
The Adam Technical Journal

Description of the Video Display Processor 1
Controlling the screen directly 2
Now to customize the character set 4
Controlling screen and character colors 6
First installment of Basic Utility Library 1.0 9
Example programs to demonstrate the utilities 10
Helpful Tid-Bits of information about the ADAM 13

Copyright 1985, serendipity Productions

BI MONTHLY NEWSLETTER

VOL 1 - NO. 1 2/85

CREATED FOR COLECO ADAM OWNERS

A TECHNICAL NEWSLETTER ON HOW TO OUT SMART "SmartBASIC"

SERENDIPITY PRODUCTIONS
P.O. BOX 07592
MILWAUKEE, WI 53207

INTRODUCTION

This is the first of a series of newsletters that
discusses the capabilities of ADAM SmartBASIC. The first
few newsletters will concentrate on the Video Displ ay
Processor. We will then continue into the SmartBASI C
Interpreter and Operating System.

The Video Display Processor (VDP) is one of three
microprocessors in the ADAM. The main processor is the
Z80 CPU (Central Processing Unit). The Operating Sy stem
and SmartBASIC are written in the Z80's assembly
language. The Z80 controls the Inputs and Outputs (1/0)
that control the TI SN76489AN Sound Processor and t he TI
TMS9918A Video Display Processor. For this reason t he
programs that we will discuss will be partially wri tten

in the Z80 Assembly Language.

The Video Display Processor controls all of the vid eo
screen displays. This includes:

1) How the characters to be displayed are defined
2) The color of the foreground and background of
different sets of characters
3) The display or retrieval of a character an the s creen
4) The definition and display of sprites
5) The ability to go into high resolution graphics.

In this newsletter, we will concentrate on displayi ng
and retrieving characters from the screen. We will also
discuss how you can define your own character sets and
change the screen and character colors.

VDP MEMORY

The ADAM Computer has 80K (81920 bytes) of Random A ccess
Memory (RAM). Only 64K of this memory is directly
accessible by the main Z80 CPU. The remaining 16K i s an
indirect memory and can only be accessed through th e
VDP. This 16K of memory, which we will call VDP mem ory,
contains a collection of tables used by the hardwar e
which operates the display screen. For example, the re
are two segments of 768 bytes of memory used for th e
Screen Image Table. The Screen Image table holds th e
ASCII codes of text presently being displayed on th e
screen. Another example is the Character Definition
Table. This table uses 2048 bytes of memory which
describes what each displayable text character look s
like. When you want to display the letter "A" on th e
screen, the ASCII code for "A" is placed in the fir st
table. The hardware sees that code, looks it up in the
character definition table to see what it looks lik e,
then paints it on the screen.

The VDP is accessed through two I/O PORTS: PORT 191 ,190.
The first port (191) is used to tell the VDP what t o do
with the data. Port 190 is used to send or receive the

actual data. There are 4 basic operations that the VDP
can perform.

1) Write to VDP memory
2) Read from VDP memory
3) Write to VDP write-only registers
4) Read the VDP status register

The first two operations are your only means of acc ess
to the 16K VDP memory. The third operation allows y ou to
change the 8 internal registers of the VDP processo r.
The appropriate values in these registers will allo w you
to define where the different tables will reside. T hey
also give the capability of changing the mode of th e
display. These modes are:

1) Hi-Res (each point, or pixel, an the screen is
definable)
2) TEXT (gives you 40 columns of text displayed)
3) Graphics (gives you 32 columns, and is the mode the
ADAM is normally in)
4) Multi-Color (each character appears as four colo r
definable squares)

We will discuss these modes and how to obtain them in
future newsletters.

As mentioned earlier the main topics of this issue are
Character definition, Color code definitions, scree n
color and reading and writing to the screen. These
issues will be discussed in the context of the 32 c olumn
by 24 row Graphics mode.

