is calculated as a power series (e.g.,
a+bx+cx*2+dx*3...). Three general power series routines are at $103C to $1104,
which calculate series of odd powers, even powers or all powers, respectively. The
number of terms and the constants used in the calculations are specified by the HL
register, which points to a table of the number of terms, followed by the constants
in floating point format. Such tables are at $11CC to $1257. The constants are not
exactly as predicted from the classical infinite series coefficients given in the
comments, for reasons which | assume come from the fact that a rather small
number of terms are actually used. This is a fairly esoteric subject which | have not
found described in engineering or computer books, and may be passed from one
generation of programmers to the next by reverse engineering.

$05CD-05DA (1485-1498) Numbers (1-F)
This unused area is filled with the numbers 1 to $OF.

$05SDC-05EE (1500-1518) Load HL with number from crunch code.
Calls $1733 to evaluate equation and puts number only (not string) in HL. It prints
an error if the number is greater than 255 ($FF) or if it is a string.

$0SEF-0610 (1519-1552) Load BC with number from crunch code.

Used by GOTO, etc., to get line numbers from code fine. It is like the routine above
only it doesn't call $1733 to get the number. it only accepts numbers in the format
$80 to $8B, which is from 0 to $FFFF (see chapter 1).

$0611-0620 (1553-1568) Print FPA1 in decimal.
Calls $0CBC to change FPA1 into an ASCII string, and then calls $2F4E to print it
from the buffer at $3F76.

19

MATH

$0621- (1569) Add FPA1 with (HL).
HL must point to a floating point number. The result is in FPA1. It loads FPA2 with
HL's number, and falls through to $062F to add them.

$0627- (1575) Subtract FPA2 from FPA1. Result in FPA1.
XORs the top byte of FPA2 (3F2E) with $80 and falls through to the add routine.

$062F-0727 (1583-1831) Add FPA1 and FPA2. Result in FPA1.
$0728-073A (1832-1850) Load FPA2 to FPA1. HL lost.

$073B-0752 (1851-1874) Find sign.
Used by muitiply and divide routines to prepare the FPAs for calculations. The sign
of the result is loaded to 3F17, and top bits of FPAs are set.

$0753-075C (1875-1884) Multiply FPA1*2.
It increments the exponent of FPA1 to multiply it by 2, checking for an overflow
error.

$075D- (1885) Muitiply (HL)*FPA1
HL must point to a floating point number. The resultis in FPA1. Calls $1117 to
load the number to FPA2 and falls through to the next routine.

$0760-07E1 (1888-2017) Multiply FPA1*FPA2
A shift and add algorithm is used, but it shifts the running sum right instead of
shifting the number left. The resuit is left in FPA1.

$07E2-08E3 (2018-2275) Divide FPA1 by FPA2
Similar to the multiply routine, only it shifts and subtracts. The result is left in FPAT1,

$08E4-08EC (2276-2284) ABS
Resets top bit of FPA1 to 0, making the accumulator positive. HLis lost.

$08ED-0915 (2285-2325) SGN

FPA1 =Qifit {i.e., FPA1)is zero, 1 if it is positive, and -1 if it is negative. A and HL
are lost.

$0916-0931 (2326-2353) Toggle FPA1 or FPA2.
FPA2 is toggled if the carry flag is set. Otherwise, FPA1 is toggled. To toggle
means to set to zero, if it is not zero, and to set to one, if it is zero.

$0932-0966 (2354-2406) Load FPA1 to HL in integer format.

20

MATH

$0967-09B7 (2407-2487) Load HL to FPA1 or FPA2,
Integer to floating point conversion. FPA2 is used, if the carry flag is sat.

$09B8-0A0F (2488-2575) Cornpare FPA1 with FPA2.
Carry flag is set, if FPA1>FPA2.

$0A10-0B3A (2576-2874) Convert number from ASCII to FPA1.
Number in butfer (DE} is converted from scientific format ASCII {e.g., 3.5E+7)to a
floating point number in FPA1. All registers are saved.

$0B3B-0CBB (2875-3259) Table of powers of ten in FP format.
All powers of ten from 1E-38 to 1E+38 are stored in floating point format.

$0CBC-0DFB (3260-3579) Convert FPA1 to decimal ASCII.
The resulting string is at $3F77 and the length of the string is at $3F76.

$ODFC-0E13 (3580-3603) Scale FPA1
If FPA1>10, multiply it by 0.1.

$0E14-0ESD (3604-3677) LOG

Calculates the natural log {In) of FPA1 and puts the result in FPA1. The routine is
based on the equation In x = 2 [(x-1/x+1) +1/3 {(X-1/%+1)23 + 1/5 (x-1/x+1}45 ..]
when x<1. The number is scaled and the In calculated by the power series
calculator #1 at $103C, using the four constants at $1243.

$OESE-QEGF (3678-3695) SQR

Calculates the square root of FPA1, with the result in FPA1. Calculated from: SQR
(x) =eM/2nx.

$0E70- (3696) Raise to power (*).

Uses the equation: x*y =e*y In x. x = FPA1 and y = FPA2. The answeris in
FPAI1.

SOEE8-0F47 (3816-3311) EXP
Exp (x) = e*x. x and answer are in FPA1. Calculated, after scaling, from e*-x=1 - x
+ (xA2)/2!1 - (x*3)/3!. ..

$0F48- (3912) TAN
Angle and answer in FPA1. Calculated from Tan = Sin/Cos. Calls routines below.

$OF6A- (3946) COS
Calculated from Cos x = Sin (x + n/2).

21

MATH

$0F72-103B (3954-4155) SIN

This one does all the work. The equation used is Sin x = x - (x*3)/3! + (x*5)/5! -
(x*7)/71 ... Uses power series caiculator #2 at $10AE, and the five constants at
$1229.

$103C- (4156) Power Series Calculator #1
FPA1 = ((x*2"c0 + c1)*x"2 + ¢2)*x*2 ... cn)*x. HL is the address of number of terms
followed by constants. Input x is in FPA1.

$1054- (4180) ATN
The equation used is ATN(x) = -(x*3)/3 + (x*5)/5 - (x*7)/7 + ...where O<x<1. Uses
power series calculator #1 and six constants at $11CC.

$10AE- (4270) Power Series Calculator #2
FPA1 = {(x*2°c0 + €1)*x*2 + €2)*x*2 + ... ¢n. HL is the address of number of terms
followed by constants. Input xisin FPA1.

$10B6- (4278) Power Series Calculator #3
FPA1 = ((x*c0 + ¢1)"x + €2)*x +...cn. HL is the address of number of terms followed
by constants. Input x is in FPA1.

$1104-1116 (4356-4374) Load FPA1 to FPA2.
Similar to the routine at $0728, only it moves FPA1 to FPA2.

$1117-111F (4375-4383) Load (HL) to FPA2.
HL must point to a floating point number.

$1120-112B (4384-4395) Load FPA1 with 1.

This and the next four routines destroy DE and HL. It moves the data from $0BF9 to
FPAT1.

$112C-113A (4396-4410) Push FPA1 to Stack.

On exiting, the stack contains: mantissa byte 1, exponent, mantissa 3, mantissa 2,
0, mantissa 4.

$113B-1149 (4411-4425) Pop FPA1 from Stack.

$114A-1158 (4426-4440) Push FPA2 to Stack.

$1158-1167 (4441-4455) Pop FPA2 from Stack.

$1168-117E (4456-4478) -127 < FPA1 < 127 ?
The Carry flag is reset, if FPA1 is between -127 and 127. Otherwise it is set.

22

MATH
$117F-1191 (4479-4497) Temp ABS
Makes FPA1 positive, if it isn't, and sets the return address to $090E, which sets the
sign bit to its original value.
Some Floating Point Constants:
$1192-1196 (4498-4502) 0.693147180 =In 2
$1197-119B (4503-4507) 1.44269504 =1/in2
$119C-11A0 (4508-4512) 1.57079632 =2
$11A1-11A5 (4513-4517) 0.636619772 = 2/n
$11A6-11AA (4518-4522) 0.785398184 = /4
$11AB-11AF (4523-4527) 0.414213562 = SQR (2) - 1
$11B0-11B4 (4528-4532) 2.41421356 = SQR (2) + 1
$11B5-11B9 (4533-4537) -0.5 =-1/2
$11BA-11BE (4538-4542) -1.41421356 =-SQR (2)
$11BF-11C3 (4543-4547) 0.707106781 = 1/SQR (2)
$11C4-11CB (4548-4555) Four Integer constants.
Groups of power series coefficients.
These coefficients are slightly different from the equations given because of finite

series approximations.

$11CC-11EA (4556-4586) ATN coefficients.

-0.060346883 =-1/11 (approximately)
0.105734403 = 1/9

-0.142400777 =-1/7

0.199982167 = 1/5

-0.333333076 =-1/3

0.989999999 = 1

23

MATH

$11EB-1213 (4587-4627) EXP Coefficients.

2.06667101E-5 = 1/8! ({approximately)
1.46290047E-4 = 1/71
1.3386897E-3 = 1/6!
9.61627016E-3 = 1/5!
0.0555044141 = 1/4!
0.240226488 = 1/3!
0.693147181 =1/2!

1

$1214-1228 (4628-4648) SIN (routine #1) coefficients.
-4.63313261E-3
0.0796879998
-0.645963956
1.57079632

$1229-1242 (4649-4674) SIN (routine #2) coefficients.
8.95410543E-4
-0.0208554615
0.253668615
-1.23370049
1

$1243-1257 (4675-4695) LOG coefficients.
0.434255942
0.576584541
0.961800759
2.88539007

$1258-12B4 (4696-4788) RND
Puts a random number into FPA1. Seed is at $3F40 (16192), two bytes.

$12B5-12E2 (4789-4834) Push FPA1 to Stack with String Check.

If FPA1 points to a string, indicated by $3F21 = 1, the stack pointer is placed at
memory pointed to by $3F22. (In equatien evaluation, FPA1 can be used as a string
pointer.)

$12E3-1304 (4835-4868) Pop FPA1 from Stack with String Check.

If FPA1 points to a string ($3F21 = 1) , the number $3F22 is loaded to the location
pointed to by $3F22.

24

MATH

$1305-1322 (4869-4898) Load FPA1 to FPA2 with String Check.
If FPA1 points to a string ($3F21 = 1), the number $3F2B is loaded to the location
pointed o by $3F2B.

$1323-1340 (4899-4928) Load FPA2 to FPA1 with String Check.
If string, "$3F22" is loaded to ($3F22), as above.

Equation Evaluation Routines $1341-1756.

The following section is used when a command wants to compute an equation in
crunch code. The main routine is at $1733, which calls all the other routines. Each
routine performs a function (e.g., get an integer from 0 to 9. or call the execution
routine of a variable command).

$1341- (4929) Get Number from Crunch Code. part 2

A is the number type. This routine calculates the vector of the routine to move the
number from crunch code to FPA1 or 2, depending on entry point for part 1 at $16CD
or $16ES.

$1363-1375 (4963-4981) Offset Table for humber type.
Used by routine above.

$1376 (4982) Get 0-9 integer.
Loads the number from crunch code into either FPA1 or FPA2, depending on whether
the Carry bit is set or not.

$1383 (4995) Get $0A-FF integer.
Like the routine above.

$1390 (5008) Get $100-FFFF integer.
Like the routine above.

$139F (5023) Load variable to FPA1.
Calls $199F to see what kind of variable it is, and jumps to the routine according to the
table below.

$13A7-13B0 (5031-5040) Table of variable routine vectors.

Variabl e Routin res
FP $13C3
% $13D6
$ $13E7
FN $140F
Command $140F

25

MATH

$13B1-13B6 (5041-5046) Load variable to FPA2.
Similar to the routine at $139F.

$13B7-13C2 (5047-5058) Table of get routine addresses.
The same as table at $13A7, except FN and Command = $1415.

$13C3-13D5 (5059-5077) Load FP variable from (BC) to (HL).
Moves the variable in floating point format from address pointed to by the BC registers
to that pointed to by the HL registers.

$13D6-13E6 (5078-5094) Load Int variable from (BC) to (HL).
$13E7-140E (5095-5134) Load String from (BC) to (HL).
$140F-1414 (5135-5140) Execute Variable Command.

This and the next routine act on commands that are in the string variable table: SPC,
TAB,..VPOS. The resultis in FPA1,

$1415-142E (5141-5166) Execute Variable Command.
The resuit is in FPA2,

$142F-14C9 (5167-5321) Variable Command interpreter
Does work for previous two routines. It calls the vector of the variable command found
in the variable table and checks for errors.

$14CA-14FD (5322-5373) Move string from crunch code to (FPA1).
Copies a string from current position in crunch code to String space pointed to by
FPA1. Entry at $14D0 uses FPA2 instead.

$14FE-151E (5374-5406) Load FP number from (DE) to FPA1,
DE points to the crunch code. Entry point at $1504 for FPA2.

$151F-1528 (5407-5416) Move string from (HL) to (DE).
The first byte is length of string.

$1529-155B (5417-5467) Add {+)

This and the next four routines call the appropriate routine, in this case $062F, POP DE
and BC, XOR A, and RET. If the variables are strings, this routine concatenates them.
$155C (5468) Subtract (calls $0627).

$1563 (5475) Multiply (calls $0760).

26

MATH
$156A (5482) Divide (calls $07E2).
$1571 (5489) EXP (calls $SOE70).

$1578-1603 (5496-5635) «, », AND, OR, =, <>, <=, >=.
Executes command on FPA1 and 2, or strings pointed to by them. If true, FPA1 is set
to 1. If false, FPA1 is reset to zero, i.e., $3F26 = 0.

$1604-1615 (5636-5653) Compare strings (FPA1) and (FPA2).
Z flag set, if equal.

$1616-1648 (5654-5704) Executes {, -, NOT, for FPA1.
$1649-167F (5705-5759) Executes (, -, NOT, for FPA2.

$1680-16A4 (5760-5796) Check for math symbol in crunch code.
Uses next table to get order of op and address of routine. It points BC to the current op
in the table. [f the symbol is not a math symbol, BC points to $16CC {end of line).

$16A5-16CC (5797-5836) Table of math symbol routines.
Format: order of operation, address low,high.

address
$1571
$1563
$156A
$1529
$155C
$1597
$15A5
$15B5
$15C5
$15D3
$15F1
$1578
$1589

!

mwmmmmmmmmhhog

<
>
>

v A+ + ™~ * >

AND
CR
end of equation FF

$16CD-16E4 (5837-5861) Load FPA1 from crunch code, part 1.
Finds number type and calls routine at $1341.

$16E5-16FC (5862-5884) Load FPA2 from crunch code, part 1.
Finds number type from crunch code and calls routine at $1341.

27

MATH

$16FD-1732 (5885-5938) Equation Evaluation

During RUN or an immediate command's execution. Coming in FPAT = first
number and BC points to math operation. This routine gets the next number in
FPA2 and the next operation (op), which together are called a set. If the second op
has a higher priority, it pushes the first set to the stack, moves FPA2to0 1, puts
second op in BC, and calls itself. This continues until the end of the equation. In
this way the math operations are done in order of decreasing priority. The
following flowchart shows how equations ars evaluated by BASIC during
execution. See chapter 1 for more details.

get cur. set

get next set , return

execute op.

o

F ¥
cur. op. > any sets
nextop. ? on stack 7
no yes

push cur. set make next set

= cur. set
make cur. set cur. set
= next set Pop

L v

Flowchart of Equation Evaluation

$1733-1756 (5939-5974) Get Equation from crunch code.
Gets one number and operation from crunch code and calls $16FD.

28

Chapter 5: BASIC Commands

This section of BASIC is where most of the action occurs. It can be considered
the "brain® of BASIC, because it does important tasks like setting variables to a
value or string, keeping IF... THEN statements straight, interpreting variable
commands or gathering information from crunch code for graphics commands. It is
needed after the Parser has translated the input and the line requires execution.
Each command has a routine that does only what that command is supposed to do.
These routines are vectored through a table at $1917, which stores them in the
order of each command's token. Changing the vector of a command allows you to
change what the command does, and is therefore helpful in adding new
commands.

By using the token of a command as an offset into the Command vector table
at $1917, the Execution loop at $182E looks up the address for the next immediate
or program command in the crunch code, and calls it to execute the command.
This loop repeats endlessly if BASIC is in the program mode (RUN), reading and
executing tockens from the program's Crunch code table. If BASIC is in the
immediate mode, then the loop only looks up and executes the one command in
the Crunch code buffer. If this command is RUN, then it enters the program mode,
and starts executing the program in the Crunch code table. .

After the Execution loop calls the command's routine, the command is
responsible for getting nesded data from the crunch code (e.g., the 10 in GOTO
10). Other routines like "Get one number” ($05DC) are called by the command to
do this. It also needs to update the registers that point to or contain data needed by
other routines. They must contain the same information exiting as when they
entered. Pushing and then popping them off the stack help in keeping them intact.
These registers are: DE, pointing to the current address in crunch code; HL',
pointing to the current address in the Line number table; C', the number of bytes left
in the line of crunch code; B', the status byte of BASIC; IX and Y, the pointers to the
GOSUB and FOR... NEXT data on the stack. Remembering to keep these registers
intact and up to date during the command's execution is important, because the
Execution loop and other commands need them.

$1757-1769 (5975-5993) Stack setup

IX, IY, and SP = $D380, the top of the stack which extends down to $D1FF. BC and
the top to the stack are loaded with $1EDC (Print error). There is only one stack,
but the index registers of the Z80 are used to keep track of locations on the stack
where return information is kept for Gosub (1X) and For-Next (IY).

29

COMMAND ROUTINES

$176 A-177F {5994-6015) Find first line number address.
Called at the beginning of RUN. It points DE to crunch code line. HL' points to the
second line number. C'is the length of the crunch code line.

$1780-179E (6016-6046) Find next line number address.
In: HL'is the address of the current line number. On exit HL' points to the next line
number, and DE points to the next crunch code line of length C'.

$179F-17B4 (6047-6068) END
Saves pointers for possible CONT, (DE at $3EFA and HL' at $3EFC). It then
returns to the Central loop at $3EAS.

$17B5-17DF (6069-6111) TRACE routine.

It prints "#", line number, space if bit 7 of B’ is set. Returns to the Central loop if
BASIC is in the immediate mode. Otherwise it gets the address of the next line
number.

$17E0-180C (6112-6156) Execute command
Checks mode, does restore, jumps to Execute loop ($182E).

$180F-182D (6159-6189) RUN
Clears stack, gets first line number or immediate number (RUN 30) address, and
falls through to next routine.

$182E-1866 (6190-6246) Execute loop

Loops endlessly until control-C or S is pushed or program ends. Loads (DE) to A,
gets command address from table at $1917 and calls it. Upon return it checks for
Trace or Break, and loops again. The Trace routine called at $17B5 also checks
for the immediate mode, and jumps to the Central loop, thus exiting the Execution
loop.

$1867-18BF (6247-6335) LET

This routine is cailed sven if LET is not written (e.g., a=7, or LET a=7). It checks
variable type, calls get-equation ($1733), sets variable to what follows equal sign,
and checks for errors.

$18C0-18C4 (6336-6340) TRACE
Sets bit 7 of B' (to one).

$18C5-18C9 (6341-6345) NOTRACE
Resets bit 7 of B' {to zero).

30

COMMAND ROUTINES

$18CA-18CE (6346-6350) BREAK
Resets bit 4 of B (to zero).

$18CF-18D3 (6351-6355) NOBREAK
Sets bit 4 of B' (to one).

$18D4-18E9 (6356-6377) NEW
Resets stack, clears variables, pointers, jumps to the Central loop at $3EA3.

$18EA-18F2 (6378-6386) STOP
Prints "BREAK IN (line number)" and jumps to Central loop at $3EA3.

$18F3-1916 (6387-6422) CONT

Loads DE' and DE with (3EFA), HL' with (3FFC}, C’ with (DE), and jumps to
Execute loop at $182E. If the Temp pointers (3EFA) and (3FFC) are zero, "Can't
Continue" is printed and it jumps to the Central loop at $3EA3.

$1917-199A (6423-6554) Command vector table

Two byte vectors of each command are stored here in order of token values. These
addresses are listed in the command list in chapter 3. Each vector points to the
execution routine of the command. Changing commands and vectors lets you
change the function of a command because you can create a new command, even
though you lose an old one.

$199B-1B1D (6555-6941) Get variable type

The variable is in crunch code at (DE). A is loaded with the type number and BC
points to the number in the Variable table. The Z80 then jumps te an address in a
table which follows the call statement that called this routine.

Variable Type # JP address
FP $00 1st

% $10 2nd

$ $20 3rd

math command $80 5th

Def FN $CO 4th

Dim array 308

The variable type number is the number above plus 1 or 2 depending on whether
the name has one (1)or more letters (2).

$1B1E-1C04 (6942-7172) DIM
Sets up definition of array in the Variable value table. For example, DIM A(12,44,7)

31

COMMAND ROUTINES

has three dimensions and the first dimension has twelve elements. The format of
the definition is as follows: number of dimensions, number of elements in
dimension 1 (two bytes, max $7FFF), number of elements in dimension 2, etc.,
followed by the actual numbers in the array. To begin these are zeros for numbers
and $3F52 for strings, which is the address of a null string. A sample array is
shown in the following diagram.

Variable value table String_space

02 — number of dimensions —pt D7 j pointer to variable
03 ™ dimension #1 B

00 01 — # of letters _in string
gg :] dimension #2 4.F ~— ASCI of string ("G")
3417 string pointer for (0,0) >

& ar ‘ 5511 pointer to variable

. 02 — # of letters in string
5.8] string pointer for (3,7) gg] ASCI! of string (*hi")

Diagram of a sample string array

$1B9A-1BB8 (7066-7096) Muitiply HL x DE
Part of DIM. The resultis in HL. Carry flag is set on overflow.