POKING AND PEEKING VDP MEMORY

In order to tap the exceptional power of this Video
Display Processor, we must be able to modify VDP me mory.
Since the BASIC PEEK and POKE commands cannot reach VDP
memory, we will have to use two small assembly lang uage
programs. Assembly listings (#2 and #3) for these
programs are given at the end of this newsletter. T hey
are for your information only since the actual rout ine

is built for you by the BASIC Utility program (list ing
#1). Both programs listed at the end of this newsl etter
use port #191 to set up the address to poke into an d
port #190 to send the value you want poked into VDP
memory.

The POKEVM program first saves the accumulator, sta tus
flags and register pair BC on the stack. The low
address byte is sent to PORT 191 first. The high by te
must be offset by a value of 64 before it is sent t o
PORT 191. The offset indicates to the VDP which of the 4
operations described above are to be performed. A w rite
to VDP memory requires an offset of 64, writing to a
register requires a 128 and a read from memory requ ires
no offset. Reading the status register is a slightl y
different operation and is not very useful until we get
into some rather sophisticated graphics. The offset is
added on by line 52000 of the BASIC program. The se ries
of six "EX (SP),HL" instructions are used as a dela y to
give the processor time to set the address. This in
instruction was chosen because it is one of the mos t
time consuming, which is the effect we're after. Th e
value you wish to transfer to VDP memory is then se nt
through Port 190. After each write to VDP memory th e
VDP's internal address buffer increments itself
automatically.

Therefore, if the count-down register (BC) has not
reached zero the program will loop through without
having to tell the VDP what address to write to eve ry
time. After the count down loop has completed, the
accumulator, status and BC registers are POPped bac k and
the program returns to the calling BASIC program.

The BASIC subroutine at line 52000 does nothing mor e
than take the destination address and character cou nt,
then decomposes them into 2-byte values. It then ad ds 64
onto the high byte of the address and pokes the fou r
bytes into the POKEVM assembly language routine. la stly,
the assembly subroutine is CALLed and the BASIC
subroutine RETURNS to the main program.

The PEEK subroutine is similar to the POKE with the

following exceptions. The count-down loop is no lon ger
needed since we are only going to read one memory
location. The high byte of the VDP address no longe r
needs the offset (actually, the offset is zero as
discussed above). The OUT 191 is replaced by an IN 191.
After the IN instruction, the accumulator is transf erred
into a CPU address. Since only one address is to be read
the PUSH BC and POP BC instructions are also not pr esent
in the-PEEKV program.

The PEEK BASIC subroutine decomposes the address in to
two bytes the same way as the POKE subroutine. Thes e two
bytes are passed down into the PEEK VDP assembly
routine. After the routine is executed, the content s of
the VDP memory location will have been copied into the
CPU memory 10 bytes beyond the PEEK VDP assembly
routine. This CPU address is then peeked by the BAS IC
subroutine and stored in a variable.

WHERE TO PUT THE ASSEMBLY LANGUAGE

The assembly language is loaded into memory using
subroutine starting at line #51000. This routine PE EKs
at locations 16102 and 16101. These locations conta in
the high and low bytes of the address where the lar gest
line number is stored in the line number table. Two
locations below this address is the high and low by tes
of the address where the tokenized code of the last line
is stored. This address with the offset of 10 is wh ere
we are going to store the assembly language. Theref ore
to create a buffer in your basic program to store y our
assembly language you need a non-executable instruc tion,
such an instruction is the REM with as many charact ers
in it as needed for the buffer. This REM statement must
be located with the largest line number in your pro gram
- Storing the assembly routine inside a REM stateme nt of
a basic program gains several advantages. one advan tage
is that assembly language becomes an integral part of
your program. It can be saved and loaded onto a dat a
pack right along with your BASIC program. Other rea sons
will become apparent in future issues. one of these
topics will include a fast loader and saver that wi ll

decrease the time of saving and loading to about an
eighth of the normal time. This topic will be in th e
issue that covers the topic of how the BASIC interp reter
tokenizes code.

SCREEN DEFINITION TABLES

This contains the ASCII codes of what is presently
appearing on the screen. Therefore, if you put, for
example, a 65 into this table you see the letter "A ll
appear on the screen.

There are actually two screen Image Tables, the
operating system alternates these tables in order t o
cause a cursor to blink. If the ASCII 65 was only P ut
into one of these tables the screen display would
alternate between what was originally there and the "A".
To make the screen appear stable you must poke the same
ASCII value into both tables.

Smart Basic has defined these tables in the VDP mem ory
to start at locations 2048 and 6144. Each table con tains
768 bytes. This corresponds to 24 rows times 32 col umns.
The memory locations that correspond to each row ar e as
follows.

 ROW TABLE(1) TABLE(2)
 1 2048-2079 6144-61715
 2 2080-2111 6176-6207
 3 2112-2143 6208-6239
 4 2144-2175 6240-6271
 5 2176-2207 6272-6303
 6 2208-2239 6204-6335
 7 2240-2271 6336-6367
 a 2272-2303 6368-6399
 9 2304-2335 6400-6431
 10 2336-2367 6432-6463
 11 2368-2399 6464-6495
 12 2400-2431 6496-6527
 13 2432-2463 6528-6559
 14 2464-2495 6560-6591

 15 2496-2527 6592-6623
 16 2528-2559 6624-6655
 17 2560-2591 6656-6687
 18 2592-2623 6688-6719
 19 2624-2655 6720-6751
 20 2656-2687 6752-6783
 21 2688-2719 6784-6815
 22 2720-2751 6816-6847
 23 2752-2783 6848-6879
 24 2784-2815 6880-6911

The basic "WRITE-TO SCREEN" subroutine starting at line
53000 calculates the addresses for you, given the r ow
and column, and then executes the POKEMV routine.

The "READ-FROM-SCREEN" subroutine starting at line 56000
calculates an address only for Table (2) given the row
and column ocations. The reason for PEEKing from on ly
one table is what we had mentioned earlier. The two
tables are duplicates of each other except for what is
under the cursor.

CHARACTER DEFINITION TABLE

As we mentioned above in the VDP MEMORY section, th e
character definition table describes the appearance of
each displayable character. This table consists of an 8
byte binary "picture" corresponding to each of the ASCII
 codes. The format of that picture will be describe d
below and we will actually change the appearance of the
character of your choice.

The character definition table starts in VDP memory at
location 0 and goes to location 2048 allowing a max imum
of 256 character definitions. To calculate which 8 bytes
control the definition of a particular ASCII code y ou
would multiply the ASCII code by 8. This will give you
the beginning memory locations of the 8 consecutive
memory locations that define the character.

A character is made up of an eight by eight grid. E ach
row of this grid, starting from the top, must be

converted into a byte value to be poked into the a
consecutive memory locations of the character you a re
redefining.

we will first explain how to convert the row into a byte
value which ranges from a value of 0 to 255. Eight of
these bytes that represent each raw could then be
transferred directly into the table. Secondly, we w ill
look at a shorthand way of representing the 8 bytes .
This shorthand method is used in the BASIC subrouti ne
which will be discussed later.

If you look at Fig. 1, you will see a grid of 8 row s by
8 columns. Each raw must be converted into a single
byte. You will notice the columns are numbered left to
right 128, 64, 32, 16, 8, 4, 2, 1. To obtain the by te
value of the row, first check off the squares in th e 8x8
grid that will make the grid appear as the object y ou
wish. For each row, add up the values that appear a t the
top of the columns for the squares that are checked off.
When you have completed all the rows, you will have the
bytes necessary to poke into the table to redefine the
character.

As an example, we will calculate the memory locatio ns
for the character "A" and determine the bytes to be
poked into these locations to make it look like a j et.