$1C05-1C5F (7173-7263) Check DATA length
Error it number of commas is greater than 256. On return C = number of commas
+1.

$1C60-1C82 (7264-7298) Make string definition.
In A = string length, HL = address of variable name. Qut (3EEF) = end of String
space and HL = start of String space.

$1C83-1C8E (7299-7310) Check stack
It stack goes below $D1FF "stack overflow" is printed.

$1C8F-1CBC (7311-7356) Check String space

If table is too long (HL + ($3EEF) >$FFFF), it calls FRE ($27E1) to remove strings
that are not pointed to by the Variable table (garbage coilection). If the table is still
toc long, "Out of memory” is printed.

32

COMMAND ROUTINES

$1CBD-1CDA (7357-7386) Print program.
Used by LIST. Starts at current line number and prints to last line.

$1CDB-1D82 (7387-7554) LIST
Checks for line number, "-", or *,". Actual print routine is at $3493. Finds words
from tokens in crunch cods. :

$1D83-1E18 (7555-7704) DEL
Checks text following DEL and cails $31EB to delete a line. If there is more than
cne line, it calls $31F2 . It jumps to Central loop ($3EA3) when done.

$1E19-1E3B (7705-7739) IF

Calls $1733 to evaluate the condition following the 'IF. If it is true (A=0), it returns if
"THEN" is found to continue the Execute loop. If the THEN is not there, GOTO is
assumed, and the routine jumps to $2096. If the condition is false (A=0), it calls
$1780 to drop down to the next line number.

$1E3C-1EDB (7740-7899) PRINT
Calls $1733 to get the numbers or strings for printing. It loops until the line ends,
checking for"," or ";".

$1EDC-1FAC (7900-8109) Print command errors

This is jumped to by any command when an error is detected. It prints the
following: (retum) "?" (error) "Error "(and "in line#" if in program mode). If bit 0
of B'is set (onerr), then it "GOTO"s to the line number at $3EFE. The following
addresses print the corresponding errors:

address ASCH string of error
$1EEB llegal Mode

$1EEE Divide By Zero

$1EF1 Overflow

$1EF4 Redimensioned Array
S1EF7 Out Of Memory
$1EFA Qut Of Data

$1EFD Formula Too Complex
$1F0C lllegal Quantity

$1F03 Type Mismatch

$1F06 Incorrect Function Usage
$1F09 String Too Long
$1F0C Syntax

$1FQE error code in A

33

COMMAND ROUTINES

" $1FAD-1FB1 (8110-8113) CLRERR
Clears an onerr command by resetting bit 0 of B' to 0.

$1FB2-1FCC (8114-8140) ONERR
Sets bit 0 of B' and puts the line number to goto at $3EFE.

$1FCD-2033 (8141-8243) CLEAR
Resets pointers so that all variables are set to 0 or null strings.

$2034-2078 (8244-8312) DEF
Sets the variable to a function variable, and points it to the function in crunch code.

$2079-2095 (8313-8341) RESUME
Checks for mode or syntax, and restores old pointers ($3EFC)=HL"' and
($3EFA)=DE to continue execution.

$2096-20BC (8342-8380) GOTO

Gets a line number from crunch code and calls $30F0 to make sure it exists. Line
pointers are then set to that line number. GOTQ is very useful in the immediate
mode, because, unlike RUN, it does not reset variables. For possible changes to
GOTOQ, see chapt. 11,

$20BD-20E2 (8381-8418) ON
If the offset number in the crunch code is 0, the line is skipped over. Otherwise DE
is set to the correct line number entry and continues at GOTO or GOSUB.

$20E3-20EA (8419-8426) REM or DATA
DE is incremented so that it points to the next line in the crunch code.

$20EB-211C (8427-8476) GOSUB

Checks stack and saves the current position in the program by pushing IY, 1X, HL,
DE, and $2122 onto the stack. 1X is adjusted so that it points to the current GOSUB
entry on the stack. It then enters the program mode and continues execution at the
given line number. The $2122 entry is for the RETURN routine.

$211D-212C (8477-8492) RETURN

Pops the old pointers saved by GOSUB off the stack in the order: DE, HL', IX, and
IY. It uses the $2122 entry to allow the machine language return command to
continue execution for the BASIC RETURN command. Changing the $2122 to
another address allows the RETURN routine to be vectored to the routine you want.
Execution continues at the new line number saved on the stack.

34

COMMAND ROUTINES

$212D-2143 {8493-8515) POP
Pops off the GOSUB pointers pointed to by IX. This is like RETURN, but DE is not
changed, so execution continues with the next command after POP.

$2144-216C (8516-8556) ON GOSUB
This is a continuation of ON that exscutes a GOSUB instead of a GOTO.

$216D-2230 (8557-8752) FOR ‘

Gets the necessary data from the crunch code and pushes it to the stack in the
following order: IX, Y, address of variable, final loop number (in floating point),
STEP number in floating point (default is 1), HL', DE, $2231. IY is then updated to
point to the new FOR-NEXT entry on the stack. The entry $2231 is for the NEXT
routine. Changing this address allows the NEXT routine to be vectored to ancther
routine.

$2231-22FC (8753-8956) NEXT

Actual entry point is at $226B, but it starts at $2231. Updates the data on the stack
pushed by FOR. i the loop is over, the data is popped off, and IY is set to the next
FOR-NEXT loop on the stack. Leaving the variable off (e.g., NEXT instead of NEXT
x) increases the speed of the loop.

$22FD-24A1 (8957-9377) INPUT

INPUT prints out any message or question, and then scans the keyboard until the
return key is pressed. Muitiple variables of string or numeric contents can be
defined by using commas between them. "?Extra Ignored" or "?Reenter” is printed
in case of errors.

$24A2-2509 (9378-9481) GET
Calls Input at $2F89 to get one character from the keyboard or other device. This
character is then assigned to the desired string or numeric variable.

$250A-251A (9482-9498) RESTORE
Resets all the DATA painters ($3EF7-9) to 0.

$251B-2702 (9499-9986) READ
Uses the DATA pointers at $3EF7-9 to get the numeric or string variable from
crunch code. If more than one variable is present, it loops until all of them are read.

$2703-2739 (9987-10041) Get memory address
Calls $1733 to get an integer from crunch code. It is then placed in HL.

$273A-2758 (10042-10072) CALL
Calls $2703 to get the memory address from crunch code, checks stacks, saves

35

COMMAND ROUTINES

DE, DE', BC', HL', IY, and IX on stack, and then calls the address, popping the
registers when done.

$2759-276A (10073-10090) USR
Similar to CALL, only it calls the routine at $3F02 instead of the address obtained
from crunch code.

$276B-2777 (10091-10103) PEEK
Checks for numeric data type in FPA1, and then [oads the contents of that address
into FPA1,

$2778-278D (10104-10125) POKE

Gets an address from crunch cods, checks to see if it is over the limit pointed to by
$3F15, and loads it with the next number in crunch code if it is low enough. To
poke anywhers in memory, simply POKE 16149 and 16150 with 255.

$278E-27B3 (10126-10163) WAIT
Loops endlessly until valuet AND (value2 XOR data from port) =0. Port number,
value1 and value2 are found in the crunch code.

$27B4-27CF (10164-10191) &
Like USR, except it calls the routine at $3F04 instead of $3F02.

$27D0-2844 (10192-10308) FRE

Erases all strings that are not being used by a variable. It does this by stepping
through String space, checking each string for its variable, and moving it to the new
string space inside the old one if it is being used. Exits with the amount of free RAM
(end of String space to start of numeric value table) in FPAT.

$2845-286E (10309-10350) VAL
Checks for correct variable type, moves the string to $3F77 for processing by
$0A10, which gets the numeric value of the string.

$286F-2882 (10351-10370) ASC
Checks for string variable type, finds the desired string , and moves the ASCI!
value of it into FPAA1. '

$2883-28AA (10371-10410) CHR
Checks for numeric variable type, and creates a new string with a length of 1.
FPA1 is then moved into the string.

$28AB-28D5 (10411-10453) STR

Checks for numeric variable type, and creates a new string with decimal equivalent
of FPA1 as its content.

36

COMMAND ROUTINES

28D6-28DF (10454-10463) LEN
Checks for variable type, moves the length of the string (third byte in the definition)
pointed to by FPA1 to FPAA1.

28E0-290B (10464-10507) Check string length
Used by LEFT, RIGHT, and MID to compare the number following the command
with the length of the wanted string. Carry set if number is larger.

$290C-2920 (10508-10528) LEFT
Checks for errors, loads C with the number from crunch code (right end), and loads
A with 0 (left end). It then jumps to $2978 to cut up the string.

$2921-2938 (10529-10552) RIGHT
Checks for errors, loads C with the length of string -1 (right end), and A with the
number from crunch code (left end). $2978 is jumped to for processing the string.

$2939-2977 (10553-10615) MID
Checks for errors, and sets up A as the first number (left end), and C as the first

number + the second number-2 (right end). It falls through to $2978 to make the
new string.

$2978-29AF (10616-10671) Cut string
Creates a new string with A being the left boundary, C being the right boundary,
and its contents being the wanted portion of the old string.

$29B0-2A3D (10672-10813) INT
Cuts the decimal remainder off of FPA1, and leaves the result in FPA1 and A.

$2A3E-2A4F (10814-10831) ERRNUM
Uses the error number at $3F00 as the offset for the table at $05B7, and places the
number found in $05B7 to FPAT.

$2A50-2A5B (10832-10843) SPEED
Gets the number from crunch code, and places it at $3F01.

$2A5C-2A68 (10844-10856) POS
Calis $6641 to get the horizontal position of the cursor, and puts it in FPA1.

$2A69-2A75 (10857-10869) VPOS
Calls $6648 to get the vertical position of the cursor, and puts it in FPA1,

$2A76-2B01 (10870-11009) LOMEM
Checks to see if the address obtained from crunch code is too big or less than

37

COMMAND ROUTINES

$6BOF. Moves the Variable table and Variable command name table to new
location, but not the String space. So you should set new Lomems before defining
strings to be sure the Lomem area is not already being used by strings.

$2B02-2B29 (11010-11049) HIMEM
Gets the address from crunch code, calls Clear ($1FDO0), checks for errors, and puts
the address at $3EED.

$2B2A-2B5A (11050-11098) Screen commands

Saves DE on the stack and then calls the actual screen command. SHLOAD,
which means shape-load and was used by Apple to save shape tables on tape, is
only a return. The following commands are rerouted by this routine:

old address command New r
$2B2A FLASH $6633
$2B2F INVERSE $661D
$2B34 NORMAL $6627
$2B39 TEXT - $4815
$2B3E GR $483C
$2B43 HGR $638C
$2B48 HGR2 $631A
$2B4D SHLOAD $18Cs3
$2B52 HOME $4B68

$2B5B-2B6E (11099-11118) COLOR
Puts a number from crunch code into C and calls $492F to place the color value at
$4188. ; '

$2B6F-2B82 (11119-11138) HCOLOR
Like COLOR, except it calls $4928 to put the color at $4189.

$2B83-2BA1 (11139-11169) PLOT
Gets the x and y from crunch cods, places them in C and B, respectively, and calls
$4A9E to plot the point.

$2BA2-2BD2 (11170-11218) HLIN
Sets up C as the y, B as x1, E as x2, and calls $4975 to plot the horizontal line.

$2BD3-2C03 (11219-11267) VLIN
Sets up E as the x, B as the y1, C as the y2, and calls $49FC to plot the vertical line.

$2C04-2C37 (11268-11319) SCRN

Gets the x from FPA1, and y from crunch code, and puts them in C and B. 1t then
calls $4AFB to get the color of the block and puts it in FPAT.

38

COMMAND ROUTINES

$2C38-2C41 (11320-11329) HTAB
Loads C with the number from crunch code, and calls $664F to move cursor.

$2C42-2C56 (11330-11350) VTAB
Calls $666B with the crunch code number in C to move the cursor down.

$2C57-2C8C (11351-11404) DRAW
Loads E with the shape number, B with the y, C with the x, and calls $67DC to draw
the shape.

$2C8D-2CC2 (11405-11458) XDRAW
Like DRAW, but it calis $6904 instead of $67DC.

$2CC3-2CD0 (11459%-11472) ROT
Loads C with a number from crunch code, and calls $66E8 to rotate the shape.

$2CD1-2CDE (11473-11486) SCALE
Sets up C with the number and calls $66DD to perform the scaling.

$2CDF-2D62 (11487-11618) HPLOT
Calls $6401 if a point is wanted, $6456 for a line, and $64C5 for a continuation of a
line (e.g., HPLOT TO x,y).

$2D63-2D82 (11619-11649) PDL
Loads C with FPA1, and calls $6918 to scan the paddles. Exits with result in FPAT.

$2D83-2DFD (11650-11773) STORE, RECALL

The STORE entry point is at $2DEC, while RECALL is at $2DF4. This rather long
and complex routine, which stops after the setup, appears to be an initial attempt to
implement the similar Apple Il commands. They were used by Apple for cassette
storage, and are essentially archaic.

39

Chapter 6: Parser

The Parser is the portion of BASIC that translates your typed in line into a
shorter and more efficient form, called crunch code. Along the way it checks the
syntax or format of the line, making sure it's legible. The Parser doesn't execute
the command, it only makes it more readabie for the execution routines in Chapter
5. Of course, each command has a different syntax, so many different routines are
needed to parse the line. The Parse routines are listed in a table at $3AA. Though
different, some commands share similar syntax (e.g., PLOT x,y and HPLOT X,y). In
order to save space, there are routines that parse a variable, an equation, or some
other common syntactic structure. The parsed lines are placed in the Crunch code
buffer at $4077, and in the Crunch code table, if there is a program line number
present. See chapter 1 for more detail on the Parser. The diagram below of a
sample line ("PRINT x") shows the line in the Input buffer and in the Crunch code
buffer.

Input buffer

07— length of line Crunch code buffer

50 04— length of crunch code
52 07 }— token for PRINT

49 ASCll for PRINT = 3

4E 10 :I crunch code for x
54 00

20 |~ ASCIl 'space’ 00 }— endofline

78 — ASCI for x :

00 = endof line

Diagram of a sample line

While creating your own commands, you usually can use old Parse routines,
thus saving space and your time. But there could be moments when the format you
want can't be done with the current Parse routines. |n these situations, you must
remember to keep the following registers intact as you write your own Parse
routine: DE, pointing to the current address in the input ling; B', the status byte; IX
and 1Y, pointing to the stack. Keeping them intact means that when the routine is
exited, they must contain the same information they had when the routine started.
To do this, you can either not use the register in the routine, or you can push the
register to the stack, use it, and then pop off the old contents. If you write your own
Parse routine, you must create a Parse vector entry to point to the Parse routine.

40

FPARSER

The entry and the routine can be placed anywhere in RAM, but the primary
command must point to the vector entry and the vector must point to the Parse
routine.

$2E00-2E09 (11774-11785) Read buffer
Reads the next non-control ASCII byte from a buffer pointed to by DE into A. The
Zero flag is set if the byts is zero, indicating the end of the buffer.

$2EQA-2EOE (11786-11790) Set word scan
Sets B up with the length of the table pointed to by HL, and C with the length of the
table at DE. It then falls through to the next routine to scan the tables.

$2EOF-2E3D (11791-11837) Word scan

Compares the two tables pointed to by HL and DE with each other, with the length
of comparison in B, or C, whichever is shorter. If the alternate Carry flag is not set
upon entering, then the routine also checks for upper case ASCII. The Zero flag is
set if the tables are squivalent.

$2E3E-2E4A (11838-11850) Save registers and Set word scan
$2E4B-2E57 (11851-11863) Save registers and Word scan

$2E58-2E6B (11864-11883) Letter check

If the ASCII byte pointed to by DE is from $41 to $5B, or $61 to $7B, then the Carry
flag is set.

$2E6C-2E73 (11884-11891) Number check
It the ASCII byte pointed to by DE is from $30 to $3A, then the Carry flag is set.

$2E74-2E8F (11892-11919) Reset program pointers

Sets $3EDY, the pointer to the first line number address, to $D180. Sets $3EDB,
the number of line numbers, and $3EDD, the length of the line number table, to 0.
It also sets the random number seed ($3F3E) to $FB40 and $D291.

$2E90-2ED9 (11820-11993) Print parse errors

It first calls $4DAC to see if the error occured because of a tape command. If it did
not, then a "A" is printed followed by the string placed after the call-routine.
"Expected” is printed if $2E91 was called; nothing, if $2E30 was called. It then
returns to the Central loop at $3EAS.

$2EDA-2EES (11994-12009) Print character with PR

Calls the current PR routine pointed to by $3F49 ($2EEA for pr#t1, and $2F0B for
pr#0). A contains the ASCII character to be printed.

41

PARSER

$2EEA-2F0A (12010-12042) Print to printer
Prints the character in A on the printer by calling $FC686, and falls through to also
print it on the screen.

$2F0B-2F19 (12043-12059) Print to screen
Pauses to execute the SPEED counter at $3F01, then jumps to $4COF to print the
character on the screen.

$2F1A-2F33 (12060-12083) PR

Uses the next number in crunch code as an offset into the PR table at $3F55. The
new address found in the PR table is moved to $3F49 to vectar the current PR
routine.

$2F34-2F4D (12084-12109) IN
Like PR, except that the IN table is at $3F65, and the new address is vectored
through $3F43.

$2F4E-2F5F (12110-12127) Print table
Prints the table pointed to by HL via PR routine. The tabie's first byte is its length,
followed by the rest of the ASCII table.

$2F60-2F868 (12128-12136) Print a return

$2F69-2F75 (12137-12149) Input using IN
Calls the routine vectored through $3F45 to get input into A.

$2F76-2F7E (12150-12158) Print prompt
Prints the contents of $0479.

$2F7F-3050 (12159-12368) Input line

Reads input device by calling $2F69, and places the characters received into the
Input buffer at $3F75 with $3F75 being the maximum length of the buffer, $3F76
being the length of the buffer, and $3F77 being the start of the characters. Checks
for control characters and acts accordingly if one is encountered. It prints the
characters on screen only, and loads DE with $3F76 when the line is over,
indicated by the ASCII return character or the overflowing of the buffer limit.

$3051-3062 (12369-12386) Control character table
Contains the ASCII codes for control characters like return, arrow keys, ctrl-N, etc.
The above routine checks input characters with these for action.

$3063-3083 (12387-12419) Control address table
This table is similar to the one above in that it is used when control codes are found

42

PARSER

ininput. Its format is in the same order, though reversed from the previous one,
where the address of the first code used to be last (ie. ctrl-2 is the last entry in the
above table; return is the first):

address contro!l ASCI! code
$2FA4 crtl-2

$2FF9 ctrl-arrow

$2FFB ctri-L. home,down or up arrow
$3044 ctri-X

$2FF5 ctrl-O

$2FF1 ctri-N

$3007 left arrow, backspace
$3016 right arrow

$3024 ctri-1, tab

$2FBD return

$3084-3092 (12420-12434) Vectored screen print
Calls the routine vectored through $3F4B to print only on the screen.

$3093-30A2 (12435-12450) Print return on screen
Prints the table at $047E, a return, through the above routine. Calling $3098 prints
any table with the length being the first byte of the table.

$30A3-30D3 (12451-12499) Check number size
Converts a number in ASCII form pointed to by DE into an integer in HL. "Number
Too Big" is printed if the number >$FFFF.

$30D4-30EF (12500-12527) Get length of line
Loads $3F4E with the length of the crunch code fine pointed to by DE.

$30F0-3149 (12528-12617) Look for line number

Scans the line number table for the line number stored at $3F4F. Because of the
method used for scanning, it is faster to place a wanted line number to GOTO either
in the middle or above, er the very last line of the program. This practice only
slightly increases speed, but is useful when dealing with long programs or frequent
loops.

$314A-31EA (12618-12778) Insert line number into table

Erases any line number if the line already exists. It also moves the tables down,
and enters the line number data into the Line number table, and crunch code line
into the Crunch code table.

$31EB-329E (12779-12958) Delete line number
HL=the line number to delete. It moves the Line number table and Crunch code

43

PARSER
table so that the specified line number and crunch code is erased.

$329F-32ED (12959-13037) Print (HL) with PR

Call $32A7 to print DE as ASCIL. Converts the number pointed to by HL to its ASCII
equivalent, and prints it. This routine, and the following routines, all print their data
through $2F4E and the PR routine.

$32EE-3312 (13038-13074) Print primary word

Prints the primary words corresponding to the token in crunch code pointed to by
DE.

$3313-336B (13075-13163) Print number
Takes the crunch code format of a number, turns it into its ASCII form, and prints it.

$336C-33CF (13164-13263) Print variable name
Gets the variable number from crunch code, looks it up in the Variable table, and

prints out the name (2 letters), with any more letters in crunch code, along with the
variable type.

$33D0-33D8 (13264-13272) Print "FN"

$33D8-33E4 (13273-13284) Print data
Prints the data from crunch code indicated by $90, which is in the format of length
of data, followed by the data itself.

$33E5-33FF (13285-13311) Print string

This routine is similar to the above routine, except that the string is placed in quotes
and is indicated by a $91.

$3400-3430 (13312-13360) Print secondary word

Looks up the ASCII for the symbol from crunch code in the Secondary word table,
and prints it.

$3431-3442 (13361-13378) Check type of secondary word
In: B=code of symbol. The Carry flag is set if the symbol is a word (e.g., AND,
STEP, etc.).