To calculate the memory location simply multiply 8 times
the ASCII code "A". This is: 8x65=520. Therefore,
locations 520 through 527 hold the definition for t he
letter "A".

The values to he POKED into these locations are
calculated and appear at the bottom of the grid in fig
2.

(GRAPHIC NOT INCLUDED)

ROW 1: 8 = 8
ROW 2: 16+8+1 = 25
ROW 3: 32+16+8+2+1 = 59
ROW 4: 128+64+32+16+8+4+2+1 = 255

ROW 5: 32+16+8+2+1 = 59
ROW 6: 16+8+1 = 25
ROW 7: 8 = 8
ROW 8: 0 = 0

Fig. 2

If you were to use the POKEVM subroutine that we
discussed earlier to poke the calculated values int o
locations 520 through 527, all A's from that point on
would appear on the screen as jets.

THE SHORTHAND METHOD

The shorthand method is used by the BASIC subroutin e
discussed later to pass a new character definition to
the VDP by use of a single string variable. This is
desirable for two reasons. First, it allows you to use
one variable to describe the character rather than 8, a
considerable savings in a large program. Second, it
breaks up the character into twice as many pieces m aking
it easier to modify later on.

The method involves decomposing the 8x8 grid into a 16
character string. This is done by separating each r ow
into two 4 column rows (see Fig. 3). The 4 columns for
each raw are converted into a hexadecimal value.
Hexadecimal is a number system that is base 16 and the
digits in the set are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,
B, C, D, E and F. Figure 4 lists the hexadecimal va lue
for its particular 4 column pattern.

(GRAPHIC NOT INCLUDED)

To illustrate how a 16 character string can represe nt a
character Pattern, we obtain the definition of the jet
of Fig. 2. If you look at Fig.5 you will see that t he
8x8 grid has been separated into two grids of 4 col umns
by 16 rows. Each 4 column row is then compared to F ig. 4
to obtain the corresponding pattern number. The pat tern
numbers are then combined into a single 16 characte r
string.

(GRAPHIC NOT INCLUDED)

COLOR DEFINITION

The Color Definition Table contains the code which
defines the foreground and background colors of the 32
character sets. The table starts at VDP memory loca tion
8192 and contains 32 memory locations. Each byte de fines
one subset of a characters. For example, character set
#10 would contain the ASCII codes 72-79 which are
(H,I,J,K,L,M,N,O). The following table gives the
character set # and VDP memory location that contro ls
the colors of the characters in that set.

TABLE 2

SET VDP ASCII
LOCATION CODES
========================
1 8192 0- 7
2 8193 8-15
3 8194 16- 23
4 8195 24- 31
5 8196 32- 39
6 8197 40- 47
7 8198 48- 55
8 8199 56-63
9 8200 64- 71
10 8101 72- 79
11 8202 80- 87
12 8203 88- 95
13 8204 96-103
14 8205 104-111
15 8206 112-119
16 8207 120-127
17 8208 128-135
is 8209 136-143
19 8210 144-151
20 8211 152-159
21 8212 160-167

22 8213 168-175
23 8214 176-183
24 8215 184-191
25 8216 192-199
26 8217 200-207
27 8218 208-215
28 8219 216-223
29 8220 224-231
30 8221 232-239
31 8222 240-247
32 8223 248-255

The character set number will be used in the Basic
subroutine starting at line 55000 to identify which set
you would like to chance. The value you POKE into t he
Color Definition Table is listed in Table 3.

The chosen foreground and background color must be
combined into a single byte to be poked into the
appropriate character set memory location. This is
accomplished by multiplying the foreground color by 16
and adding the background color code onto it. The B ASIC
subroutine at line 55000 does this for you. The
background is normally transparent for all the char acter
sets. This allows the screen color to be seen behin d the
characters.