$3443-3464 (13379-13412) Find primary word

Call $3443 for primary words, or $344D for secondary words. Scans the table until
the crunch code in A is matched with ona in the table. HL is then pointed to the
word following the code.

$3465-347B (13413-13435) Print command
Prints a line of crunch code pointed to by DE, with the beginning of the crunch code

44

PARSER
being the length of the line, and the end, a colon.

$347C-3492 (13436-13458) Print line
Prints a command by calling the above routine, and then continugs printing
commands o the end of the line. '

$3493-34A4 (13459-13476) Print line number and line
In: HL points to the line number in the line number table. It calls $329F to print the
line number, and then $347C to print the crunch code.

$34A5-34C8 (13477-13512) Print floating point number
Moves the floating point number pointed to by DE (in crunch cede) to FPA1, and
calls $0611 to print it in decimal.

$34C9-3517 (13513-13591) Move first string
If the first string in the String table is not being used, then it is erased, otherwise it is
moved to the end of the table, erasing the original.

$3518-355A (13592-13658) Make first string
Makes room in front of the string table for a string of length A.

$355B-35C5 (13659-13765) Check type of character

Sets C, B or the Carry flag depending on whether (DE) is a letter, number, :, ?, or
equality symbol. For example, if (DE) is a letter, then C=the length of the word,
B=0, and the Carry flag is set.

$35C6-3608 (13766-13832) Compare word to tables

This routine scans the primary word tables to see if the word you typed in exists.
Call $35C6 for the Primary word table, $35CE for the Secondary word table, or
$3602 for both. The word is pointed to by DE, and the length isin C. If a match
was found, then the Carry flag is set, the crunch code is placed in A, and HL is
peinted te the word in the table.

$3609-3679 (13833-13945) Parse line

Resets the Crunch code buffer pointer ($3EE7) to $4077, and calls $367A to parse
the command. If a colon is present, it continues parsing, ending when the line is
over, and setting DE to the start of the crunch code.

$367A-3690 (13946-13968) Parse command and finish buffer
Calls $36A8 to parse the command, places the length of the Crunch code buffer at
the start of it, and a zero at the end.

$3691-36A7 (13969-13991) Check for end of line
Looks at the Input buffer to see if any colons exist after the command. if so, the

45

PARSER
Carry flag is set.

$36A8-3701 (13992-14081) Parse command

This routine is called to parse the line recieved from an input device, and to put the
crunch code in a buffer pointed to by $3EE7, called the Crunch code buffer. It calls
$35C6 to see if the first word is a primary word. If it is, it puts the crunch code of the
word in the buffer and calls the keyword's parse routines, according to the table at
$03AA. If no primary word was found, it assumes that the word is a variable, and is
parsed by "LET™.

$3702-3764 (14082-14180) Look for variable

In: A=variable type to look for, DE points to the name in the Input buffer. The
routine searches the Variable table until a match is found, then it sets the Carry
flag, and puts the variable's number in HL. The Carry flag is reset if no match was
found.

$3765-3850 (14181-14416) Make variable
Moves the Variable tables to allow for the new variable. It creates an entry in the
Variable table of type A and length C.

$3851-3892 (14417-14482) Hold new variables

This routine temporarily holds new variables in a string until the line is finished
parsing. The string is pointed to by $3EE9, and contains the type of variable, its
length, the position in Input buffer, and the pointer to its crunch code position. A
maximum of $29 variables can be hsld.

$3893-38C1 (14483-14529) Make new variables
This routine enters any variables stored in the string pointed to by $3EEQ into the
Variable tables by calling $3765 for each individual variable.

$38C2-38D4 (14530-14548) Fill Crunch code buffer
Loads A to the Crunch code buffer pointed to by $3EE7. The buffer is then
incremented to the next byte, and is checked for being too long (>3FF)

$38D5-38DA (14549-14554) Add C to DE
$38DB-390C (14555-14604) Check for symbol
Looks for the wanted symbol in the Input buffer. If it is found, the crunch code is

placed in the Crunch code buffer, and the Carry flag is set. Call the following entry
points for the desired symbols:

46

FARSER

entry point symbol parsed
$38DB '

$38DF , :

$38E3 +

$38E7 -

$38EB
$38EF
$38F3
$38F5 crunch code in A

ot

\-—-';—-..z

$390D-3923 (14605-14627) Check for NOT, +, -
Looks at buffer tor one of the above, and puts it in the Crunch code buffer.

$3924-393A (14628-14650) Check for + or -
Like the above routine, except it does not look for NOT.

$393B-3952 (14651-14674) Check and Parse data
Checks for any signs by calling $390D, and then calls the next routine to parse the
data.

$3952-397B (14675-14715) Parse data

Parses any type of number or string. If B=1, then it jumps to $3D25. if B=0, then it
jumps to $3C23. If a quote is found, then it jumps to $3DD2. If a (" is found, then it
parses the next type of data, as long as it ends with a ")".

$397C-3995 (14716-14741) Parse secondary words

This routine scans the Secondary word table to see if the next byte in the Input
buffer is a secondary word. Ifitis, the token is put in the Crunch code buffer, and
the Carry flag is set.

$3996-39A2 (14742-14754) Table of math priorities
The pricrities of the secondary words from + to OR are stored here.

$39A3-39B8 (14755-14776) Print "lllegal Equation”
Prints the message, and returns to the Central loop.

$39B9-3A16 (14777-14870) Equation evaluation in parsing
Steps through the equation, and puts the crunch code into the buffer, following the
equation as it does so.

$3A17-3A78 (14871-14968) Parse equation

Call $3A17 for numeric equations without error messages, $3A1B for errors. Call
$3A32 for string equations without errors, and $3A36 to check for errors. The

47

PARSER
Crunch code buffer is filled with the parsed equaticn.
$3A79-3A7F (14969-14975) Parse WAIT

$3A80-3A8E (14976-14990) Parse DRAW
Checks for "AT x,y".

$3A8F-3AAB (14991-15019) Parse FOR
Checks for a numeric variable and equation.

$3AAC-3ABA (15020-15034) Parse LET
Checks for a varaible, "=", and an equation.

$3ABB-3AF4 (15035-15092) Parse IF
Checks for "GOTO", "THEN", and commands following them.

$3AFS-3AFD (15093-15101) Parse FOR
Checks for "STEP",

$3AFE-3B14 (15102-15124) Parse HPLOT
Checks for "TO x,y".

$3B815-3B53 (15125-15187) Parse DEF
Looks for "FN", and continues at $3A8F to parse equation.

$3B54-3B7F (15188-15231) Parse ON
Checks for "GOTO" or "GOSUB*, followed by a series of line numbers and commas.

$3B80-3B8A (15232-15242) Parse RUN
Looks for a word or line number following the RUN.

$3B8B-3BCA (15243-15306) Parse LIST, DEL
Checks for a line number, *," or *-* followed by anocther line number.

$3BCB-3BEA (15307-15338) Parse variable type

A is loaded with the variable type: $20 for strings, $10 for integers, 0 for floating
point. If a "(" is found, then 8 is added to the type (e.g., an integer array has a
variable type of $18).

$3BEB-3C9B (15339-15515) Parse variable

It the variable name is a command, then an error is given. $3BCB is called to get
the variable type. If the variable is new, itis placed in the temporary variable stri ng
for later entry.

48

PARSER

$3C9C-3CB6 (15516-15542) Parse dimensioned variables
Checks for a "(" and commas.

$3CB7-3CDB (15543-15579) Parse INPUT
Sees if a line number is present and then falls into parsing NEXT, REM and DIM.

$3CDC-3D12 (15580-15634) Parse PRINT

$3D13-3D8B (15635-15755) Parse number
Puts the number into one of the numeric formats for the crunch code.

$3D8C-3DC5 (15756-15813) Parse line number
Used by GOTO or GOSUB to format a line number.

$3DC6-3E1D (15814-15901) Parse DATA, REM, or quotes

REM and DATA are parsed as $90 type , and quotes are $91. This is where the
Data-Bump-Bug criginates. When you run the cursor over the DATA line, or one is
LOADed in, this routine adds an extra space at the beginning of the data. To fix
this, simply add the following fine in your HELLO program: 10 POKE 15830.8:
POKE 15831, 55: POKE 15832, 19: POKE 15824, 216.

$3E1E-3E26 (15902-15910) Parse =
Prints "lllegal Command" if an error occurs.

$3E27-3E35 (15911-15925) Parse :

$3E36-3E42 (15926-15938) Parse =
Prints " '=" expected" if an error occurs.

$3E43-3E4D (15939-15949) Parse
$3E4E-3E5A (15950-15962) Parse #
$3E5B-3E68 (15963-15976) Parse TO
$3E63-3E76 (15977-15990) Parse AT
$3E77-3E86 (15991-16006) Parse GOTO

$3EB7-3E9C (16007-16028) Print errors
Prints "Line Number” or ":"+" Expected”.

$3ESD-3EAZ2 (16029-16034) Boot routine
This is the routine jumped to when BASIC is first loaded from a tape or disk. It calls

48

PARSER

a routine at $4061, which is later written over as an Input buffer as you use BASIC.

This routine sets up pointers and looks for a HELLO program. It then falls through
to the next routine, the Central loop.

$3EA3-3EDS8 (16035-16088) Central loop

This is the immediate mode loop, which is the "heart” of BASIC. Some routines
jump to $3EAS, which resets the stack, while other routines jump to $3EAS, which
keeps the stack intact. The Central loop prints a return, a prompt, and calls the
routine to read the keyboard. |f the typed in line has a line number, then it parses
the line, and enters it into the Crunch code table. Otherwise, the line is assumed to
be an immediate command, and, after parsing, the command is called without
moving the crunch code from the Crunch code buffer into the Crunch code table.
For a complete description of the Central loop, see chapter 1.

50

Chapter 7: Data table

A mass of pointers, vectors and other varying data is stored here. Though it
contains many types of data, it can generally be broken down into smaller sections
as follows: program pointers ($3ED9), math and FPA data ($3F17), input and
output vectors ($3F43), Input and Crunch code buffers ($3F75), graphics data
($417B), tape or file data ($4194), screen data ($4239), and the control-d pointers
($4278). This organization helps in both understanding the table and being able to
find the pointers you want in it,

The majority of the space is taken up by two byte pointers and vectors. These
are likely to be the most interesting or useful to you, the programmer. For instance,
by POKing to them you can change the size of the screen or create your own output
routines. By PEEKing them you can look for a variable or know the current color or
speed. If you use your own pointers (e.g., in & new command), you can use spaces
like the one at $3F09, though they must not be permanent, because other routines
also temporarily use these areas. This is useful when you are pressed for space,
but when free RAM is no problem, it is safer and easier to keep them elsewhere.

$3ED9 (16089) Pointer to start of Line number table

$3EDB (16091) Number of [ine numbers

$3EDD (16093) Length of Line number table

$3EDF (16095) Pointer to start of Variable table (LOMEM)

$3EE1 (16097) Pointer to end of Variable table

$3EES3 (16099) Pointer to end of Variable command narme table

$3EES5 (16101) Pointer to start of Crunch code table

$3EE7 (16103) Pointer to end of Crunch code bufifer

$3EE9 (16105) Pointer to the string of new variables

When the Parser parses a line, it puts all the variables that haven't already been
used in a previous line into string pointed to by this location. After it parses the

line, it goes back and enters each variable into the Variable table.

$3EEB (16107) Number of variables

o1

DATATABLE

$3EED (16109) Pointer to start of Variable value table

This pointer points to the beginning of the table that stores the values of all the
numeric variables. It also is a temporary place for other values that are used during
execution, o som‘etimes it is simply called the Value table.

$3EEF (16111) Pointer to end of String space

$3EF1 (16113) Temporary pointer to end of String space

$3EF3 (16115) Pointer to start of String space

$3EF5 (16117) Pointer to current DATA line number

$3EF7 (16119) Pointer to current DATA crunch code

$3EFS (16121) Number of remaining bytes in DATA crunch code

$3EFA (16122) Storage of DE for CONT

$3EFC (16124) Storage of HL’ for CONT

$3EFE (16126} Line number for ONERR

$3F00 (16128) Command error number
This is the offset that is used to print errors. It does not include parse or tape errors.

$3F01 (16129) Current SPEED

$3F02 (16130) Vector to USR routine

$3F04 (16132) Vector to & (ampersand) routine
$3F06 (16134) ASCIl code for break (ctrl-¢)

$3F07 (16135) ASCII code for pause (ctri-s)

$3F08 (16136) Indicator of pause

$3F09 (16137) Temporary storage area

$3F14 (16148) ASCII code for indenting line numbers

This is used by LIST to indent the line number of the program. The default code is
a space (32).

52

DATATABLE
$3F15 (16149) Pointer to POKE limit
$3F17 (16151) Sign for the result of operations
$3F18 (16152) Temporary FPA data and pointers
$3F1E (16158) FPA1 data used in division
$3F21 (16161) FPA1 status byte
if the byte is 0, then the FPAT1 is a floating point number, otherwise, it means the
FPA1 is pointing to a string.
$3F22 (16162) FPA1 mantissa and exponent
$3F27 (16167) FPA2 data used in divsion

$3F2A (16170) FPA2 status byte
0= floating point number, 0 means FPA2 points to a string.

$3F2B (16171) FPA2 mantissa and exponent

$3F30 (16176) Maximum width of printer line

$3F31 (16177) Position of head on printer

$3F32 (16178) Temporary FPA for Sin, Cos, etc

$3F37 (16183) Temporary FPA for calculations

$3F3E (16190) Random seed number

$3F42 (16194) Sign of floating point numbers

This is iike the pointer at $3F17, but this temporary storage area is more generic
than the other one.

$3F43 (16195) IN vector used by READ

This pointer stores the old IN vector while READ is using the tape through this
vector. When READ is done, then it changes the IN vector back to its original value.
$3F45 (16197) Vector to recieve data from device (IN)

$3F47 (16199) Storage of PR vector for writing to tape

This is used by the LOAD and WRITE command to "remember" the old vecter while
the command executes. It is similar in function to the pointer at $3F43.

53

DATATABLE

33F48 (16201) Vector to transmit data to device (PR)

$3F4B (16203) Vector to printing on screen

This vector points to the routine that will print the ASCII code in A to the screen
only, without printing it on the printer, etc.

$3F4D (16205) Length of Crunch code buffer

$3F4F (16207) Line number to GOTO, GOSUB, etc.

. Stores the last line number that was jumped to, because it is used by GOTO and
GOSUB to store the line number while it checks the Line number table.

$3F51 (16209) Temporary ASCIl code for line indenting

$3F52 (16210) Null string
This is pointed to by any variable that does not have a string assigned to it yet.

$3F55 (16213) PR vector table

The 8 addresses for each PR routine are stored in increasing order here (e.g.,
PR#0 is the first vector, PR#1 is the second vector and the others are the same as
PR#0). '

$3F65 (16229) IN vector table
Like the PR vector table, only the 8 addresses vector the IN routines.

$3F75 (16245) Maximum length of Input buffer ($80)

$3F76 (16246) Length of Input buffer

$3F77 (16247) input buffer

The Input buffer is where the Central loop places the line typed in on the keyboard.
All characters are in ASCII form, with the end indicated by a 0.

$4076 (16502) Length of Crunch code buffer

$4077 (16503) Crunch code buffer

This is where the parser places the crunch coded line of input. If the line is meant
for a program, then this buffer is copied into the Crunch code table. it ends with a 0.
$417B (16763) Coordinates of last plotted hi-res point

$417D (16765) Current SCALE

$417E (16766) Pointer to shape table

54

DATATABLE

$4180 (16768) Used for DRAWing and ROTating

$4188 (16776) Current COLOR

$4189 (16777) Current HCOLOR

$418A (16778) PDL buffer

Contains the following data from the last PDL command: joystick, right button, left
butten, keypad, spinner. The data of the second paddle follows that of the first.
$4194 (16788) Binary file header data

Consists of the following data needed for the beginning of binary files: 1,0,2,
followed by the address of the binary file in RAM.

$4197 (16791) Address of file in RAM

$4199 (16793) Length of file

$419D (16796) Temporary name of file in first file buffer

$41A9 (16809) Temporary name of file in second file buffer

$41B5 (16821) Device number for drive

$41B6 (16822) Temporary storage for files
Used by the tape routines to hold file numbers and data temporarily.

$41BD (16829) Vector to NO/MON |

$41BF (16831) Vector to NO/MON C

$41C1 (16833) Vector to NO/MCON L

$41C3 (16835) Vector to NO/MON O

$41C5 (16837) Header for first file buffer

This is in the format: mode (A), file number (B), FCB address, iength, address of

name, 0,0.

$41CF (16847) Header for second file butfer
Same format as the above buffer.

$41D9 (16857) Name and length of first file buffer

53

DATATABLE

$41E7 (16871) Name and length of second file buffer
$41F5 (16885) Complete file entry in directory

$4210 {(16912) Temporary name holder
Used by CATALOG and APPEND to hold the ASCII names of files.

$4237 (16951) Temporary storage by APPEND

$4239 (16953) ASCII code of cursor

$423A (16954) ASCII code of blank character (space)
$423B (16955) ASCII code of current character

$423C (16956) Left margin for screen

$423D (16957) Right margin for screen

$423E (16958) Top margin for screen

$423F (16959) Bottom margin for screen

$4240 (16960) Buffer for screen routines

$4260 (16992) Unused RAM

$4261 (16993) Number of lines on screen (y) for HOME
$4262 (16994) Number of columns on screen (x) for HOME
$4263 (16995) Starting column number for HOME
$4264 (16996) Starting line number for HOME

$4265 (16997) Address in VRAM of Name table

$4267 (16999) Address in VRAM of Pattern table
$4269 (17001) Current line (y) position of cursor

$426A (17002) Current column (x) position of cursor

$426B (17003) Current input byte

56

DATATABLE

This is the last ASCII byte read from the keyboard or tape.
$426C (17004) ASCII base

$426D (17005) Blinking cursor indicator
0 indicates the cursor is blinking, #0 means the cursor does not blink.

$426E (17006) ASCII base for cursor

$426F (17007) Current Name table

$OF means the first Name table in VRAM is being used, $FF indicates the second
Name table is in use.

$4270 (17008) Current screen or graphics mode
This location holds the current screen mode. 0=TEXT, 1=GR, 2=HGR, 3=HGR2.

$4271 (17009) Print character indicator
$FF means the characters are printed on screen, 0= they are not.

$4272 (17010) Flash character indicator
$FF means some characters are flashed, while 0 means they are not being flashed.

$4273 (17011) Frequency of flashing
$4274 (17012) VRAM address of Name table for flashing

$4276 (17014) Ctri-d indicator
O= no ctrl-d was pressed. 4= ctrl-d was pressed or printed.

$4277 (17015) Temporary storage of output

$4278 (17016) Length of Ctri-d buffer

$4279 (17017) Ctrl-d buffer

The print routine places all characters to be printed into this buffer if it encounters a

ctri-d. It ends when a "return” (13) ASCIl is printed.

$4280 (17040) Pointer to Ctri-d bufier
This pointer points to the current position in the Ctri-d buffer.

$4292 (17042) Temporary pointer to file names

$4294 (17044) Pointer to default file name
Points to the strings "$$$$1" or "$$$$2".

97

Chapter 8: Screen routines

The screen routines consist of the lo-res GR routines, the TEXT routine, and
the routines that print characters on the video display. They do not handle printing
to the printer or other device other than VRAM. The most important routines in this
chapter are the ones at $4296, because it sets up the TEXT mode and is fun to
change, $4352, because it calls ail the other routines to print the character in A on
the screen, $437B, because it loops until you press a key, flashing the cursor while
it scans the keyboard, and $48B1, because it sets up the needed table in VRAM for
GR. Other routines, like the Scroll screen routine at $46C0, are also interesting
because they let you do things not easily attainable in a BASIC program.

While BASIC does not implement it, the Video Display Processor in Adam is
capable of 40 columns of text. The reason why Coleco did not use it for the TEXT
mode is unknown to me, because they wanted to keep compatability with Apple,
which has 40 columns. But in case you wish to have 40 columns, a program in
Chapter 11 lets you do this, even though it can't change the number of columns in
GR or HGR.

$4296-4349 (17046-17225) Set TEXT

Called by TEXT to set up the video registers and VRAM with graphics mode 1. To
change the color of the TEXT screen, POKE 17115 with the color of the foreground
(pixel set) being in the top nibble, and the background (pixel off) color in the bottom
nibble. For changing this routine to 40 columns, see chapter 11.

$434A-4351 (17226-17233) Pattern of a character
The pattern of character number $1F is replaced with the pattern stored here by the
Set TEXT routine.

$4352-437A (17234-17274) Print character
This routine prints the character whose ASCllis in A. Control codes are printed if
needed, along with scrolling and updating the cursor's position.

$437B-43B5 (17275-17333) Read keyboard

Reads the keyboard until a key is pressed, flashing the cursor when necessary.
The rate of the cursor's flashing is stored at $438A and $438B. The default rate is
$400.

$43B6-43EC (17334-17388) Init screen

In: B=number of columns, C=number of fines, D=top coiumn, E=top line,
HL=address of Name table in VRAM, A=address of Pattern table lo, A'=address of

58

SCREEN ROUTINES

Pattern table hi. Moves the data in the registers to page $42 to set up the screen
for printing.

$43ED-43F3 (17389-17395) Reset ($4271)to 0

$43F4-4407 (17396-17415) Print cursor
Prints the $7F or $FF character depending on the cursor's position.

$4408-4427 (17416-17447) Print with control characters

This routine checks for control characters before printing the ASCII character in A.
It a contol code is in A, then the routine to print the code is called depending upon
the table at $4791. It falls through to the next routine if the characterin Ais not a

control code.