TABLE 3

 CODE
COLOR NUMBER
======================
Transparent 0
Black 1
Medium Green 2
Light Green 3
Dark Blue 4
Light Blue 5
Dark Red 6
Cyan 7
Medium Red 8
Light Red 9

Dark Yellow 10
Light Yellow 11
Dark Green 12
Magenta 13
Gray 14
White 15

SCREEN COLOR

The screen color is the background color you would see
behind the characters that have been defined with a
transparent foreground or background color. The col or
code number used is the same as defined in Table 3.

Changing the screen color involves changing the val ue in
VDP register #7. We will discuss how to calculate t he
value that must be poked to change VDP registers in a
future issue. However, we have included a BASIC
subroutine starting at line 57000 to alter the Scre en
colors.

THE BASIC UTILITIES

As you can see, the utilities are a set of basic
subroutines. By simply setting some reserved variab les
to the parameters you desire and doing a GOSUB to t he
particular subroutine, you will perform a graphics
function.

The idea is to include the utilities in a BASIC pro gram
you create. This can be done in one of two ways. Yo u can
either LOAD the utility file from tape and key in t he
program above it or you can use SmartWRITER to appe nd
the utility file to an existing program.

Your program should not use any variables that star t
with the letter "u" other than for passing utility
parameters. Your program must reside above the
utilities, that is, have lower line numbers than th e
utilities. The following section describes how to u se
each utility.

SET UP UTILITY (GOSUB 51000)

This subroutine sets up the assembly language neede d for
all the other subroutines. Therefore GOSUB 51000 on ly
has to be executed once at the beginning of your
program. If you intend to list the entire program o n the
printer or transmit it aver a modem, it is advisabl e to
re-enter the REM statement at line 65535 with a str ing
of at least 60 characters. Since the remark stateme nt
contains a machine language program after performin g a
GOSUB 51000 and not printable characters, it may ca use
problems on certain rare occasions. If a data value
poked into the routine corresponds to a screen or
printer control byte, it will be executed. For exam ple a
value of 16 corresponds to a control-P which causes the
contents of the screen to be sent to the printer.

Also, if you are repeatedly saving a program to tap e
(i.e. developing a new or large program) it is a go od
idea to re-enter the line anyway since SmartBASIC a lways
inserts an extra character into the beginning of al l REM
and DATA statements when writing it to tape. Becaus e of
this you must GOSUB 51000 after every LOAD.

FORMAT:
10 GOSUB 51000

POKE VDP UTILITY (GOSUB 52000)

This utility will let you poke a value into consecu tive
VDP memory locations. The variables (ua,ub, and uc) are
set by you to the starting address in VDP memory, t he
value to be poked and the number of copies to be po ked.
By doing a GOSUB 52000 the poking will be performed .

FORMAT:

10 ua=2048: ub=65: uc=5: GOSUB 52000

WRITING TO THE SCREEN (GOSUB 53000)

Placing a character or a series of the same charact er on
the screen is performed by this subroutine. The var iable
(ur) is used to set the desired row. Variable (ul)
contains the starting column location on the screen .
Variable (ub) is used to hold the ASCII code to be
displayed on the screen. The last variable you must
define is (uc) which contains the number of consecu tive
copies you will have displayed on the screen. Final ly,
performing a GOSUB 53000 will put the character on the
screen.

FORMAT:

10 ur=1: ul=1: ub=66: uc=5: GOSUB 53000

CHARACTER DEFINITION UTILITY (GOSUB 54000)

This subroutine will allow you to change the appear ance
of any character. All that must be done is to set the
variables
(us) to the ASCII code of the character you wish t o
change and (us$) to the 16 character string that de fines
the pattern, as discussed in the shorthand method.
Lastly, performing a GOSUB 54000 will change the
appearances of the character.

FORMAT:

10 us=65: us$="08l93BFF3Bl90800": GOSUB 54000

CHARACTER SET COLOR UTILITY (GOSUB 55000)

Changing the foreground and the background colors o f the
character sets of table 2 is performed by this
subroutine. If you set variable (us) to the charact er
set code (table 1), and set (uf) and (ub) to the
foreground and background color codes found in tabl e 2,
and lastly execute a GOSUB 55000 the characters in that
set will change to the corresponding colors.

FORMAT:
10 us=9: uf=1: ub=15: GOSUB 55000

PEEK VDP MEMORY UTILITY (GOSUB 56000)

This utility will allow you to peek at any VDP memo ry
location. If you set (ua) to the address you wish t o
peek and perform a GOSUB 56000 you Will have the
contents of that address returned to you in the var iable
(ub).

FORMAT:
10 ua=2144: GOSUB 56000: va=ub

SCREEN COLOR UTILITY (GOSUB 57000)

This utility will let you change the background col or of
the screen. By setting (us) to the desired color co de
number found in table 3 and performing a GOSUB 5700 0 you
will set the screen to the corresponding color.

FORMAT:
10 us=5: GOSUB 57000

READING FROM THE SCREEN (GOSUB 58000)

This subroutine allows you to read a character off the
screen at any location. Variable (ur) is used to ho ld
the row location and varialble (ul) is set to conta in
the column location on the screen you wish to obtai n.
After you execute GOSUB 58000 the variable (ub) wil l
contain the ASCII code of that location.

FORMAT: 10 ur=10: ul=20: GOSUB 58000: va=ub

UNSCRAMBLING A MESS !!!

Probably the most important command in SmartBASIC i s
"TEXT". This command will undo anything you have d one

to the VDP memory and allows you to start with a cl ean
slate. There will be times when the screen is total ly
blank, giving you the impression that the VDP hung up.
If you have been accessing the VDP, its worth tryin g
"TEXT" even if you don't think you did anything wro ng.
It resets all the table locations and content, incl uding
the character definition table.

BASIC UTILITES

This utility package should be included below all t he
example programs to follow. There are a large numbe r of
REM statements in the following program. If you wou ld
like to save yourself time and CPU memory you can l eave
them out as you type in the programs

Make certain the last REM statement in the utilitie s is
not removed.

Listing #1

50990 REM Set up assembly routine
50995 REM Data for loading down machine code for PO KEVM
See: Assembly listing
51000 DATA
245,197,1,0,0,62,0,211,191,62,0,211,191,227,227,227 ,227,
227,227,62,0,211,190,11,120,177,32,247,193,241,201
51005 REM Machine code for PEEPV
51010 DATA
245,62,0,211,191,62,0,211,191,227,227,227,227,0,0,2 19,19
0,50,0,0,241,201,0,0,0,0,0,0,0,0
51015 REM Get address of last line number
51100 ux = PEEK(16102)*256+PEEK(16101)-2
51150 REM Get address of last line of tokenized cod e
51200 ux = PEEK(ux)+PEEK(ux+1)*256-10
51250 REM Load down machine code
51300 FOR ui = ux TO ux-56: READ ua: POKE ui, ua: N EXT
ui
51350 REM Calculate and POKE down address for LD $0 000,A
of PEEKV assembly routine
51400 ut = ux-55: POKE ux-50, INT(ut/256): POKE ux+ 49,
ut-INT(ut/256)*256