$4428-44CA (17448-17610) Print without control characters
Prints the charcter in A on scresen without checking for control codes.

$44CB-4639 (17611-17977) Control printing routines

The routines to print control code are gathered here according to the table at
$4791,

$463A-464E (17978-17998) Clear buffer
Loads the $20 byte buffer at $4240 with the clear character ($423A).

$464F-467E (17999-18046) Clear screen

In: H=starting column, L=starting line, B=number of lines to clear. Loads both
Name tables in VRAM with the clear character.

$467F-46A4 (18047-18084) Clear rest of line
Clears the remainder of the line, and writes it to VRAM.

$46A5-46BF (18085-18111) Read rest of line
Moves ASCII from VRAM to $4240 until the end of the line is reached.

$46C0-4714 (18112-18196) Scroll screen
Moves all lines up one position, filling the last line with the clear ASCIL.

$4715-4745 (18197-18245) Update cursor
Flashes the cursor by erasing the cursor character in the first Name table.

$4746-4759 (18246-18265) Read character from screen
The character at x,y ($4269) is read into $423B.

59

SCREEN ROUTINES

$475A-476F (18266-18287) Calculate Name table position -

In: H=column position (x), L=y. Calculates the address in VRAM of an x,y location
for reading or writing by loading DE with y*32+x+base address of Name table in
VRAM.

$4770-477F (18288-18303) Calculate pattern position
In: A=pattern number. Sets DE up like above except it points to the position in the
Pattern table in VRAM, and BC=8.

$4780-4790 (18304-18320) Table of control ASCII
This table contains the ASCIl codes of all the characters that require special
printing routines. They are in the reverse order of the next table.

$4791-47B2 (18321-18354) Table of control addresses
The vectors of all of the following control characters are stored here:

address of routine ASCI| character
$47CB ctri-p

$457A delete

$4542 insert

$44AD ctrl-i, tab

$450A right arrow

$4526 left arrow, ctrl-h, backspace
$44D9 ctrl-d, down arrow
$44FA up arrow

$45F1 ctri-/

$45CD ctrl-x

$4619 ctrl-g

$45C4 home

$45B2 ctri-1

$44CB ctrl-m, return

$47B3-47CA (18355-18378) Calculate relative position
Loads DE with the cursor's distance from the edges of the window.

$47CB-4814 (18379-18452) Print control-p
Prints the rest of the line on the printer and on the screen.

$4815-483B (18453-18491) TEXT
Checks to see if the cursor ($4239) and the clear {$423A) characters are ASCIL. it
then calls $4296 to set up VRAM and set the mode pointer {($4270) to 0.

$483C-4883 (18492-18563) GR
Sets the mode byte to 1, and calls $48B1 to set up the VRAM tables.

60

SCREEN ROUTINES

$4884-489B (18564-18587) Lo-res block
This table of character patterns creates the 6x4 lo-res blocks for VRAM.

$489C-48B0 (18588-18608) GR video addresses
Contains the following data for the GR VRAM tables and registers (reg. 0=02, reg.
7=01): |

$1F80 Sprite attribute table
$3800 Sprite pattern table
$1800 Name table

$2000 Pattern table

$0000 Color table

$48B1-4927 (18609-18727) Set GR
Called by GR to move the lo-res blocks into VRAM and set up the other tables and
registers accerding to the above tables.

$4928-492E (18728-18734) Put HCOLOR
In: C=Coleco color. Calis $4936 to translate Coleco color into T color, and puts it
in $4189.

$492F-4935 (18735-18741) Put COLOR
Same as above, except the Tl color is put in $4188.

$4936-4942 (18742-18754) Get color
Call $4936 for HCOLOR, $4938 for COLOR. Translates the Coleco color to T! form
and puts the colorin A,

1

$4943-494C (18755-18764) Translate color
In: A=Tl color. Translates the Tl color into Coleco color, putting it in A,

$494D-495C (18765-18780) HCOLOR table
Ti color numbers in order of COLECO hi-res color scheme.

$495D-496C (18781-18796) Color table
T! color numbers in order of COLOR numbers.

$496D-49F3 (18797-18931) Plot HLIN
The actual entry point is at $497A. It sets the color bytes in VRAM to the current
COLOR, Iocping until the end of the horizontal line is reached.

$49F4-4A95 (18932-19093) Plot VLIN

The entry point is at $49FC. It plots the vertical line by setting the color bytes of the
blocks to the current color.

61

SCREEN ROUTINES

$4A96-4AF2 (19094-19186) PLOT point
$4ASE is the entry point. Sets the color bytes in VRAM to the current COLOR to plot
the point.

$4AF3-4B3F (19187-19263) Do SCRN
The entry point is at $4AFB. Loads A with the color of the lo-res block pointed to by
B (x), and C (y).

$4B40-4B56 (19264-19286) Read foreground color
In: DE=address in VRAM to be read. It loads A with the top nibble (foreground) of
the byte pointed to by DE.

$4B57-4B67 (19287-19303) Read background color
Similar to the above routine, only it loads A with the bottom nibble.

$4B68-4B72 (19304-19314) Home screen
Checks to make sure the mode is not HGR2, and prints the ASCII 0C (home).

$4B73-4B85 (19315-19333) Load video registers with address

Loads the table pointed to by HL into the desired video ragisters, looping until the
table is over. The table is in the format: register number, address byte lo, address
byte high. It ends with an $FF as the register. The diagram on the following page
shows a table of some sample data for this and the next routine.

$4BB6-4B93 (19334-19347) Load video registers
Same as the above routine, only that the table is in the format of register number
and then the desired contents of that register, instead of an address.

$4B94-4BAF (19348-19375) Calculate GR offsets

In: B=x, C=y. Loads E with the offset from the right side (6x+8), and D with the
offset from the top of the screen (y/2). A=the type of block.

62

SCREEN ROUTINES

Table for table addresses

table for_register data 00}~ table #0 (Sprite name table)
: %—j address of table
00— register #0 L :
02 _|— data for register go table #1 (Sprite pattern table)
07__|— register #7 =g 1] address of table
01— data for register L
FF |- endoftable gg table #2 (Name 1able}
: o] address of table

H — end of table

Dlagram of some sample data for the register tables

$4BBO-4BDE (19376-19422) Plot top block

Sets the top nibble of the color byte peinted to by DE in VRAM to the current color,
thus plotting the top GR block.

$4BDF-4COE (19423-19470) Piot bottom block
Like the above routine, only it sets the bottom nibble to the current color.

63

Chapter 9: Tape routines

The tape routines and commands provide you with a way of storing your
programs on a taps, disk, or other device. Changing the device is possible by
poking the device number to $41BS (e.g., "POKE 16821, 4" makes the first disk
drive the device). As explained in chapter 1, the commands can normally be
accessed in either the immediate mode or the program by using ctri-d. After a tape
command is typed in the immediate mode, the routine at $4DAC is called. That
routine sorts out which command it is and what to call in order to execute it. It
compares the command to the words in the ASCII table at $4EAA. If no match is
found, it returns to print an error. But if a match is found, then the corresponding
vector in a table at $4F4F is called. This vector routine, which is in a jump table at
$4EQ3, checks for "lilegal Form Of OS Command” errors before and after the
command's execution. It also calls the actuai execution routirie of the command.
Since a tape command's syntax is usually short and rather simple, the execution
routine itself can get parameters from the input buffer, and so no parse routine is
needed.

The path a tape command follows from a program is very similar to the
immediate mode tape word. The differences are in the compare routine (at
$4COF), the vector table ($4F73), and the jump table (at $4CED, checking for
"Syntax” errors).

The process of adding a new tape command is similar to adding a normal
command, only no parse routine is needed, and you must change the execution
address of the old routine in two tables ($4CED and $4E03) instead of only one
($1917). Besides adding new commands, you can also change the ASCII of old
commands (e.g., "LOAD" can be "DAOL") or errors (e.g., "l/O Error" can be "Bad
Tape!™).

$4COF-4CEC (19471-19692) Print with tape check

In: A=ASCII of character to print. If A=04 (ctrl-d), then all the ASCII that it gets after
it is put into the Ctri-d buffer at $4279, until a retum ASClII is given. It then looks up
the first word in the Ctrl-d buffer in a table at $4EAA and that vector is called. [f
A=04, it prints the character on the screen, checking the keyboard for pause or
break.

$4CED-4DAB (19693-19883) Ctri-d tape routines

The tape commands which can be used in programs with the ctrl-d are gathered
here to check for errors before and after the command's execution. This group of

64

TAPE ROUTINES

routines, along with the immediate group of routines at $4E03 are outlined in the
following table, listing the command's entry point and actual routine address:

name ctri-d imm, routine
CATALOG $4CED $4E03 $5298
DELETE $4CF5 $4EOF $4F2A
RENAME $4D00 $4E21 $4FF5
LOCK $4D07 - $4E28 $50A1
UNLOCK $4DOE $4E2F $50A0
BSAVE $4D15 $4E36 $5171
BLOAD $4D1C $4E3D $5201
BRUN $4D23 $4E44 $5294
CLOSE $4D2A $4E4B $6024
MON $4D31 $4E52 $5A07
NOMON $4D38 $4E59 $5A02
LOAD $4D3F $4E60 $5DA8
SAVE $4D46 $4E67 $5D05
OPEN $4D4D - $5FB1
APPEND $4D54 - $53E5
WRITE $4D5SB - $57B7
READ $4D62 - $5621
POSITION $4D69 - $54D3
PR $4D70 - $61686
IN $4D77 - $616F
FP $4D7F $4E6E $4FC3
INT $4D88 $4E77 $4FCO
INIT $4D91 $4E80 $62B3
RUN $409A $4E89 $5DCC
RECOVER $4DA3 $4E92 $5034

$4DAC-4E02 (19884-19970) Immediate mode tape checker
This routine is called when a normai match for an immediate command is not
found, or the command is not in variable form. It looks in the table at $4E9F for the

command, ignoring commands only used in programs (OPEN, APPEND, etc.), and
calls the vector of the routine.

$4E03-4E9A (19971-20123) Immediate tape routines

This group of command routines are together for error checking. ltis like the ctrl-d
routines (34CED) in that they both call the same routine for the command, differing
in their error printing or checking. For this reason, the entry points are listed in the
above table with the ctrl-d entry points.

$4E9B-4EA9 (20124-20137) First letters of commands
The first letters (ASCII) of all the tape routines are stored here.

$4EAA-4F4E (20138-20302) Table of tape command ASCII

65

TAPE ROUTINES

The ASCIl names of all the tape commands are stored here in the format: number
of letters in command, ASCII of command, offset into vector table. !t starts with
OPEN to IN, and then CATALOG to RUN, thus setting apart the immediate mode
commands from the ctrl-d commands.

$4F4F-4F72 (20303-20338) Vectors of immediate commands
This table consists of the vectors of the immediate commands starting from
CATALOG to RECOVER.

$4F73-4FA4 (20339-20388) Vectors of ctrl-d commands
This table is similar to the above one, except it starts at OPEN and goes to
RECOVER, and they vector the ctri-d commands.

$4FAS5-4FBF (20389-20415) Tape error ASCII
The ASCII of "lllegal Form Of OS Command", preceded by its length, is stored here.

$4FC0-4FC9 (20416-20425) FP or INT

Call $4FCO0 for FP, and $4FC3 for INT. This routine replaces the prompt with a '>'
for INT, and a '] for FP. These commands were included to provide compatability
to Apple’s Integer or Floating Point BASICs.

$4FCA-4FF4 (20426-20468) DELETE
Calls $FCE1 to delete the file, which can be either an ‘A’ or 'H' file, on any drive
and with the name pointed to by DE.

$4FF5-5033 (20469-20531) RENAME
Calls $FCDE to rename the file on any drive with the names pointed to by DE.

$5034-509F (20532-20639) RECOVER
Makes an 'a’ or 'h' file into a A’ or 'H' file. This routine has a bug: it does not
recover binary files. To change this, POKE 20619,72.

$50A0-50F9 (20640-20729) LOCK or UNLOCK
Calt $50A0 for UNLOCK, $50A1 for LOCK. Sets the write protect bit of the file's
attribute byte on or off, and sets the permanent bit off.

$50FA-5170 (20720-20848) Get address or length

Call $50F A for length, $50FD for address. Checks the buffer pointed to by DE for a
comma, an 'L’ or 'A’, and a decimal or hexidecimal number. $4197 is loaded with
the address, and $4198 with the length.

$5171-5200 (20848-20992) BSAVE

Creates a file consisting of the following: length of header high (1), length of
header lo (0), type of file (2}, address of file in RAM lo, high, binary data from the
given address with a given length.

66

TAPE ROUTINES

$5201-5293 (20993-21139) BLOAD
Opens and loads in the binary file from any drive into the wanted address, or to the
original address of the file.

$5294-5297 (21140-21143) BRUN
Calls $5201 to load the binary file, and then it jumps to the beginning of the file, so
no return is expected from the fils.

$5298-5352 (21144-21330) CATALOG

Reads the first block on the tape or disk to get the directory. It calls $5353 to print
"Volume:", and the name of the tape. !t then prints the files in order if they are not
deleted (bit 2 set), or it is not a system file (bit 3 set). If bit 0 of the attribute byte is
set, then the directory is over, and the number of free blocks on the tape is printed.

$5353-5367 (21331-21351) Print tape or disk name

Prints the string at $53C4 ("Volume:"), and the name of the tape or disk, which is
stored $41F5.

$5368-5397 (21352-21399) Print file data
Prints the following from the directory entry at $41F5: a space, the lock status, the
file type, length of file, a space, and the file name.

$5398-53A4 (21400-21412) Print lock status
Prints an asterisk (*) if bit 7 of the attribute byte ($4201) is set.

$53A5-53C3 (21413-21443) Read file name
Moves the name pointed to by HL to the buffer at $4210. It ends when an 03
character is reached, or the name is $C characters long.

$53C4-53E4 (21444-21476) Words for directory
$53C4=the ASCII for "DIRECTORY". $53CE="Volume:". $53D7="8Blocks free".

$53E5-54D2 (21477-21714) APPEND

Opens a file, whose name is pointed to by DE, and skips to the end of it for further
writing. It then sets up the Print screen vector to Write to tape, so that any
characters printed will be set to the file.

$540D3-554E (21715-21838) POSITION
Opens a file and skips to the record number pointed to by DE. Records are
separated by a return chatacter.

$554F-5552 (21839-21842) Write to tape

This routine is called when a character is meant to be printed on screen, but it is
written to the tape or disk for a file. It jumps to NO/MON O.

67

TAPE ROUTINES

$5553-5556 (21843-21846) Read from tape
Similar to the above routine, only it jumps to NO/MON | to read the tape.

$5557-555F (21847-21855) MON |
Reads a character from the tape into A, and prints it on the screen.

$5560-55DC (21856-21980) NOMON or MON O

Entry point for NOMON is at $5572, MON is at $556D. It writes the characterin A to
the tape, and updates the length of the file. If MON O was called, the character is
also printed on the screen.

$55DD-5620 (21981-22048) NOMON |
Reads a character from the tape into A and updates the file pointers.

$5621-57B6 (22049-22454) READ

Checks the buffer pointed to by DE for a file name, and optional record number or
length of records. It then skips to the desired record in the file, and changes the
input vector to Read from tape ($5553) to get a character from tape instead of the
keyboard.

$57B7-598A (22455-22922) WRITE
Like the above routine, except it changes the Print vector to Write to tape ($554F) to
fill a file instead of only being printed on the screen.

$588B-5A01 (22923-23041) Check for record number or length
Looks for an upper or lower case 'B' or 'R’ at the buffer pointed to by DE, and, if
either is found, loads HL with the 'B' number, and DE with 'R".

$5A02-5ABE (23042-23230) NOMON or MON
Entry point for MON is at $5A07, NOMON is at $5A02. It looks for any of the
following letters, and, depending on the command, makes the following changes:

letter vector MON NOMON

C $41BD $4BF8 $5AAQ (a return)
| $41BF $58557 $55DD

O $41C1 $556D $5572

L $41C3 $4352 $SAAS

$5ABF-5ADO0 (23231-23248) Legal file ASCII
A list of acceptable ASCII for file names is stored here.

$5AD1-5ADE (23249-23262) Default file names
The ASCIl for "$$$$1" is stored at $5AD1, and "$$$$2" is at $5ADS.

$5ADF-5AEE (23263-23278) Drive to device table

68

TAPE ROUTINES

The ASCII characters for S, V, and D are stored at $5ADF, $5AE2 stores all the
combinations of these three characters, and the following table at $5AE9 matches
a drive number to its device number:

1 $08 4 $19
2 $18 5 $04
3 $09 6 $05

$SAEF-5B07 (23279-23303) Check ASCH of file name
Sets the Carry flag if the character pointed to by DE is a letter, number, or one of
the legal ASCII characters stored at $5ABF.

$5B08-5B1B (23304-23323) Get second file name

Looks for a comma, and falls through to the next routine, putting the name at
$41A9.

$5B1C-5B43 (23324-23363) Get first file name
Calls S5AEF to see if the ASCI! pointed to by DE is legal, and if it is, then the name
is moved to $419D, adding an 'A' and 03 on the end of it.

$5B44-5BB4 (23364-23476) Get drive number
Locks at the buffer pointed to by DE to check foran S, V, or D. {f one is found, the

number after it is placed in the current drive pointer ($41B5). The Carry flag is also
set if this occurs.

$5BB5-5BCO (23477-23488) Skip over file name
This routine skips over the name of the file pointed to by HL. The ending of the
name is shown by an 03. HL is then pointed to the end of the name.

$5BC1-5BCF (23489-23503) Change file type

The entry point for the buffer at $41A9 is at $5BC1, and call $5BCS for the buffer at
$419D. This routine skips over the name in the wanted buffer, and changes the file
type to the ASCII code in A.

$5BD0-5BEOD (23504-23520) Look for default name

It either default names ("$$$$1" or "$$$$2") are found in the FCB, then the Zero flag
is reset, otherwise the "No Buffer Available” error is printed.

$5BE1-5C52 (23521-23634) Skip over header on tape

If the file in the buffer at $418D is an 'A' file, then it returns, because normal
programs don't have a header. If the file is an 'H' file, then it moves the tape over
the header, and returns.

$5C53-5CD8 (23635-23768) Update file backups
In: A=ASCII of new file type. It checks the directory for any old 'A’ or 'H' files,

69

TAPE ROUTINES

renames them to 'a’ or 'h’ files, delsting any old 'a’ or 'i’ files, and saves the new
‘A’ or 'H' file.

$5CD9-5CF3 (23769-23795) Read one byte from tape '
Reads one byte from the device pointed to by $41B6 into A, setting Zero flag if the
file being read is over.

$5CF4-5D04 (23796-23812) Write one byte
Sends the byte in A to the device pointed to by $41B7.

$5D0S5-5D7E (23813-23934) SAVE

Gets the name of the file from the buffer pointed to by DE. It then calls $6277 to see
how long the file will be, and Makes the file. $5F23 is called to write the program to
the tape, after which it updates any backups.

$5D7F-5DA7 (23935-23975) Input routine for LOAD

This routine is called by 'Input line' to read a byte from the tape instead of the
keyboard. It calls $5CD9 to read ona byte into A. If the file is over, it restores the
original pointers and closes the file.

$5DA8-5DF5 (23976-24053) LOAD or RUN

LOAD is at $5DA8, and RUN is at $5DCC. It opens the file whose name is pointed
to by DE, and redirects the vectors for 'Input line’, etc. so that they read the tape
instead of the keyboard. To load a new program without erasing the old one,
simply POKE 24010,163: POKE 24011,62. See chapter 11 for more information on
this change.

$5DF6-5E22 (24054-24098) Input routine for RUN

Similar to the Input routine for LOAD at $5D7F, except it jumps to RUN when the file
is over.

$5E23-5E3D (24099-24125) Write program to tape
Used by SAVE to write a program to the tape. It calls $3493 to print the program,
only the SAVE routine changes the vector so the file goes to tape.

$SE3E-5EES8 (24126-24296) File error table

The strings printed when an error occurs are stored here in the format: length of
string, and the string. The following table lists the error numbers, the address to
print the error, and the errors.

70

TAPE ROUTINES

Error # Address Error

$01 $5F0A Range Error

$02 $5F0D Write Protected

$03 $5F10 End of Data

$04 -

$05 $5F13 File Not Found

$06 VO Error

$07 $5F19 No More Room

$08 $5F1C File Locked

$09 $5F1F Syntax Error

$OA $5F22 No Buffers Available
$0B $5F25 File Type Mismatch
$0C -

$0D -

$0E $5F07 Control Buffer Overflow

$SEE9-5F62 (24297-24418) Print file errors

The entry points for certain errors can be seen in the above table. The routine
jumps to the Centrai loop when it is done printing the error.

$5F63-5FB0 (24419-24496) Close files
This routine is called after an error has occured. It restores any read or write
pointers, and closes any file buffers in RAM and on tape.

$5FB1-6023 (24497-24611) OPEN
This routine gets a name and drive from the buffer at DE, and checks to see if the

file already exists. It creates a new one if it doesn't, and sets up the buffers at
$41D9 or $41E7 with the file's name.

$6023-6165 (24612-24933) CLOSE

$6166-616E (24934-24942) PR
This routine is the same as the other PR command at $2F1A.

$616F-6177 (24943-24951) IN
This routine is also like the IN routine at $2F41.

$6178-6193 (24952-24979) Read DE for a number 0-7
Looks at the buffer pointed to by DE to see if the ASCl] is a number from 0 to 7. HL
is loaded with the number if it is.

$6194-61FE (24980-25086) Set up File data buffer
In: HL=pointer to file name, B=mode, A=file number. It finds an empty buffer at

71

TAPE ROUTINES

$41C5 or $41CF, and moves the following data into it: mode, file number, FCB
address, length, length of name.

$61FF-621B (25087-25115) Close File data buffer
Looks for the data buffer containing the file whose number is in B. {f it is found, then
the first byte is set to zero, thus closing it.

$621C-623E (25116-25150) Buffer check
If the name pointed to by HL is not in one of the buffers at $41D9 or $41E7, then the
Carry flag is reset, otherwise, it sets the Carry flag.

$623F-625D (25151-25181) Find File data buffer
Looks for the butfer containing the file whose number is in A. [f it is found, then A is
loaded with the file's mode byte.

$625E-626A (25182-25194) Fill end of File data buffer
It finds the buffer for the file number in A, and loads the last two positions with C
and B.

$626B-6276 (25195-25206) Get length of name
Searches the buffer pointed to by HL for an 03, and loads C with its length.

$6277-6293 (25207-25235) Get length of program

Used by SAVE to see how long a program is. It acts like it will print the program,
but diverts the print routine to $6294 to increment a counter each time a byte is
supposed to be printed. $4197 is loaded with the length.

$6294-62A8 (25236-25256) Increment block counter

This routine increments the 4 byte counter at $4197 to see the length of the
program.

$62A9-62B2 (25257-25266) ASCII for BASIC file name

Contains the ASCII characters for the BASIC program's directory entry on the tape.
$62B3-6309 (25267-25353) INIT

Remakes the directory of the tape in the drive. It makes the first directory entry the
tape’s name, and the second is the 'BOOT program. It does not change a tape
with the BASIC program on it.

$630A-6311 (25354-25361) Set date
Calls $FCD8 to set the date to 13/10/57.This is presumably the birth date of an
author of SmartBASIC.

$6312-6319 (25362-25369) Init's data

$6315 contains the ASCI! characters for "BOOT", and $6312 is the Boot routine (JP
$FCE7).

72

Chapter 10: Graphics

The section of Basic from $631A to $6BOA handles the hi-res graphics and
game paddles. The routines in it are called by the routines in the command section
(chapter 5). The "Hplot' routine in chapter 5 loads the Z80 registers with data from
crunch code and calls the 'Hplot' routine in this chapter to plot the point or line. It
plots a point by changing bits in a special group of memory called VRAM (Video
RAM), in which each bit is a pixel on the screen. Since there is 16K of VRAM and
only about 6K of pixels, there is 10K left over for the storage of color and sprites.

The Tl video chip that handles VRAM organizes each section of data into
tables pointed to by registers in the video chip. These registers are not like the
ones in the Z80, because the video registers can only be written to. Register 0 and
1 hold information concerning the mode the chip is in. Graphics mode 1 is the
TEXT mode, and mode 2 is the GR, HGR, or HGR2 mode. Register 2 points to the
Nams table. Each byte in the Name table corresponds to a region on the screen,
and the number in the table specifies the pattern to be displayed there. Register 3
points to the Color table, which holds the foreground and background colors for
each group of 8 pixels in the pattern table. Register 4 points to the Pattern table.
The Pattern table stores pixels in blocks of 8 (one byte) that form a pattern
displayed on the screen according to the Name table. Register 5 and 6 point to the
Sprite attribute table, which holds the color and position of each sprite, and the
Sprite generator table, which is like the Pattern table in that it stores the shape of
each sprite. For more information, see vol. 1 or chapter 11 for sprites. In mode 1,
the Name table is 768 bytes long. Each entry in the table points to a group of 8
bytes in the Pattern table. Since this allows the ASCII code of a character to point
directly to the entire character pattern, it is used by the TEXT mode. In mode 2, the
name and pattern tables are three times as long as in mode 1. This lets each entry
in the name table point to a separate pattern of 8 bytes, unlike in mode 1, where
patterns have to be reused. Each byte in the Pattern table also has its own
background and foreground colors. This mode is used in GR by loading the
Pattern table with repeating groups of 6 pixels set, 6 off, etc. It has the entries in the
Name table point to separate patterns, and only changes the Color table to plot the
point. A similar setup is used in HGR2, only the patterns and colors are changed to
plot a point. HGR fixes up the ends of the tables from HGR2 to create four lines of
text.

$631A-6343 (25370-25411) HGR2

Sets the mode to HGR2 by leading $4270 with 03. It then calls $6359 to set up the
tables in VRAM.

73

GRAPHICS

$6344-6358 (25412-25432) VRAM addresses for HGR
The table at $6344 lists the address for each kind of VRAM table, as seen below.
The table at $6354 lists immediate data for some video registers.

address table

$1F80 Sprite attribute table
$3800 Sprite generator table
$1800 Name tabie

$2000 Pattern table

$0000 Color table

$6359-638B (25433-25483) Set HGR2

Sets up the video registers according to the above tables, loads the color table with
black foreground and background colors, and erases the pattern table. $66A0 is
finally called to fill the name table.

$638C-6400 (25484-25600) HGR

it sets the mode to HGR by loading $4270 with 02. It then calls $6359 to set up the
tables in VRAM, but when it is returned to, it modifies the name table and the
pattern table to allow four lines of text at the bottom.

$6401-6455(25601-25685) HPLOT x,y

This routine calculates the address in VRAM of the point in B (x) and C (v}, moves
the wanted pattern and color bytes 1o the tables at $661B and $6613, and calls
$6543 to plot the point. It then moves the data back into VRAM by calling $65EF.

$6456-6542 (25686-25922) HPLOT x,y to x1,y1

Entry point for HPLOT TO x,y is at $64C5. This routine takes the two endpoints of a
line (BC to DE) and plots the points in between them. It reads the pattern and color
Dytes from VRAM, plots the line, and writes the data back into VRAM as the line is
plotted.

$6543-65D7 (25923-26071) Plot a point

Checks to make sure the point is on the screen, and the pattern and color bytes are
in the buffers. It then updates the last point plotted byte ($417B). The HCOLOR
byte at $4189 contains both the color and the indicator to either plot the point (bit
7=0), orto erase it (bit 7=1). If it is to be plotted, then the color byte is changed to
the color, and the pattern bytes are changed even if the point will be erased. Note
that it does not write the data back into VRAM.

$65D8-65EE (26072-26094) Calculate offset for patterns

This routine calculates the pattern number of the point, whose x is in B, and y is in
C, in the pattern table.

74

GRAPHICS

$65EF-660A (26095-26122) Write pattern and color
Wirites the 8 byte pattern buffer at $660B to the VRAM address pointed to by BC. It
also writes the color buffer ($6613) to the color table.

$660B-6612 (26123-26130) Pattern buffer
An 8 byte buffer for storing the pattern of a position in VRAM is located here.

$6613-661C (26131-26140) Color buffer
This buffer is like the one above, only it stores a pattern's color bytes. A temporary
pointer used in plotting for VRAM is stored at $661B.

$661D-6626 (26141-26150) INVERSE
Sets $426C to $80, and $426E to 00.

$6627-6632 (26151-26162) NORMAL
Sets $426C and $426E to 0 if it is in TEXT mode.

$6633-6640 (26163-26176) FLASH
Sets $426E to $80, and $426C to Q ifit is in TEXT mode.

$6641-6647 (26177-26183) Do POS
Calls $47B8 to get the cursbr's horizontal position into A.

$6648-664E (26184-26190) Do VPOS
Calls $4788 to get the vertical position intc A.

$664F-666A (26191-26218) Do HTAB
Resets the cursor's horizontal position to the number in C, rounded to the nearest
third position. It wraps around if needed.

$666B-669F (26219-26271) Do VTAB
Sets the cursor's vertical position to the number in C, checking to make sure it is on
the screen.

$66A0-66B8 (26272-26296) Fill name table
Fills the name table in VRAM with 0 to $FF, repeating 3 times, so that each pattern
is pointed to by only one name table position.

$66BC-66CC (26297-26316) Do XDRAW with no x or y
Sets the top bit of $4189 (hcolor) to one, draws the shape by calling $66CD, and
then return $4189 to its criginal value.

$66CD-66DC (26317-26332) Do DRAW with nox ory
Gets the last point plotted ($417B), and draws the shape there.

75

GRAPHICS

$66DD-66E7 (26333-26343) Do SCALE
Puts the new scale number in C to $417D.

$66E8-67CD (26344-26573) Do ROT
Rotates the shapes according to the number in C. It does this by using some data
to switch the shape's pattern.

$67CE-67DB (26574-26587) Default shape table
The default shape table is stored here. It contains the shape used for
demonstrations in the BASIC manual.

$67DC-6903 (26588-26883) Do DRAW
This routine looks up the shape whose number is in E. It then plots the shape by
tracing its steps, using the data at $4180 to help the routine decipher it.

$6904-6917 (26884-26903) Do XDRAW
Like the XDRAW routine at $66B3, only it draws the shape with $67DC.

$6918-6BOE (26904-27406) Do PDL

Calls $FD3E to read the game paddles, then depending upon what is wanted
(joystick, button, etc.), Ais loaded with its status. It uses the buffer at $418A to
store the data from all the paddle options.

76

Chapter 11: BASIC Changes

This chapter summarizes minor fixes for SmartBASIC and gives examples of
how to add your own commands for sprites and sound. SmantBASIC is one of the
best BASICs around. But it has bugs like adding spaces to REM and DATA lines,
or not Recovering ‘' files. In order to fix these bugs, you can either change BASIC
on the tape or disk, or you can Poke changes in after BASIC is booted. Using a
HELLO program makes the changes easy and almost invisible to the user. you
wish to make the changes permanent, run the following program with your BASIC
tape or disk in the drive. The program asks for the drive number, the address you
want to change, and the contents you want the address changed to.

REBM -~-3ASIC-ed.(changes the BASIC tape)---

LOMEM :40000: INPUT "Drive (8=tape, 4=disk)?"; 44
PRINT "Inset BASIC tape or disk into drive"

DATA 62,8,1,0,0,17,0,0,33,48,117,205,243,252,201

FOR x = 0 TO 14: READ d: POKE 29000+x, d: NEXT: POK< 29001, 4d
PRINT: INPUT "Address to change?":; ad

20 INPUT " new contents for address?"; n

30 ad = ad-~-256: ap = INT(ad/l024): ab = ad-ap*1024+30000
40 POKE 29006, ap+2: CALL 29000

50 POKE ab, n: POKXE 29012, 246: CALL 29000

60 RESTORE:; GQTO 5

'_l
G~ bW

BASIC from disk

It you have a disk, you can copy your SmartBASIC from tape to disk with the
Backup program in vol. 1 or any other program that lets you copy BASIC. However,
BASIC still looks for a HELLO program on tape. The program above can be used
to change the device that BASIC looks to for a HELLO program. This lets you put
both BASIC and the HELLO program on disk. The address of the device used to
look for HELLQO is 16641. By using BASIC-ed., you can change it from an 8 to a 4
and whenever you boot BASIC, it will look to the disk for the HELLO program.

Recovering binary files

The tape "Recover” command has a bug that won't let it recover 'h" files. The
Recover routine at $5034 checks to see if the file is an 'a’ file. [f it is, then the
Recover routine changes it to an'A’ file. But if it is an ‘i’ file, the routine changes it
to 'h' instead of 'H'. This is a simple fix, becausa all we have to do is change the
second 'h' to 'H'. The location of the 'h' is 20619, and the ASCII for 'H' is 72, so
Poking 20619,72 allows Recovery of binary files. o

77

DATA bump bug

The routine at $3DC8, which parses DATA and REM statements, has a bug. It
adds a space at the start of your data when you type the line in, run your curser
over it, or load it in from tape or disk. If you are making many updates to a REM or
DATA line, the spaces can pile up, and may push your data off the end. This
destructive bug can be fixed by inciuding the following POKES in your HELLO
program:

POKE 15830,8: POKE 15831,55: POKE 15832,19: POKE 15824,216

Interesting Pokes

The Data table of Chapter 7 stores many important pointers and other
structures. Some of the things stored there are not very interesting, and should not
be changed. Others, like many screen pointers, provide results not possible with
normal commands. You can change the color of the screen, size of the screen, or
the ASCII codes of many chracters displayed on it. A few interesting pointers are
listed below with their address and function.

address function

16853 ASCII code of the cursor (0-255; default=95)

16954 ASCII code of a blank character {default=32)

16956 left margin of the screen {0-31; default=1)

16957 right margin (default=31)

16958 top margin (0-24; default=0 in TEXT, 20 in GR and
HGR)

16959 bottom margin (default=23)

16993 # of line to HOME (detauit=24 in TEXT, 4 in GR and
HGR)

16994 # of columns to HOME (default=30)

16995 top margin for HOME (default=0)

16996 left margin for HOME (default=1)

17001 y position of the cursor (same as VPOS)

17002 x position of the cursor (same as POS)

159 rate of FLASH (default=12)

17115 color of text and background instailed by TEXT

18711 color of text and background in GR

25568 color of text and background in HGR

16134 ASCII code for Break (default=ctri-c)

16135 ASCII code for Pause (default=ctri-s)

16149 Poke limit {2 bytes in lo, hi format)

16148 ASCIl code for indenting lines in LIST (default=32)

16763 coordinates of the last hi-res point plotted (2 bytes)

78

File names

On the Apple Il file names can have spaces. For some unknown reason,
Coleco does not allow file names to have spaces, though file names can have
other non-letter or number ASCIl. A list of these ASC!l codes can be found at
$SABF. If we replace one of these codes with the code for a space, then file names
can include spaces in them. Poking 23240,32 replaces the ASCII character @
($40) with a spacs.

CHAINing programs

The SmantBASIC that came with our first Adam had the command CHAIN,
even though it did not perform its function. [t is used on the Apple Il to load in ane
program over another without erasing the first. This is helpful when you are using
libraries, because you can load in the subroutines that you need for a specific
program. Of course, each subroutine must have unique line numbers, because the
programs are loaded in just as if you were typing them, so a line that has the same
line number as an existing line replaces the old line. The newer SmartBASICs
don’t have the CHAIN command, but the following Pokes change the LOAD
command so that it is like CHAIN:

POKE 24010, 163: POKE 24011,62

in order to remove the changes and have the old LOAD command back, POKE
24010,212 and POKE 24011, 24.

Line numbers

Did you ever wish you could 'GOTO x*10'? It could replace lengthy ON...
GOTO lines with a simple (or complex) equation. The following Pokes let you do
this to both GOTO and GOSUB:

10 DATA 0,0,0,205,3,39,68,77
20 FOR x=0 TO 7: READ d: POKE 8342+x, d: POKE 8437+x, d: NEXT
30 POKE 157586, 195: POKE 15757, 27; POKE 15758, 58

40 Columns

The following program changes the TEXT modse so that it uses 40 columns of
text instead of 31. It does not work in GR, HGR or HGR2, hecause it uses the text
mode on the Video Display Processor. It makes all the needed changes, including
changing the offset calculation routine, the TEXT SETUP routine, and the 40 byte
screen buffer, which is relocated to 28094 below LOMEM. The Poke for changing
the color of the letters and the screen is still at 17115, Sprites cannct be displayed
in this mode because of the VDP's restrictions.

79

JO LOMEM :28400
98 REM ~----40 COLUMNS=w=—-
99 REM ---Poke in TEXT changag--=
110 DATA 1,240,7,205,32,253,24.14,4L.197,229,41

115 DATA 41,193,58,112,66,133,32,1,9,193,201

120 POR 2 = 0 TO 7: READ d: POKE 17114+x, d: NEXT
125 POKE 17177, 192: POKE 17166, 192: PoKE 17983, 40
130 POKE 17215, 240: POKE 17199, 39

135 REM =-~Change offset routine—-—-

140 POR x = 0 TO 14: READ d: POKE 16976+x, d: NEXT
1535 RrEM =-=Change these addresses——-

160 DaTa 17985,18036,18098,18162,18174, 18188, 18401, 18410, 18430
170 FOR x = 1 TO 9: READ y: POKE y, 190: DOKE y+i, 109: SEXT
180 POKE 13272, 20S: POKE 18273, 80: POKE 18274, 66

185 TEXT

Macros

It is possible to have a string of ASCI! printed when you hit a certain key (e.g.,
hitting the 'Store/Get' key prints "LOAD *). The following program lets you have 30
macros (keys that store a string in them), which are stored in buffers at 28203 and
28234. The program predefines some macros for your use, but the real fun is in
making your own macros. To do this, all you have to do is add or change the Data
statements from line 910 and up. The data is in the format: ASCII cods of the key,
string to to be printed. If the string has a '&’ in it, then the next two bytes store an
ASCIl code in hex (e.g., "CATALOG&0D" would print "CATALOG" and a "return” i.e.,

CHR$(13)). The predefined keys and their strings are:

key string

clear NEW

delete DELETE space
print PRINT space
insert &0E

stora/get LOAD space
shift+store/get SAVE space

I CATALOG return
] RUN return

] LIST return

v TEXT return

Vv PR#1 retumn

Vi PR#0 return

80

30 LOMEM 323400
700 REM ==——-MACRQ=~—=
710 REM =---Poka in 'Input line' shanges---
720 9ATA E5,C5,D5,21,38,6E,ED,58,38,6E,78,82,20,1A,CD
725 DATA &9, 2F,%5,21,5A,068,01,1£,00,ED,B89,E1
730 DATA 20,18,11,58,6E,13,1A,47,20,73,0D,20,F3,13,1A
740 DATA 87.,73,23,72,20,05,36,00,28,36,00,01,C1,%1,C9
750 FOR x = 0 TO 56: READ d4%: GOSUR 300Q: POKE x+27407, d4: NEXT
753 POKE 12197, 15%: PoOKE 12198, 107
755 REM =---Poke in macros—-—-—
760 POXE 28221, O: 2OK< 23252, O: mk = 23222:; md = 28253
770 READ a: IF a = 0 THEN 830
1);80 POKE mk, a: mk = mk+1l: RTAD af: FROR x = 1 TQ LEN(a$): 4 = ASC(%LJ&{&*, X,
785 IF 4 = 38 THIN A = 4103 (13, w+l, 2): x = x+3: GOSUB 800
790 POKE md, d: md = md+l: VEXT: POKE md, O0: md = md+i: 307 773
799 REM ---Change hex to dag¢-——
800 3 =0
305 POR { = 2 MO 1 STEP -1
810 j = ASC(MIDS({43, 3-i, 1))
820 IF j > 64 THEN 4 = 3=55
830 IF 3 > 47 THEN J = j-48
840 4 = d+§*1"4: NEXT i: RETURN
850 END
%00 REM ---Praset macros—---
910 DATA 150,NEW,151,0RLETR
915 DATA 149,PRINT ,144,&0E%
320 DATA 147,L0OAD ,155,SAVE
925 DATA 129,CATALOG&0D, 130, RUN&DOD,131,LIST&0OD
930 DATA 132,TEXT&0OD,133,PR#1&0D,134,PR#0&0D
993 DATA O
9993 END

Sound

Volume 1 described the sound chip and gave examples of how to drive it. The
best way to make sounds, howsver, is to have a command in BASIC. The following
program creates such a command, called "Sound®. It starts by Poking the
execution routine intc RAM. After this, line 570 Pokes the new parse address into
the Break command, the command that Sound will replace. This is the part of the
Primary word table's entry that points to the command's parse vectors, which is
what line 573 Pokes in. The parse vectors are in the format: # of vectors, vectors.
Thus the sound command's parse vector entry is 01, 119, 59, Lines 575 and 576
change the Break entry's ASCIl in the Primary word table to ‘SOQUND'. Line 580
changes the execution vector to pgint to the new Sound command. Lines 530 to
807 SETUP the various tables for the Sound command. Locations 1 to 7 in page 0
point to the current note being played for each voice. Locations 9 to 11 store the
note’s number (0 to 9). Locations 17 to 22 point to the latest note entered, and
locations 25 to 27 store that note's number for each voice. Locations 27974 to
28093 is a 120 byte buffer that stores the notes for each voice in the format: length,
frequency lo, frequency hi, volume. Lines 610 to 630 poke in the interrupt routine
that looks at each voice's note after each interrupt and counts the length of notes.
This routine is jumped to when the VDP creates an interrupt. 1t sends out notes to
the scund chip and updates the sound notes and pointers. It seems that the
interrupt routine has a bug of some sort; when the screen is being used for a long
time without typing TEXT(or other mode commands that reset VRAM), it randomly
inserts either text or cursors into VRAM that are displayed on the screen. Don't be
alarmed if suddenly an *h" doesn't look like an "h" anymore, it's only on the screen
and not in your program. If someone finds the problem and sees how to fix it,
please contact me. | think it has to do with the timing of the VDP or the length of
the routine.

The syntax for the command is:

81

CHANGES

SOUND [voice 1-3], [length 0-255], [pitch 0-1023], [volume 0-15]

For the length of notes, the higher numbers specify longer lengths. For pitch and

volume,

however, the higher the number, the lower or softer the note is. Following the
program that installs the sound command is a program that demonstrates the

command.