51500 RETURN
51990 REM POKEVM routine ua = address ub = data uc =
number of copies
51995 REM Calculate high and low byte of address an d
POKE down data into POKEVM assembly routine
52000 uw = INT(ua/256): uy = ua-uw*256: uw =uw+64: POKE
ux+6, uy: POKE ux-10, uw: POKE ux-20, ub: POKE ux-4 ,
INT(uc/256)
52010 REM Set timing for VDP access
52020 POKE 17009,0
52100 POKE ux-3, uc-INT(uc/256)*256: CALL ux
52200 RETURN
52990 REM Screen write ur = row ul = column ub = da ta uc
= number of copies
52995 REM Calculate VDP address for both screen tab les
53000 us = ((ur-l)*32+ul-l)+2048: GOSUB 52000: ua =
ua+4096: GOSUB 52000: RETURN
53990 REM Define character us=ASCII code us$=charac ter
definition shorthand code
54000 TDR ui = 1 TO 16 STEP 2
54005 REM Decompose shorthand string into 8 bytes a nd
POKEVM into character table
54010 ul = ASC(MID$(us$, ui, 1))
54020 u2 = ASC(MID$(us$, ui+1, 1))
54030 IF ul < 60 THEN ul = ul - 48: GOTO 54050
54040 ul = ul-55
54050 IF u2 < 60 THEN u2 = u2-48: GOTO 54070
54060 u2 = u2-55
54070 ub = ul*16+u2: ua = (ui+1)/2+us*8-1: uc = 1: GOSUB
52000
54080 NEXT ui
54090 RETURN
54990 REM Color definition us = character set # uf =
foreground color ub = background color
55000 ua = us+8191: ub = uf*16+ub: uc = 1: GOSUB 52 000:
RETURN
55990 REM PEEKV ua = address ub = incoming data
55995 REM Set timing for VDP access
56000 POKE 17009,0
56095 REM Decompose address into two bytes and PORE down
into PEEKV assembly language
56100 uw = INT(ua/256): uy = ua-uw*256: POKE ux+33, uy:
POKE uX+37, uw: CALL ux+31: ub = PEEK(ux+55): RETUR N

56990 REM Change screen color uc = color code
57000 ua = 18176+us: POKE ux+16, 24: POKE ux+17, 10 :
GOSUB 52000: POKE ux+16, 227: POKE ux+17, 227: RETU RN
57990 REM Character read from screen ur = row ul =
column ub = data
58000 ua = ((ur-1)*32+ul-1)+6l44: GOSUB 56000: RETU RN
65535 REM THIS IS A BUFFER FOR THE ASSEMBLY LANGUAG E
ROUTINE

EXAMPLE PROGRAMS

This example demonstrates the POKEVM and PEEKV
subroutines. The program changes the definition of
characters 32-255 so that the characters appear ups ide
down.

90 REM set up assembly language
100 GOSUB 51000
105 REM Loops through the character table starting with
ASCII (32) times 8 which equals 256.
110 FOR I + 256 TO 2048 STEP 8
115 co = 0
116 REM Reads the 8 bytes that define the character in
VDP memory.
120 FOR m = I TO i+7
130 ua = m: GOSUB 56000: te(co) = ub
150 co = co+1
160 NEXT m
170 co=0
175 REM Invert and POKEV the character definition b ack
to VDP memory.
180 FOR m = I+7 TO I STEP -1
190 us = m: ub = te(co): uc = 1: GOSUB 52000
200 co = co+1
210 NEXT m
220 NEXT i
230 END

PUT UTILITIES HERE....

This example program illustrates how to define a

character. This program changes the character "A" t o
look like a jet.

90 REM Set up assembly language
100 GOSUB 51000
110 us = 65: us$ = "08l93BFF3B190800": GOSUB 54000
120 PRINT "A A A A A A A A A A A A A A"
140 END

PUT UTILITIES HERE....

This example program demonstrates several of the VD P
utilities. It demonstrates redefining characters an d
placing that character on the screen. The program w ill
create a little man and cause him to dance back and
forth across the screen.

90 REM Set up assembly routine
100 GOSUB 51000
105 REM Shorthand character definition code for lit tle
man
110 a$ = "1898FF3D3CE40400"
120 b$ = "1819FFBC3C272000"
125 REM Redefine characters 0 and 1
130 us = 0: us$ = a$: GOSUB 54000
140 us = 1: us$ = b$: GOSUB 54000
145 REM Use screen write subroutine to clear screen
150 ur = 1: ul = 1: ub = 32: uc = 768: GOSUB 53000
160 b = 2: c = 31: e = 1: fl = 0
165 REM Loop to locate man on screen
170 FOR I = b TO c STEP e
175 REM Alternate between character 0 and 1
180 IF fl = 0 THEN fl = 1: GOTO, 210
190 fl = 0
200 REM Erase character behind little man. man is i n row
10
210 ur = 10: ul = i-e: ub w 32: uc = 1: GOSUB 53000
212 REM Put man on screen in row 10
215 ur = 10: ul = i: ub = fl: uc = 1: GOSUB 53000
220 NEXT i
225 REM Mange directions
230 IF c = 31 THEN b = 31: c = 2: e = 1: GOTO 170

240 GOTO 160
250 END

PUT UTILITIES HERE.