30

90
499
500
510
515
520
525
530
535
540
545
550
560
365
570

3%

57%
576
580
585
590
600
605
607
609
510
615
620
625
630

35,35,

635
640
650
660
665
670
680
690

LOMEM :28400

POKE 15756, 195: POKE 15757,
REM ==~=SOUND————

REM =---~Clear 0 page-——-—
POKE 102, 237: POKE 143, 69
REM ---Poke in Sound routine-—-—

DATA 205,220,5,125%,245,135,198,15,111,229

DATA 126,35,102,111,229,217,13,217,19,205,220,5
DATA 125,193,2,3,217,13,217,19,197,205,3

DATA 39,193,125,230,15,2,3,41,4%,4%,41

DATA 124,230,63,2,3,217,13,217,19,197,205

DATA
DATA

27: POKE 15758, 58

254,10,32,8,54,0,33,216,255,9,229,193,225,1
POR x » O TO 87: READ d: POKE x+27755, d: NEXT

REM =---Change tables for Sound command---
POKE 788, 230: POKE 789, 109: POKE 28134, l: POKE
DATA 83,79,85,78,68

FPOR x = 0 TO 4: READ d:
POKE 6549,

POKE 791+x,
107: PORE 6550, 108

HREM =--Setup note tables--—-

DATA 70,109,110,109,150,109

POR x = 1 TO 6: READ d: POKE x, d: POKE x+16, ds
POR x = 27974 TO 28093: POKE x, 0: NEXT

FOR x = 9 TO 12: POKE x, O: POKE x+16, O: NEXT
REM ~--Poke in 0 page routine--—-

DATA 213,229,197,245,6,3,14,0,97,104,41,43,229
DATA 126,35,102,111,175,182,209,40,94,213,35,203,
DATA 43,32,36,229,197,5,120,135,203,121,40C,1,60
DATA 6,4,203,39,16,252,35,182,246,128,211,250
DATA 203,121,193,32,8,35,126,211,250,203,249,24,
209,32,41,213

DATA 197,5,120,135,60,6,4,203,39,16,252, 246,143,

d: NEXT

220,5,193,125,2,3,22%,241,229,198,24,111,38,0,52,126

13,35,112,201

28133, 119: POKE 28135,

NEXT

126

222,225,53,35,203, 254, 39,

211,250,193,235

DATA 120,198,8,L11,38,0,%2,126,254,10,32,7,54,0,33, 216, 255,25

DATA 235,225,115,35,114,16,144,205,35,253,241,193

FOR x = 0 TO 126: READ d: POKE x+27847, d: NEXT
REM -==Set up 0 page——=-=

DATA 195,199,108

FPOR x = 1 TO 3: READ d: POKE 10l+x, d: NEXT

CALL 64803: REM =--~restart interrupts---

REM
REM
v
d
f
VO
SOUND v,
GOTO 10

random demo program for SOUND
run HELLO first
INT(RND(L)*3)+1

INT{RND(1)*200)+1

INT(RND(1)*1000)+50
INT(RND(L)*15)+1

4, £, vo

10
20
30
40
50
60

82

,225,209,237,569

Sprites

Coleco did not include a sprite command in SmanBASIC because the Apple II
did not have sprites, even though the VDP chip has hardware capable of 32
sprites. In order to use the 32 sprites, as described in vol. 1, you had to use
complex Pokes and machine language routines. The following program lets you
easily create and draw up to 31 sprites in BASIC.

A sprite is a group of 64 pixels arranged in an 8x8 pattern, with the pixels
stored as bits in 8 bytes (or 256 pixels in a 16x16 pattern, because16x16 sprites
have 4 groups of 8x8 patterns). See vol. 1 for more information on sprites. Each
sprite can be displayed independently of any other in any mode except for the 40
column TEXT mode.

In order to use sprites in your own programs, | have created four new
cemmands: SETUP, DEFINE, SPDRAW, BUMP. Lines 10 to 20 replace the VPOS
variable command with the "BUMP" ASCII and vector. Lines 210 to 250 change
the Primary word table and Command vector table to replace STORE, RECALL and
SHLOAD with SETUP, DEFINE and SPDRAW.

Lines 255 to 290 Poke in the 'SETUP’ command. The SETUP command is needed
to switch from little to big sprites, or vice versa. its effects are seen immediately

upon any sprite that is being dispayed when you enter the SETUP cornmand. |t
has the following syntax:

SETUP [magnification], [size]

[magnification]=0 for normal sized sprites, and =1 for sprites that are twice as big
{each pixel is sxpanded to 4 pixels). [size]=0 for 8x8 sprites, and =1 for 16x16
sprites.

Lines 305 to 340 Poke in the 'DEFINE' command. DEFINE loads the sprite's
pattern into VRAM so that they can be drawn. It has no visual output by itself.
DEFINE's syntax is:

DEFINE [sprite #1-31], [byte 1], [byte 2]...

[sprite #] is the sprite that will be defined.[byte 1]... is the data for that sprite. You
should have 8 bytes for 8x8 sprites, and 32 bytes for 16x16 sprites.

Lines 355 to 400 Poke in the 'SPDRAW' command. it performs the same function
as the shape table's DRAW command (drawing shapes or patterns on the scraen).
Sprites are drawn in the current HCOLOR, and are erased from their previous
position if you redraw them at a different location. Sprites can be drawn in any
screen mode except for the 40 column TEXT mode. SPDRAW has the syntax:

SPDRAW [sprite #1-31] AT [x coordinate], [y coordinate]
[sprite #] is the sprite to be drawn.[x coordinate] and [y coordinate] specify the

location at which the sprite will be drawn. They are like the x and y coordinates of
any shape table drawn with DRAW.

83

Lines 410 to 440 Poke in the 'BUMP' routine. The BUMP command can oniy be
used in equations, (e.g., x= BUMP(10)*50). It replaces the VPOS command in the
variable command tables. BUMP returns the number of the lowest number sprite
that is overlapping with the sprite in parenthesis (e.g., if sprite #5 is at 100,100,
sprite #10 is at 97,100, and sprite #27 is at 100,99, then BUMP(10)=5 and
BUMP(27)=5. If there has not been a collision BUMP (x)=0. Unfortunately, it
cannot check for collisions with patterns made with HPLOT, PLOT, DRAW, etc.
Bump's syntax is:

BUMP ([sprite #1-31])

The following program instails the sprite commands, followsed by a demonstration
of the sprite commands.

5 REM ---Change tables for 'bump'---

10 POKE 27548, 38: POKE 27549, 108: DATA 66,85,77,80

15 1 = PEEK(16098)*256+PEEK(16097)+121

20 FOR x = 0 TQ 3: READ d: POKE i+x, d: NEXT

30 LOMEM :28400

9C POKE 15756, 195: POKE 15757, 27: POKE 15758, 58
199 REM ~-—-SPRITE~----

200 REM ---Change tables for sprite commands—--

210 DATA 0,4,6,83,30,68,82,65,37,52,230,109,6,68,69,70,73,78,63
220 DATA 53,249,3,5,83,69,84,85,80 -
230 FOR x = 677 TQ 704: READ d: POKE x, d: NEXT: REM Primary word tanl-
235 POKE 28134, 1l: PCKE 28135, 119: POKE 28136, 59

240 DATA 72,107,167,107,226,107

243 POR x = 6523 TOQ 6528: READ d: POKE x, d: NEXT: R&M Command vector Ltaria
245 REM ---sprite setup---

250 DATA 205,220,5,125,254,2,210,0,31,14,224

255 DATA 177,79,217,13,217,19,197,205,220,5,193
257 POKE 25413, 0O: POKE 19589, 0O: POKE 17104, 0
26Q DATA 125,254,2,210,0,31,135,177,50,L76

265 DATA 254,79,6,1,213,205,32,253,33,0,31,62,0

270 DATA 205,41,253,33,0,56,62,1,205,41,253

275 DATA 175,33,0,31,17,1,90,205,38,253, 209,201
280 FOR x = 0 TO 67: READ d: POKE x+27618, d: NEXT
305 REM ---gprite define---
310 DATA 205,220,5,125,183,202,0,31,254,32,210,0,31,229,33,175, 254
320 DATA 203,78,225,40,2,41,41,41,41,41,1,255
325 DATA 55,9,229,217,121,13,217,1383,40,18,19
330 DATa 205,220,5,125,225,35,229,213,17,1,0,205,38,253,209,24,23L,225,201
340 FOR x = Q TO 58: READ d: POKE x+27559, d: NEXT

355 REM ~~-3prite draw—-—-
360 DATA 205,220,5,L.25,183,40,2,254,32,210,0,31,229,217,13,217,19,205,220.5
370 DATA 34,178,254,217,13,217,1.9,20%,220,5

375 DATA 125,33,177,254,119,43,203,78,225,229
380 DATA 125,40,2,135,135,33,179,254,119,58
385 DAaTA 137,65,35,119,225,229,41,41,1,0,3%,9,213,235
3%0 DATA 33,177,254,1,4,0,205,26,253,209,225,213,0,175,103,1

395 DATA 233,109,41,9,17,178,254,26,11%,35,27,26,119,209,201
400 POR x = O TO 94: READ d: POKE x+27464, d: NEXT
405 REM ---Sprite bump---
410 DATA 194,3,31,205,50,9,218,0,31,125,254,32,210,0,3%,41,1,233,109,9
415 DATA 126,230,248,87,54,255,35,126,230,248,95
420 DATA 54,255,229,96,105,6,32,126,35,230, 248
425 DATA 136,32,6,126,230,248,187,40,5,35,16, 240
430 DATA 6,32,62,32,144,225,115,43,114,38,0,111,195,103,2

440 FOR x = 0 TO 68: READ d: POKE 276B6+x, d: NEXT

84

5 REM demo of sprites
7 REM run HELLO first
10 HGR: SETUP O, 0O: OIM x(31), y(31)
20 FOR x = 1 TO 10
30 DEFINE x, 28, 28, 8, 29, 42, 20, 98, 4
40 NEXT
45 ¢t = t+.2
50 FOR x = 1 TO 10
60 HCOLOR = x
70 SPDRAWN x AT x(x), y(x)
80 x(x) INT(8I*SIN{x/5+t))+70
90 y(x) INT(60*COS(x/5+t) }+70
100 NEXT x: 3OTO 45

. In vol. 1, there is a program that lets you edit sprites. With a few modifications,
this same program can be used to edit sprites for the new commands. The
following program is similar to the older one, but it prints the sprite's definition for
DEFINE when you are done.

]
2 REM sprite-editor by 3. Hinkle
3 DIM i(33)
10 PRINT: PRINT: PRINT: PRINT “Would you like to have an:": PRIN[: co =1
12 ORINT " 1. 8xB8 sprite ™: PRINT " 2. L6xl6 sprite ": PRIVI: L4eJr “ip,2)2

20 IF a < 1 OR s >» 2 THEN TEXT: GOTO 10
30 rp = g*8+1ll: bb = g*8+l
50 3kR: COLOR = 10: x = 1ll: y =1)
60 VLIN O, bb AT 10: VULIN O, bb AT rb: ALI¥ 10, rb AT O: ALIN Ld, ro AT bb
65 REM print commands On acreen
70 PRINT " arrow keys to move cursor”
30 PRIST "'a'-plot", “‘'d'-erase”
90 PRINT "‘'recurn’' when done with sprites”
95 PRINT "sprite #": d;
99 REM main lLoop
120 COLOR = 6: PLOT X, Y
110 GET a$: p = A3l(a3)
120 IF a = 1 THEN COLOR = 8:; PLOT x, y: GOTO 140
130 COLOR = O: PLOT X, ¥
135 REM check for special commands

140 IF p = 97 THEN COLOR = 8: PLOT x, ¥
150 IF p = 100 THEN COLOR = (: PLOT %, y: e =0
155 IF p = 13 THEN 200

L57 REM check for arrow keys

160 IF p = 163 AND %=1 > 10 THEN x = x-1l: e = 0
165 IF p = 161 AND x+1 ¢ rb THEN x = x+l: e = O
187 IF¥ ¢ = 180 A¥D y-1 > O THEN y = y-1l: e =2 0
170 IF p = 152 AND v+l < b THEN y = y+l: ¢ = 0
180 IF SCRN{x, y)} = 8 THEN e =1

130 GOTO 100: REM go back to maia loop

139 REM print sprite’'s lata

200 1P s = 2 THEN 280

205 REM 3*3 sprite figuring

219 aa = 8: ab = l: ac = 18: ad = 1l1l: GOSUB 230
220 GOTO 300
229 REM compute an 3*3 block
230 FOR y = ab TO aa: i =9
240 FOR % = ac TO ad STEP -1
250 IF SCRN(x, ¥} 8 THEN 1 = i+27 (ac~-x)
260 NEXT x: i(co)} i: go = co+l: NEXT y
270 RETURN
Comtinuecl Nexr Page

85

279 REM 16*16 aprite figuring

280 aa = B8: ab = 1: ac = 18: ad = ll: GOSUB 230

290 aa = 16: ab = 9: ac = 18: ad = ll: GOSUB 230
300 aa = 8: ab = 1t ac = 26: ad = 19: GOSUB 230

310 aa = 16: ab = 9: ac = 26: ad = 19; GOSUB 230

499 REM 3ave sgrites on tape .
500 TEXT: PRINT: PRINT: FOR x = 1 TO s"2*8-1: PRINT i{x); ","; : d840: ¢fRUNT 1
(x)

501 PRINT "would you like a hard copy?{y/n}"

502 INPUT a$: IF a$ = “y" THEN GOSUB 600

205 PRINT: PRINT: INPUT "Would you like to plot another sprite {y/n}?": as
510 1IF a$§ <> "y" AND a$ <> "n" THEN 500

520 IF a§ = "™ THEN PRINT "End of program®™: END

530 GoTO 10

600 PR #1

610 POR x = 1 TC s"2%*8-1

620 PRINT i{x): *,"; : NEXT: PRINT i{x)

630 PR $0: RETURN

In order for you to have all of the features listed above at once, they have besn

grouped together into a HELLO program (except for the 'BASIC from disk' and
CHAIN fixes) which you can type in and save on your BASIC tape or disk. Any
HELLC program you have been using can be RENAMEd to be BELLO, and the
HELLO program below wiil load it from tape and executs it as if it were a HELLO
program. [f you don't have a BELLO program on the BASIC tape or disk, then the
HELLO program enters the immediate mode like it does when no HELLO program
exists. All the fixes are stored under a LOMEM of 28400, so you will have to modify
programs that use any RAM lower than this, or else the program will conflict with
the new commands and fixes. The LOMEM is divided into the following sections:

address contents

27407 macro routine

27464) SPDRAW routine

27559 DEFINE routine

27618 SETUP routine

27686 BUMP routine

27755 SOUND routine

27847 interrupt routine for sound

27974 note table for 3 voices

28094 40 column screen buffer

28134 parse vector for DEFINE and
SOUND

28137 sprite cocrdinate buffer for BUMP

28201 pointer to current macro being
printed

28203 table of macro keys

28233 table of macro definitions

In order for you to fully understand the commands and heip you make your
own commands, the assembly code for the routines (locations 27407 to 27973)
have been in¢luded in appendix 2.

86

3

5
10
15
20
30
35
40
50

REM ----HELLO program to¢ install BASIC changes (save on 3A3IC £ARg)=
REM =---Change tables for 'bump'---)

POKE 27548, 38: POKE 27549, l08: DATA 66,85,77,80

i = PEEK(16098)*256+PEEK{16097)+121

FOR x = 0 TO 3: READ 4: POKE i+x, d: NEXT

LOMEM :28400

FOR x = 27407 TO 28399: POKE x, O: NEXT

POKE 20619, 72: REM Recover fix

POKE 15330, 8: POKE 15831, 355; POKE 15832, 19: POKE 15824, 216: REM Data-3

ump=-Bug

o

80
70
80
90
97
98
29
110
115
120
1258
136

. 135

140
155
160
170
ig80
1835

POKE 23240, 32: REM spaces in file names

DATA 0,0,0,205,3,39,68,77 =

FOR x = 0 TO 7; READ d: POKE 8342+x, d: YEXT: REM line number fix «.
POKE 15756, 195: POKE 15757, 27: POKE 15753, 593

REM

REM —====40 COLUMNS====

REM -~-Poke in TEXT changes=-—=-

DATA 1,240,7,205,32,253,24,14,41,197,229,41

DATA 41,193,58,112,46,1%3,32,1,9,193, 201

FOR x = 0 TO 7: READ 4: POKE 17114+x, d: NEXT

POKE 17177, 192: POKE 17166, 192: POKE 179388, 40

POKE 17215, 240: POKE 17199, 1319

REM =-=Change offset routine=--

FOR x = Q0 TO 14: READ d4: POKE l6976+x, d: NEXT

REM =-=Change these addregsseg-—--—

DATA 17985,13036,180958,18162,13174,19183,13401,18410,18430
FOR x = 1 TO 9: READ y: POKE y, 190: POKE y+l, 109: vEXT
POKE 18272, 205: POKE 18273, 80: POKE 13274, 66

TEXT: TEXT:; PRINT "“Just a moment"

138

199

200
210
220
230
235
240
243
245
250
255
257
260
265
270
275
230
3053
310
315
320
325
130
335
340
353
380
365
370
375
g0
385
330
395
400
405
410
415
420
425
430
440
498

REM

REM ——--SPRITE~=—-

REM ---Change tables for sprite commands---

DATA 0,4,6,83,80,68,82,65,87,52,230,109,6,68,69,70,73,78,69
DATA 53,249,3,5,83,69,84,85,80

FOR x = 8677 TO 704: READ d: POKE x, d: NEXT: REM Primary word table
POKE 28134, l: POKE 28135, L19%: POKE 28136, 59

baTa 72,107,167,107,226,107

FOR x = 6523 TO 6528: READ Jd: POKE x, d: NEXT: REM Command vector table
REM ---sprite setup---

DATA 205,220,5,125,254,2,210,0,3L1,14,224

DATA 177,79,217,13,217,19,197,205,220,5,193

POKE 25413, O: POKE 18589, 0: POKE 17104, O

DATA 125,254,2,210,0,31,135,177,50,178

DATA 254,7%,6,1,213,205,32,253,33,0,31,62,0

DATA 205,41,253,33,0,56,62,1,205,41,253

paTa 175,33,0,3L,17,1,0,205,38,253,209,201

FOR z = Q0 TO 67: READ d: POKE x+276138, d: NEXT

REM ---sprite define—--

DATA 205,220,5,125,183,202,0,31,25%4,32

DATA 210,0,31,229,33,176,254

DATA 203,78,225,40,2,41,41,41,41,41,1,255

DATA 55,9,229,217,121,13,217,183,40,18,19

DATA 205,220,5,12%,225,35,229,213,17,1

DATA O,205,38,253, 209, 24,231,225,201

FOR x = Q0 TO 58: READ d: POKE x+27533, d: NEXT

REM --==gprite draw---

DATA 205,220,5,125,183,40,2,254,32,210

DATA 0,31,229,217,13,217,19,205,220,5

DATA 34,178,2%54,217,13,217,19,205,220,5

DATA 125,33,177,254,119,43,203,78,225,229

DATA 1295,40,2,135,135,33,179,254,119,38

DATA 137,65,35,119,225,229,41,41,1,0,31,9,213,235

DATA 33,177,254,1,4,0,205,26,253,209,225,2L3,0,175,1L03,1L
DATA 233,109,41,9,17,178,254,26,119,35,27,26,119,209,201
FOR x = 0 TO 94; READ d: POKE x+27464, d: NEXT

REM —--«Sprite bump——-—

DATA 194, 3,31,205,50,%9%,218,0,31,125,254,32,210,0,31,41,1,233,10%,9
DATA 126,230,248,87,54,255,35,126,230,248,95

DATA 534,255,229,96,105,5,32,126,35,230,248

DATA 186,32,6,126,230,248,187,40,5,135,16, 240

DATA 6,32,62,32,144,225,115,43,114,38,0,111,195,103,2
FOR x = 0 TO 58: READ d: POKE 27636+x, d: NEXT

REM

87

o~ 499 REM =+<—=50UND===-
500 REM ---Clear 0 page--—-
310 POKE 102, 237: POKE 103, 6%
515 REM ~--Poka in Sound routine—-—-
520 DATA 205,220,5,125,245,135,198,15,111, 229
525 DATA 126,35,102,111,229,217,13,217,19,205,220,5
530 pATA 125,193,2,3,217,13,217,19,197,205,3
S35 DATA 39,193,125,230,15,2,3,41,41,41,41
540 DATA 124,230,63,2,3,217,13,217,19,197, 205
545 DATA 220,5,193,125,2,3,225,241,229,198,24,111,38,0,52,126
550 DATA 254,10,32,8,54.0,33,2l6,255,9,229,L93,225,113,35,112,201
360 FOR x = 0 TO 87: READ d: POKE x+27755, d: NEXT
365 REM =---Change tables for Scund command---
570 POKE 788, 230: POKE 789, 109: POKZ 28134, 1
573 POKE 28135, L19: POKE 2Bl36, 59
575 DATA 83,79,85,78,63
576 FOR x = 0 TQ 4: READ d: POKE 79l+x, d: NEXT
580 POKE 6549, 107: PCKE 6550, 108
585 REM -~--Setup note tables---
530 DATA 70,109,110,109,150,10%
600 POR x = 1 TO &: READ d: POKE X, d: POKE x+16, d: NEXT
605 FOR x = 27974 TO 28093: POKE x, O: NEXT
607 FOR x = 9 TO 12: POKE x, O: POKE x+16, 0: NEXT
609 REM ---Poka in 0 page routine---
610 DATA 213,229,197,245,6,3,14,0,97,104,41,43, 229
615 DATA 126,35,102,111,175,182,209,40,94,213,35, 203, 126
620 DATA 43,32,36,229,197,5,120,135,203,121,40C, 1,60
625 DATA 6,4,203,39,16,252,35,182, 246,123, 211, 250
630 DATA 203,121,193,32,8,35,126,211, 250,203
631 DATA 249,24,222,225,53,35,203,254,35,35,35,209,32,41,213
635 DATA 197,5,120,135,60,6,4,203,39,16,252,246,143,211,250,193,235
640 DATA 120,198,8,111,38,0,52,126,254,10,32,7,54,0, 33,216, 255, 25
650 DATA 235,225,115,35,114,16,144,205,35,253,241,193,225,209,237,69
660 FOR x = Q0 TO 126: READ d: POKE x+27847, d: NEXT
665 REM ~--Set up 0 paga-~=—
670 DATA 195,199,104
680 POR x = 1 TO 3: READ d: POKE 10l+x, d: NEXT
690 CALL 64803: REM -~--rastart interrupta——-—
693 REM poke in routine fer loading the BELLO program
695 DATA 2085,87,23,33,163,62,229,195,250,64
697 FOR x = 0 TO 9: READ d: POKE 64+x, d: NEXT
699 REM
— 700 REM ==-—-MACRO--—-
710 REM ---Poke in 'Input line' changes=-~—
720 DATA €5,C5,DS, 21, 38, 6E,ED, 58, 38,6E, 78,82, 20, lA,CD
725 DATA 69,2F,ES5,21,5A,6E,0Ll,1E,0Q0,ED,B9,EL
730 DATA 20,18,11,58B,6E,13,17,87,20,F8,0D, 20,P9,13, 1A
740 DATA 87,73,23,72,20,05,36,00,28,36,00,01,CL,%L,C9
750 FOR x = 0 TO 56: READ d§: GOSUB 800: POKE x+27407, d: NEXT
753 POKE 12197, 15: POKE 12198, 107
755 REM ---Pgka in macrog-—-
760 POKE 28221, 0: POKE 28252, 0: mk = 23222: md = 28253
770 RBAD a: IF a = 0 THEN 830
780 POKE mk, a: mk = mk+l: READ a$
78L FOR x = 1 TO LEN(a$): 4 = ASC(MID$(a$, x, 1))
785 IF d = 38 THEN 4% = MID$(a$, x+l, 2): x = x+3: GOSUB 300
790 POKE md, d: m@ = md+l: NEXT: POKE md, O: md = ad+l: GOTD 770
799 REM ---Change hex to dec—-—-
800 4 = 0
805 FOR i = 2 TO 1 STEP -1
810 j = ASCIMIDS (45, 3-i, 1))
820 IF j » 64 THEN j = j~53%
830 IF J » 47 THEN J = j~48
840 d = d+3%i"4: NEXT i: RETURN
850 TEXT: POKE 16681, 66: CALL 64: END
900 REM ---Praset macros-—--
210 DATA 150,MEW,13l,DELETE
915 DATA 149,PRINT ,148,s0E
920 DATA 147,LODAD ,15%5,SAVE
925 DATA 129,CATALOG&0D, 130, RUN&DD,L31,LIST&0D
930 DATA 132,TEXT&0D,133,PR#1&0D,134,PR#0&0D
998 DATA O
399 END

88

Appendix 1: Programs

The following programs were mentioned in earlier chapters (BASIC Overview and Math Chapters).
They have been reprinted here for your convenience. The Crunch code viewer program lets you examine
the crunch code of any line you can type in. Simply enter the line as line 1000, and RUN the program.
Line 1000 will never be executed, so you don't have to worry about its affects on the rest of the program.
The program looks in the Line number tabie for line 1000. When it finds i, the program finds the
comrespanding crunch code and prints it out. If you want to print the crunch code on the printer for a hard
copy, include the following line:

2 PR#1

The program following the Crunch code viewer prints the floating point representation of a number
you provide. The number can be positive, negative, whole, or with a decimal point. if you don't want it to
print the floating point number on the printer, erase the PR#1 and PR#0 commands in line 40 and 80. The
program finds the floating peint number by assigning the number you type in to a variable (w). BASIC then
converts it to floating point, and stores it in the Variable tables. The program loaks in the Variable value
table, and prints out the first value in the table, because "w” was the first numeric variable assigned a value.
That way you can see the floating point format for any number.

3 REM ===grunch code viewer for line 1000=--—
S LIST 1000: x$ = "0123456789ABCDEF™"

10 p = PEEK(16090)*256+E’EEK(16089)

20 IF PEEK(p) = 232 AND PEEK{p+l) = 3 THEN 40

30 p = p+d: GOTO 20
40 y = PEEK(p+3)*256+PEEK{p+2)
30 x = PEEK(y): GOSUB 100: PRINT d$; ",": : If x = O [4EN EWD

55 FOR i = 1 10 PEEK(y): x = PEEK(i+y)
6C GOSUB 100: PRINT d$; ","™; : NEXT i: PRINT "00": END
100 d% = MIDS(x$, INT(x/16)+1l, 1)+MIDS(xS, x~INT(x/L5)*1&6+1, Ll)}: REIU«:
998 END
9399 REM 1line 1000 will not be executed, only printed
1000 REM replace this line with the one you want to see

10 REM Prints floating point representation in nex
20 h$ = “0123456739a3CDaF"

30 INPUT "Enter number in decimal”; w

?O PR #1: PRINT w; " Y

20 FOR x = 0 TO 4: a = PEEK(53340+x)

60 b = a/16: ¢ = INT(b): GOSUR 100

70 o = a-c*16: GOSU’ 100

30 PRINT " ": : NEXT
90 PRINT: PR #0Q: RUN
100 PRINT MID$(hS, c+l, 1):; : RETURN

89

Appendix 2: HELLO code

In chapter 11, there is a HELLO program that installs 40 columns, macros, sound
and sprites to BASIC. The assembly language needed to create these changes is
printed below. They serve as examples of how to write new commands. Note that the
sound and sprite commands often decrement C* and increment DE, because DE points
to the crunch code for the line and C' hold the length of the line. Registers C' and DE
are often Pushed to the stack when the routine needs an extra register to do
something, and then Poped off when it is done using them for its own purpose. Other
registers, like HL' and DE', also need to be Pushed and Poped when you use them for
someting other than their original purpose. The page O routine Pushes every register
at the start and then Pops them all off at the end, because the routine is called during
an interrupt, which can occur at any time in the middle of any routine, so the interrupt
routine has to Push and Pop every register that it uses. The BUMP routine is
interesting because it replaces a variable command. By looking at it, you c¢an get a feel
for this type of command. They often call similar subroutines to either change FPAT
into the HL register, or vice versa. The number within the parenthesis of any variable
command (numeric) is stored in FPA1 when it calls the command. This way the
command doesn't have to bother getting the number. For the BUMP routine, and other
variable command routines, register BC is the only register that needs to be Pushed
and Poped. The DE register is already Pushed by the routine that calls the variable
command. The macro routine is an example of diverting an aiready existing routine so
that it can perform some other function as well as its original one. The HELLO program
replaces three byte in the original routine so that it calls the new routine. The new
routing performs the action of these three bytes, and then does what it wants, in this
case it checks the keyboard for the macro keys and prints any necessary macros,
When the routine returns to the original one, the original continues on its way, usually
without noticing the change. Howsver you use these printouts, whether to learn from
them or to change them, I'm sure they will be appreciated.

20

Macro routine, called by ®"input lina* at $2P7F.

27407 6BOF E5 PUSH HL ,

27408 8810 ¢S PUSH BC Save registers

27409 6B11 DS PUSH DE

27410 6BL2 21386E LD 4L, nn 6E3B

27413 6315 EDS33B6E LD DE, (nn) 6E18))

27417 6B1% 7B LD A E 18 macro being printed?
27419 sala a2 OR 0 Yes. get next ASCII

27419 6813 201A TR NZ,e 6B37 na. get input from keyboard
27421 6BLD CD692F CALL nn 2F69

27424 6B20 ES PUSH HL

27425 6B21 2L5A8E Lo AL, nn SESA
27428 6824 OLLEDO LD 8C, nn NOLZ

27431 6827 EDB9 CPDR compare jnput with macro rtable
27433 £329 &1 POP HL at 36ESA

27434 eB2A 2018 JR NZ.2 6B44 1€ match is found look up string
27436 6B2C 115B6E LD DE, nn aE58

27439 682F 13 NG DE

27440 &BI0 1A LD A, (DE} ~ :

27441 6831 a7 oR A get macro ASCII to print

27442 6B32 20FB JR NZ,e 6B2F

27444 8R34 4D DEC c

27445 6835 20F8 JR NZ,a 632F

27447 &B37 L3 ING DE . .

27448 6333 la Ld A, (DE) lncrement polaters

27449 839 A7 OR A

27450 8B3a 73 LD (HL),E i ; ;
27451 6833 23 NG dL if word over load pointer with O
27452 633¢ 72 LD {HL),D

27453 6B3D 2005 JR NZ,a @&B544

27455 633F 3600 LD (AL) ., n

27437 6341 28 DEC HL

27458 6B42 3600 LD (EL), n

27460 6B44 Tl PCP DE pop registers and return

27481 6B45 C1 POP BC

27462 6R46 E1 0] HL

27483 6847 Q9 RET .

SPDRAW routin

27464 8343 CHOCIS ZalLlL nn J50C get sprite ¥
27467 6343 7D D AL print error if <0 or »31
27468 &éB4C 87 oR A

27469 634D 2802 IR Z,e BB5L

27471 6B4F FE20 od 3 n

27473 %351 D2J01F JP NC, nn LFOO

27476 6B54 ES PUSH AL

27477 6353 D9 EXX

27473 eBS56 0D DEC C gsave 1t on stack
27479 &RA57 D9 EXX get x-coord *
27480 6mS58 112 INC DE

27481 GR59 CDDCOS CaLL nn a3ne

i ek a7 lwaal e s
27488 6860 0D DEC ¢ ger y-coord 3
27489 éB6l D9 A

27490 8862 13 INC DE

27491 6863 CDRCOS CALL nn as50c

27494 B366 1D Lo AL

27495 5387 213LP% LD Hi,nn FPEBL

27498 eBea 77 LD {HL),A sava it at SFEBL

91

27499
27500
27502
27503
27304
27505
27507
27508
27509
27512
27513
27518
27517
27518
27519
27520
27521
27522
27525
27526
27527
27528
27531
27534
27537
27538
27539
27540
27541
27542
27541
275446
27547
27548
27551
27552
27553
27554
27555
27556
27557
27558

27559
27562
27563
27564
27567
27369
27572
27573
27576
27578
27579
27581
27582
27583
27584
27385
27586
27589
27599
27591
27592
27593
27534

6B6R
6B6C
©B6E
6BEF
6370
6871
6B73
6874
6375
6B78
4379
eB7C
6B7D
6B7E
aB7F
6380
6B81
6B82
6B85
5886
6B87
6888
6B8B
6B3E
6891
6B92
6893
6394
6B95
6B96
6B97
56894
6R98
6B9C
639F
68A0
6BAl
6BAZ
6BA3
6BA4
68BAS
6BAG

6BAT
GBAA
&BAS
a3AC
oBAF
6381
8B4
6BB5
6BBS8
63BA
6BBB
GBBD
6BAE
&38BF
53c0
23C1
8RC2
&BCS
CE={ads
&3C7
()= Tatc)
68C2
63CA

2B
C34E
El

£5

7
2802
37

a7
2133FE
77
3ag941
23

77

El

E5

29

29
0lQ01lF
09

05

EB
21BlFS
¢10400
CDLAFD
Dt

El

D5

23

AF

67
QlE96D
29

o9
11B2FE
14

77

23

18

1A

77

Dl
<9

CDBCOS
7D

B7
CAQOLF
FE2D
D2CO0LF
ES
21BOFE
CB4E
El
2802
29

29

29

29

29
OlFF37
09

ES3

D2

79

2D

23

HL
i,{dL
HL

AL
AL

)

Z:e 6BYS

A A
ALA
HL, nn

(HL),A

dL

}.(nn)

(L), A

HL

JT
e ¥ 7)

HL, HL
4L, HL
8C, nn
HL,8C

DE,HL
HL, nn
BC, nn

BC, nn
HL, HL
HL,BC
€, nn

FEB3

139

FEBL
0004

FDLA

A, (DE)
(HL) A

HL
DE

A, [DE)
(HL) ., A

DE

92

QPQRAW ' Cont.

multiply sprite ¥ by 4
if in 16X16 sprite mode

save ¥ at SFEB3

save Color at SFER4

load 4 bytes froa 5731
to VRAM in the sprite name taole

move x and y from SFEBIL
to sprite entry in table
at $6DE% {used for BUMP)

return

DEFINE routins

get sprite ¥

prror Lf €0 2E »31

mult # by 83 if
in 16Xle mode

add #* to base of
sprite pattern table
{53800}

27535
27596
27598
27599
27602
27603
27604
27605
27606
27607
27610
27613
27614
27616
27617

27614
27621
27622
27624
27627
27629
27830
27631
27632
27833
27634
27635
27636
27639
27640
27641
27643
27646
27647
27648
27651
27652
27654
27653
27658
27661
27681
27666
27669
27671
27674
27675
27673
27681
27684
27635

oBCB
&BCC
6BCE
6BCF
6BD2
68D3
6BD4
GBD5
63D6
6807
a3ny
8BDD
63DE
63E0
6BEL

63E2
6BES
6BEG
6HES
6BEB
6AED
63EE
6BEF
6RFOQ
6AFL
HBRF2
6BF3
GRF4
63F7
6BF8
6BF9
adFrs
6BPE
6BFF
6c00
8203
6C04
8C06
aca’?
6CO0A
6COD
6COF
eClz
8Cl5
6CLl7
&8Cla
&CLlB
6CLE
6C21
6C24
6C25

a7
2812

CDDCOS
7D
£l
23
ES
DS
110100
CD26FD

18E7
El
c9

coDeos
7D
FECc2
D2001F
QEEQ
al

4F

D3

QD

29

L3

cs
CDDCOS5
Cl

7D
FEO2
D2AJILE
a7

8l
32BOFE
4F
0eQ1
I3
202079
21001F
3EQO
CD2IFD
210038
3ECL
CD29FD
AF
21001iF
110190
CD26FD
DL

c9

CALL
LD
cep
JP
LD
JR
LD
BXX
DEC
XX
INC
PUSH

A
Z,e BBED
DE
nn Q5B

DE, nn Q001
nn FD26

DE

a BRACT

4L

nn 05DC
AL

Nc’nn 1r0Q

nn 03DC

‘T2, an 1#J3
AA

{nn), A FEZY
C,A

3, n

e

nn FD20
dL, nn 1LF20
A,n

nn FD29
HL,nn 3300
A, n

nn FD29

4L, nn 1700
DE, an 0001
nn FhZ2e

DE

93

DEFINE, Cont

is crunch code over?
Yes. then return
no. get # (data far gattern}

dend it to VRAM
laop to get next #

return

SETUP rpoutin
get magnification ¢
error if »1

get size ¢

arrar 1 >l

combine mag and size
to puat in register L af VDP

save % at 3SFERO
(for draw and define)

send # to reg 1

clear sprite name table

Set regiscers $0 soint to
$3800 for sprite Pattern table

return

27688
27689
27692
27695
27698
27693
27701
27702
27705
27708
277307
27709
27710
27712
27713
27714
27718
27717
27719
27720

LAV

27/ 24
277258
27726
27728
47729
27731
47732
27734
27735
27737
277138
27740
27742
27744
277458
27746
27747
27748
27749
27751
27752

27755
27758
27759
27760
27761
27763
27764
27785
27766
27767
27764
27769
27770
27771
27772
27773
27774
27777
27778
27779
27780

6C26
&C29
aC2¢C
al2F
6C30
6L32
&C35
6C36
al39
833a
6C3B
6C3o
0C3E
6C40)
6011
6042
3C44
ac45s
5C47
9248
2 +3
3 <A
3 .4C
&C4D
6C4R
8250
651
6253
6C54
aCS55
6ch7
8C59
GC5A
aC5¢
6CSE
6C60
6CH1
86C62
6CH3
6C64
665
6C67
6CH8

6C6B
6CBE
6CHF
azs?d
8271
6273
6274
8C7s
6C76
8C77
8C73
5C79
6C7A
aC78
ec7c
Tagy!
&CTE
&C31L
acs2
2283
6C34

C2031F
Ch3209
DAOC1F
70
FE20
D2OJLF
29
DLEFSD
09

7E
E6F3
57
36PF
23

Ta
E&efA3
5F
iers
A3

60

IDOCD3
7D
5
37
C60F
&F
£5
78
23
86
aF
25
D3
QD
D3
i3
CDOCO3
72
Ccl
o2
23

NZ,nn
nn
c,nn
AL

n
NC,nn
4L, 4n
32,nn
HL,BC
A, (HL)
n

0,4
{H-L};n
i

i, {4n)
n

f.h
(L), n
A4

d,8
a2l
a,n
A, (4L}
HL

a9

~

Wrmp LNy

FE
g
I

(HL),D

[l 4
-]

I
nn
A, L

3z

1FG3
J332
1F0O0
1FQ0Q

6DE3

6C4C

a50C

{BC),a

3C

94

BUMP routipe
errar if string
convert @PAL to HL

error if HL too big

use AL as offset into $6DREY

load D and B wizh

X and y 2f 3prikte

search table for
coordinates of other sprites

if match is not found
then loog again

get # of the gprite that
bumps and put it in FPAL

SOUND routine

get voice #

push it

@ult by 2 and add 15
tC point to next note
push pointer

get length #

save i1t in note +=able

27781
27782
27743
27784
27785
27786
27789
27790
27791
27793
27794
27795
27796
27797
27798
27799
27300
27802
27803
27804
27805
27806
27807
27808
27309
27812
27813
27814
27815%
27816
27817
27818
27419
27821
27822
27824
27825
27826
27828
27830
27832
27835
27836
27837
27838
27839
27840
27841
27842
278413

27844
27845
278446
27847
273848
27849
27430
273351
27853
27855
27856
27857
27858
27859
278360
27481
27862

. D9 2.6 4
g‘éig 51 RIS I, Sonwe\ Cownt,
637 23 SAX
6C88 13 INC DE
8089 CS PUSH BC
&6cda CD03z7 CALL nn 2703 get pitch #
608D Cl POP BC
6C8E 7D LD A,L
6C3F E&0F a0 n
6C9L 32) {32),A save bottom nibble
6C92 03 INC ac in note tabla
6C93 29 ADD HL ,HL
8C94 29 ADD AL, AL . .
6C35 29 ADD HL,HL wlt pitch by 18
8C9%6 29 AD0 dL,HL
5097 7C Lo 4,1
a6C93 Z537 A n
6C9A 02 LD (BC),A _
ag98 03 INC ac save top part 1n note tapisz
aCIC D9 EXX
ag9n D DEC c
BCIE D9 EXX
6C9F 13 INC DE
eCAQ 5 PUSH &BC
CAl COOC0S CALL nn QsDC get voluge #
agad QL PQP BC
6CAS 7D LD A,L
6CAG 02 LD (BC), A
6CA7 Q3 INC BC save in note table
pCA8 E1 POP AN
5CA3 F1 POP AF
aCaA &5 PISA L
6CAR (618 ADD a,n
&6CAD oF LD L,A
6CAE 2600 Lo H,n
6CRO 34 bt (el {4L) epdate pointer (% »f notes)
6CBlL 7E LD a, (L)
6CB2 FEOA CP n _
6CB4 2008 JR NZ,e 6C3E loop the buffer if more
6CB6 3600 LD (HL).n than 10 notes
6CB3 2LDAFF L HL,nn PFD3
oCcBa 019 ADD iL,8BC
8CBC ES PUSH H#L
eCBD Cl jodede) ac
gggg gi Egp ?ﬁL},C save pointer to note table
oCCO0 23 INC dL
8CCL 7O Lo (4L},
6CC2 C9 RET return
6CC3 3) NOP

sound interupt routine (jumped to from zerc pagel

6CC4 00 NOP

eCC5 00 NOP

8CC6& 00 NOP

&CC7 D5 PUSH DE save raglsters

6CCA ES PUSH HL

eCC9? 5 PUSH BC

3203 F3 PUSH AF

3CT3 0 15803 L 3,0 setup T30 ragisters
oCCD OEQQ LD C,n

8CCF 8l LD 4,C

6CDC &8 LD L,3

6CD1 29 A00 ¥, HL

ecD2 28 DEC AL .

6CD3 g5 PS4 HL getb polinter to 2urrent note
6CD4 TE LD s, (40)

aCh5 23 INC 4L

6CDE 66 LD 4, (4L)

27863 6CD7 6F LD L,A witl fntermapt Centd,
27864 5CDS AF 08 4 Sow P

27365 532D9 Bé QR (dL) .

27866 &CDA Dl POP D% *8 a note being played?

27867 &CDB 285E JR Z,a &033

g;g?g gggg gg ?ggﬂ EE no. then loop for next voice
27371 6CDF CB7E RIT 7, (HL) has tha note been sent tg VDP?
27873 GCEl 23 Jac 1%

27874 6CB2 2024 JR NZ,e 6D08

27876 6CE4 ES PUSH HHL

27877 6CES CS PUSH RC no. thean get data from note taole
27878 6CE6 OS5 DEC B and send it out

27879 6CE7 78 LD A,B

27880 6CE8 37 ADD AL,A

27381 6CE9 (Ca79 30T 7,0

27333 &6CEB 2801 JR Z,e 6&CEE

27885 8CED 3C INC A

27886 6CEE 0604 LD B,n

27388 8CFD CR27 SLA A

27890 6CF2 10FC DINZ & &CFD

£7892 6CF4 23 INC AL

{7893 &CFS 86 2R { iy)

27394 aCF6 F680 QR n

27390 6CF8 D3FA QuT {n),a

27898 eCFA CB79 BIT 7,0

27900 sCFC (1l rPOR BC

27301 &CFD 2008 JR NZ,ae 6D0O7

27903 &6CFF 23 INC 4L

27904 6D0Q 7E LD A, (HL)

27905 6201 D3IFA ouT (n),A

27907 6D0O3 CBF9 SET 7:C

27909 6DOS 18DE JR e BCES

27911 sD07 Bl POP HL

27912 D08 35 DEC (HL) decrement length counter

27913 6009 23 INC dL

27914 6DOA CBFE sgr 7. {dL) set flag that note has been sent
27916 &6DOC 23 ING "q0L

27917 &DOD 23 INC dL

279189 6DOE 23 b [od 4L

27919 6DOF 9L 209 94 is note over {countar =0)7
%;3%2 ggig 3229 ggsﬂ ggre 6D3B no. then loop for next nots
27923 eDl3 C5 PUSH BC

27

27925 6015 78 > A send out vol. of ST (off) ‘
27926 6DL6 87 a0D AL A {(its not obvious, but that is what it
27927 6917 3C IC A does. see volume 1 about souad)
27923 aDl3 0604 LD B,n

27930 épla CR27 SLA A

27232 6D1C 1O0FC DJNZ e @Dla

27934 6DLE F&ar AR n

27936 6D20C D3FA QuUT {n).,a

27938 sD22 (1 pOP 3¢

279313 6p23 EB X Kt

27340 6024 73 o 3,8

27941 &6D25 (508 ADD A,n

27943 6D27 &F LD L,A update # of notes

27944 6D28 2600 LD i,n

27944 6D2A 34 INC {HL)

37oas e mon o a if > 10 loop note table pointer
37950 6028 2007 IR ¥Z,e 6D37 t> start of table

27952 &D30 3600 LD {HL).,n

27954 6D32 21D8FF LD HL, nn FFD3

279357 aD35 13 ADD 4L, DE

27358 8D36 EB EX DE, HL

27359 &6D37 EL pop HL save polnters

27960 &D38 73 LD (4L, 2

2796l 6D39 23 INC HL

27962 6D3A 72 LD (dL).D

27963 &D3B 1090 DINZ e 6CCD loop for next volice

27965 603D CD23FD CALL nn FD23

ﬁ;ggg gg:g gi ggg ;g pop registers «man all volces
37970 6p42 Bl 80P e are checked, and recurn
27971 &b43 DL PoP DE

27972 6D44 ED4S RETN

96

Appendix 3: Schematics

We received the following pages of scematics after we completed the first
volume. Due to the many questions we were asked concerning them and the
possibilities they have, we have reprinted them for any of you who are interested.
But for those who don't know a chip from a DIP switch, this appendix can safely be
ignored, because it is not crucial to understanding BASIC or the Adam. | also think
that it is very unlikely that you will be able to get your Adam fixed when it goes, and
suggest getting spare tape drives, power supply and keyboard for about $10 (and
that's not hex) each, as listed by several surplus dealers.

e

o doar .
Lryel 4 é

z "
1R Lo 6801 5!
L]

DATA »——
FROM ST)

QESET

'y T2 | . 3
anx N . 2 o
Sz | — YR gg.a. PialiZ G2 BEY gy |
T) T SRag dw0r iR :
. m* 3 ‘ : ém AR 715t BRAE Wi [

I R] e -
i : P By r-n ~ ;

! Sy mé | | I 3ipa ! Esg

| e ves | | —_— e, —_— we

— =
:—‘LF“ . ..2.? 22 | Pm Sata

FEY > “ ii:!i -
' = ' ‘1 ‘,“.-f‘ll

T
[

| i ,~—-—|‘ H o i :. AETNSE L
| ———é E-BF] -Su: — X

MSEMNSE 2

|
& |]
| t

' =3

ki [a] o -
Am—
ﬂll i dﬂc f—“M
— - - — "3 3N
- Zlen
[+
O CECENE
]
| .
+
r|.IHW
e Ny
B 1 Do
RXE L
.._?SHJJ
LI

—
3

-

&2 2
x * b 3
m AP —mm ——— -
OF 0 P - —_
L og e I
B O T R T S
F---4 omt |
- .02\.0;30 |
éu.ﬂm Ll _ Al
b3
— g Lo R
oMy me 1
™~
- =
= o O] —1+—
ot PO -1}
e bL] m
Rt -
—11— <M e -
on " mo i
B B w e 1]
f F
I —aaln b 1o g
L me-
-
.sf* o3
e " +
o

99

ane
BOt
ap2
BC3
=)
acs
ane
AT | 15 |
Z4%En

L]
Bl
Faz
Bas
L]

Bt
B2

ATTEBUFE b e K g ! I

 WGTER

T L GTHEMNE 1ML NS
Cavbmcy Mol 4

ki Al -cr)nn

e m—"ﬂi_l_' 4.a78D
T D
M Ol

f] cumPeRs fmann 14 Dasmed

<4

c_

=,

TO SUFFER F
PaTa BCaRD

1%

[

LX)

EERR

oG

Lt
R CTC
2 29] o,

paz

WS

a7

0
44,70

g
Tt

| oI
=1y gt

fEghs G Pk
g ot
EQurva EnT
LECIE T

R

e L ELELY

1

'NWos YT
EETEN

I

CHMARE Deg

DT A,

48
Tl

i

wiwk) b Omy UTP wale
VY ot TR de

L7
. T
10 b

TOSHT2

ATITS Aow AN JHIR

Y awine s vis g 2 <oy
e g7l uf"d Q‘JTAH.[UN =
EAROME ARE A0

WA Sl N DG D NES ARG

B D PN T TS WSTALLED

Anl 35 2SR

b S R LT ARE P
B T imaThe, 3% 47, A6, RGO

Frrrerfr7irfirrirrrriiter

a
§
(1

g 'f[
[\

vm—
- [— -
T T T T e fe sl e lerl oo
T A Vi X
R T,
i LY I . -:! p‘“\y/&
RTC oM 20 e A5 - u ‘\‘ :
CARD EAID a7
id b6 |t)5 , Ty
—5%?_ | SRT | 5! T =
a2 19| PBRL_{gy| p 228y
a1 AR in| BB 19} Td it s e amrr T
=l AL lapt L 28)7 I i PCAPRNS P L Ll P
—— || 2O g (2R3 1, i ' Dol e Fic P el i)
BT g i WO o g T T T e e]
! N - H "
G iy PR 20 12 o 18 was SFRTE asoantan [|37
207 .8 BT {0 | [—ERE. W ua O, SO0FD ¥TIERS Q- PAC FO
2@ |y Bad 2 ac? o WIIEZE, IF we SF, w0l A7 | o dy Q'
Y] 1 L B I WAL I C2IE AL A 21 1Ey N)t
=) Ry iy e
23 10 maa b Ta? H| i WdA-# T uZo-ig vz*:-g':ﬁ.-“'
vy o " - L] o3 FUR w20W0l_ w- 0923
288 Jagj jnBRd 4| | 282 5 { fwiwd vgade? apeip FE1eZ
235 3 An ALk i F 2 9 d b, veas R TAMOFEY
e a a3
_L*"I 4| BR28 1y | [203 g
a7 Ba7 | 246 zq
onl b B YT ey 2%
_;Tk & a3 » Dol 2¢
== 3 322 1y 800 | g
wsiuli 19 I 3y Dot |yl
=BV |gg) |wRE2 g MBAI 190
% r 32.3 | 90| L_BA3 | o,
FTI Y ﬁéﬁ. 4| =22
— j_3EY | 3| p2MF |, i
— 225 | ! MUK
—_ [y] ', (LT $<YTr=) :si
- B CEE 1 a3y 3"'
_ a-!igvgug“[| _2a7 6
— ————T] 3 —
- Lar ey 1| 1 o
—_ aa22 | g "‘
L .
S HE Rl
ol o i
e !E &3 IE[3
SEERE 59 14 Pty oA
= 214 #TE ok s tanr <7
— | lcam2e am | B0 s
. _ a7 f—’l L
= Et = ___; T . - " T
Ty 2. * T B ! H
Eal N i R [
FL] a AL‘[‘ L |
L 3sd gy, i T Bl
f_GA7 WA L =l i
WETY ST S AT
L2403 flga N |
381l iGlya - Jid sge |
k. Elﬁl "‘*E 7] - I
K| it F4
I 2] = 13 915]3 - 8 r.r! HBEFTIEN
L 1. - ik . i
. |
e dieldlsl sleldadddy o ddurlyedas
T i s he 233 3= z|5| =z 2| 55| ¢ =g EEEzs
»-:‘_‘:_Zha 1]1 e =t ‘ii —t w]]]
P————al2a I : H M N !
2326 Lisa 2 Sady o gadmudds | oyavgrdes
L= . AFA=RE 0 R EEHFIC AT L pRHTESHS
;.-oﬁ‘: g Tzl rogale Bellimmlolsia | Elg7he, iolie
228 G og e 4 s
- 3 b -t
_upi i1 28 e siae | o] W' T alma L -JF (UL -
M '5:-. - s i)
/
ME ity iy S | 2E5s roes
S zgﬁjgg;g! = st STIRY
P =L al - = LA TORS
(e 2wy £B 44 Lo ' e TEET T o 11anes
nE — —_— e

M

= N o rT3ke nrraneat e) (B

.. " Filc=a =

ek ' - o frn e]
PRGOUCTION] a5 ——— L o ge g

== s R, MR

AELEASE

T a2

E
£

o
{i

2a
Baute p Far N
o p::......:':. M ST M W L ?:_} & M""“__-. - - z_‘cmzu
n.lu.ﬂ'iw .E:? D e i Ty RIL L]

101

.

Mt
]

-
CHyF

1 :
h i i
i | L H
w L — " | | I~ ‘
N
E LTS ry -,l] . : . ‘
o » . at) il S-L31] F YN | | |
- i ' o |
-
m kg .o % Y
. ™ Sk ut oA il
! oy —— 764 . 5w S
1 .
aallst 1 - A - : !
| Y i . ot— : :
I : s o —) by - ; o
| Ay T} i 4) [~ . : |
jpr— 1] -- - -y .
! 0] CIrRrews L o b - !
: e 1 - ™ b _”ld" | |
' IL—L- o~ N e I 1
: i L e we] :: at L Zy ut !
. - i —. |
! - 2] [~k
! . s dae 1 ue " i 1
! o - [—tt s, 1 .
ML T B - —El. . i
]- Bl Aoy AP - l‘ ! !
i T n T - 2 | Caa
-] - H
b M 7t D a rry - peMm| .
| I len MY reiasm : - oy - | i :
]
: - a . L= -
i Lo H : "] th i
- F .] Il G |
| e b A L
= T) I G A U
| = o Lite
' =, |_at i -
= — T
= E—TE W
P - ARy o
» [+ Lal?tl Laedl _T P
o *
s
ST
-]
Ld o
- A
A
e Te e
o - " !
:; "3 — H
=_5_..“ A - |
= T ;
v i H
-
5 :
33 .
~im !
- s ’
- . .
A 1 e Dt ChLs = X
. = :
—_— 3 [T "
= T o 1" —
Y [1]
i il!
IB L") aﬂms ~— ot =
- [P
il iL —
i e :
! N
Pog & - - - -
: = i ——
: -} -] —
! ; v
e D T LDGhQ -
—_ ; i HOTES
! - " L b H TUMLEST DT RWAE SFECHED
- — LaseCITOME MR CAMapl ail ELIATIEE
1 ——— AL D e Rk a0l iTa - L W TR
1 e o L [.¥) EERSTOES A8 ChbOd Fo AT A L ey
! O VALLED W OmE T 3% CAWATT oy ey 2]
| ¢ R 3 e TAmCE S AR =
i : Py 3 .
1 SO ANE el kel 28y,

L XY

nu.:’-—v

N ERETEC WEMD SOANE
[TTR-CF o Gy T -

102

!1-

| ® [=lom

ULEASED AW TS AT

e f foh

1

CEAI S Sy TRl
o im ar SRR

D ACMDEDY o L LT

Y Tl .

Y LS . LW A
LEODUCTIOM SELEASE

WAl Aol e AP Al DA ik
S e, i

27 I’ff %&C

md’d.‘-‘\l'

o btz e ar g,

L3 AT AT K CELETE L iAWk S (m)
e an 3R ADR ot FOmA Xy
Ta 4w NELETES 54 ez
370 M ALCID FEY LW AOID ik
£ CAVECR -2 0% E-0 03300
T30 EL- 11404 L0 ET, St

Zag N Seu3TE

-

b,

PYaFe

o

)

[
a i
A
ol
)
.
4

(= = - -

£l
> — T T RE R
;
]

R£_8caR0

] [itir=N SFR ek I'i

!

- 4
=iis gum

e

tal s

1) o e
I". P
bres
L AN

n

et
aE

H
o
T3
|«
ti—'
ga
———

CTION
RAELEASE

Por Mmauloatyring
Or Parghayieg

(RF Jagx)

103

Glossary

ASCHI

bit

lock

boot

buffer

byte

Central loop

Color tabie

American Standard Code for Information Interchange. It is a
standard set of letters, characters or symbois that assigns
gach charactier 3 unigue number represanted by 7 bits ithe
top bit is 0). See the SmartBaASIC manyal.

Cne binary digit. it can either be an (1) or aff {0}, depending
upon its voitage. There are © bits inabyte and 4 bitsing
nibble.

A group of 1024 (1K} bytes It is the basic unit used on the
tape ar disk.

To load a program into RAM. The Opersting System loads
the first block of the tape or disk {the Bant), and executes
1t, Igading whatever it i5 tald to.

An area in RAM that is used by some routines to temporarily
store data that will change. It is similar ta tables, but
tabies usually don't change as much as burfers do.

A group of 3 bits that represent 3 number frem O 1o 255 A
buyte is often shown in its hexadecimal farm.

The routine in BASIC that oversees the input, transiation and
execution af commands.

The area in YRam that siores the color of each of the
patterns in the Pattern table {see wol 11

104

command

Command vector
table

cPU

crunch code

Crunch code
buffer

Crunch code
tabile

device

Execution loop

An order given to BASIC to perform a function. A command
can be a part of a line. |t has a Primary word followed by
any crunch code ngeded to execute that function.

This table stores the vectors for the commands listed in the
Primary word table. The token for each command is used to
1gok up the vector for that command in this tabie.

Central processing unit, the microprocessar or 280,

A group of tokens or codes that represent the string you
typed in. While a token is a single byte, crunch code can
refer to many bytes.

A buffer that stores the crunch code for the last line you
typed in. If a line number exists for the ling, then this
buffer.is copied to the Crunch code table.

A table in RAM that stores the parsed iine you typed in a
form called crunch ¢nde. Lines in this table are part of a
program, with each line number entry in the Line number
table pginting to that line’s crunch code in this table.

A piece of hardware that accepts commands from Adamiet
to either write to or read data from some sort of storage
system. The keyboard, tape ang disk drives are examples of
devices.

The routine that loops endlessiy until the end of the Crunch
code buffer or table, or the execution of the ENO or STOP
command. |t qets a token from crunch code and 2ails the
vector in the Command vector table to executs the command,

105

floating point

Floating Point
Accumulator
{(FPA)

hexadecimal ($)

keyword

line

Line number

table

macro

Name table

A form of representing numbers by having 8 4 byte mantissa
and an exponent. It is often used for large numbers or
numbers with a8 decimal point.

An area in RAM that is used to store a fisating paint number.
It 15 Tike the 280°s Accumulator, hecause it is used for many
Calculations. On the Adam, the FPA can either hold a floating
point number, ar it can point to a string.

Motation that uses base 19 to represent a byte with the
normal decimal digits and the letters A, B C, 0, Eand F
(A=10, and C=12, etc! Binary numbers can rastly he shawn
in hex, because they take twa hex digits.

A keyword is a primary, secondary or tape word. They are
represented by tokens when a line is parsed into crunch code.

A line can refer to the screen or to everything typed before a
return. It is usually the iatter.

An area in RAM that stores your program’s line numbers in
ascending order. The entries in this table aiso point to the
Hine’s crunch code in the Crunch code table.

A string that is printed when you hit a key as if you had
typed it in. Up to 30 macros can be stored by the HELLD
program in chapter 11

A table in VRAM that stores the offsats for the Pattern
table. It reflects the current patterns displayed on the
screen. In the TEXT mode, the name table stores ASCH codeg,
iNHGR or GR, 1t is filled with O to FF repeating.

106

nibble

Operating

System (0S}

page

parse

Pattern table

paointer

primary word

Primary word
table

A group of either the upper four bits , or lower four bits of a
byte.

A group of subroutines that can be used in order to perfarm
tedious ar routine functions. Adam's Operating System is
called EOS (E for Elementary or extended) {t al3n uses N5-7
(which EQZ = built oni for cartridges.

A group of 236 ($FF) bytes. .

"To resolve into elements”. The process of replacing the
A3CII codes of a line with tokens and crunch code.

A table in VRam that stores the patterns of the characters to
be dispiayed on the screen in groups of 8 bytes.

Two bytes in RAM that point to a different memory location
that stores some sart of data. A pointer can contain data in
piace of the other memory Iocation. (Although it is then nnt a
pointer).

A string of ASC! that can be found in the Primary word
tadble. Primary words are the first words in a line or
command. Typical primary wards are: GOTO, TEXT, and iF

The table that stores the 43C1 strings of all the primary
words. The command's token and pointer to parse vector is
stored with the string.

107

RAM

ROM

secondary word

Secondary word

table

shape table

sprite

Sprite name

table

Sprite pattern
table

Random access memory, or, more accurately, read write
memory (but RWM does not sound as good).

Read only memory.

A string of ASCH that can be faund in the Secondary word
table. Secondary wards usually are used after Primary
words, and help in the zyntax at the command. Typieal
secaondary word are THEM, = ang *.

This tabie stores the ASCiH strings af all the secondary
words. Ajong with the string is the word's token, which 13
used to identify the word in crunch code.

A set of directions that BASIC follows in order to draw a
shape in the hi-res screen. Aasniimited number of shapes can
be stored in a shape tabls.

A pattern defined by 3 or 32 bytes that can te moved on the
screen by defining x and y coordinstes.

A tatle in VRam that has 22 entries. Each entry points to 3
pattern for that sprite, and the entry stores the calar and
coordinates far that sprite.

A table in VRam that stores the pattern of each sprite. Each
pattern takes up either 3 bytes (Sx8 sprites) or 32 bytes
(16x16 sprites) The bits in these bytes represent the gixels
on the screen that are on or off,

108

stack

string

String space

table

Tape vector

table

tape word

Reserved area of memory where the CPU stores twa byte
addresses or registers by Pushing to it, or Pogaing data aff
it. Datais stored in the first-in-last-out method in the
downyarg growing table.

A group of ASLCII characters that is normatly preceded by the
tength ot the string.

The area in RAM whera strings are stored either for a siring
variable or for temporary use.

An area in memary that groups similar data into one place.
Though some tablss may change, most remain the same and
store the same data needed continuaily by a routine or
routines,

A table in RAM that stores the vectors of the tape commands
in both the program mode and the immediate mode. Yectors
are stored in the arder used by the Tape word table.

A string of ASCH that can be found in the Tape word table.
Typical tape words include SAVE, LOAD, and CATALDS.

Tape word table This area in RAM stores the ASCI strings for each tape

token

cammand. ZASIC compares the command yau type in with the
strings in this table. [t also holds the offset for the
command's entry in the Tape vector table,

A number used ta represent 3 primary, secondary or tape
word. 1t heips speed up execution and saves memory by
reducing the amount of space taken up to store the parsed
line.

108

variabie A type of command that is stored as a variable. They are
command used in equations and require parameters in parentheses.
Typical variable commands include COS, LEFT and VPOS.

Variabie table The table in memory that stores all the variables that are
used in a program. Each variable points ta its definition,
which is either a8 string or a number. 5irings are ztored in
String space, and numbers are stored in the Variable value

table.
Yariable value A table in RAM that =ztares the current vaslues for all the
table numeric yariabies in flnating point format.
vector A pointer in RAM that paints to a routine that will be

executed. A pointer oniy points to data, while a vector
points to a routine.

YRAM 16K of RAM used by the Video Display Processor to store the
tables for the screen and sprites. It is accessed by using 1/0
space on the 280.

110

The first volume of this work is a very useful companion to this volume.
it discripes the 280, sound and video chips, AdamNet, operating system
routines, and many other important aspects of Adam.
very useful programs, such as a disassembler to print oyt the routines
dgescrited in volume two, a tape backup, cartridge-copy, and more as listed

helow.

Volume one is available for $1295 from Peter angd Ben Hinkle, 117
Northview R4, Ithaca, NY 14850. We als0 have a tape with the programs

The Hacker's Guide to Adam

Volume one

it also has some

from volume one, plus HELLD and Sprite~-adit from volume two, for §5.

Table of Contents

[T I T R T ¥ B VT T N R)
LI S

O I e S
M -3 O W bk W N = O
-

System Qverview
Numbers

280 Assembly Language

Dinassembler
Memory Map

« Memory Bank Switches
« Operating System
. BASIC

. Video Dispiay Processor
. Sound
. Game Controllers
. AdamNet
» Keyboard

Printer

. Tape

« Power Supply
. Expansioﬁ Cohnectora
. Pinouts

15
21
23
24
27
29
42
48
49
5o
5T
52
56
s7
59

Program Index
Hex table
Disass

Viewar
Printmemn

Romvi ewer
Sprite editor
Demo sprite ed
SCRN-HGR
Print VRAM
Sprite demo
Font editor
Sound teat

AND music
Music editor
Printer demo
Tape editor
tape backup
Cartridge copy

16
19
20
23
16
37
37
37
18
39
4y
44
47
52
53
54
55