This program demonstrates how to read characters fr om
the screen. The program reads the screen into an ar ray
buffer and than prints the screen in reverse order.

90 REM List some TEXT on the screen
100 LIST 100-400
105 REM Set up assembly language
110 GOSUB 51000
120 DIM b$(24)
125 REM Read screen and put into array buffer
130 FOR ro = 24 TO 1 STEP -1
140 FOR co = 2 TO 31
150 ur = ro: ul = co: GOSUB 58000
160 b$(ro) = b$(ro)*CHR$(ub)
170 NEXT co
180 NEXT ro
185 REM Print the buffers back to the screen in rev erse
order
190 FOR ro = 24 TO 1 STEP -1
200 PRINT b$(ro)
210 b$(ro) = ""
220 NEXT ro
230 END

PUT UTILITIES HERE

This program flashes all the different color screen s.

90 REM get up the assembly routine
100 GOSUB 51000
105 REM Loop through the different colors
110 FOR I = 0 TO 15
120 uc = i: GOSUB 57000
125 REM Delay loop
130 FOR i = 0 TO 500: NEXT i
140 NEXT i

150 GOTO 110

PUT UTILITIES HERE.....

The following program helps you obtain the shorthan d
code for defining your own characters.

When you RUN this program an 8 x 8 grid will be
displayed for you. By pressing the "1" key a black
square will replace the cursor and the cursor will move
to the next position. Pressing the key "0" will lea ve
the square blank. After the last square is defined the
shorthand code string will be displayed along the r eal
size character by itself and in a 3 x 3 square. If you
make a mistake Before you define the last square yo u can
use the right and left arrow key to position yourse lf to
make the correction.

After the character code is displayed you have a ch oice
to quit or to define another character. if you choo se to
continue the scram will be cleared and a new 8 x a grid
will be displayed. The image of the last 8 x I grid can
be recovered by Just using the arrow key to pass th e
cursor over the grid. Because of this if you have m ade
an error an the previous character grid it can easi ly be
corrected an the next grid.

This program was modified from a program originally
written for the TI 99/4(A) home computer The TI 99/ 4(A)
and the ADAM computers both have the same VDP proce ssor.
with the utilities we have provided in this newslet ter
and utilities of future newsletters you can modify many
of the TI 99/4(A) programs to run on the ADAM syste m.

90 GOSUB 51000
95 REM Change color of screen
100 uc = 4: GOSUB 57000
103 REM Redefine characters 30, 100, 101
105 us = 30: Us$ = "FF81818181818181FF": GOSUB 5400 0
110 DIM b(8, 8)
120 us = 100: us$ = "000000000000000000": GOSUB 540 00
130 us = 101: us$ ="FFFFFFFFFFFFFFFFFF": GOSUB 5400 0

135 REM Change color of set 13, 4, 16
140 us = 13: uf = 1: ub = 15: GOSUB 55000
145 us = 4: uf = 15: ub = 9: GOSUB 55000
147 us = 16: uf = 4: ub = 4: GOSUB 55000
148 REM Clear screen
150 ur = 1: ul = 1: ub = 32: uc = 768: GOSUB 53000
155 REM Create screen
160 m$ = "AUTO CHARACTER DEFINITION"
170 y = 3
180 x = 4
190 GOSUB 770
200 m$ = "12345678"
210 y = 8
220 GOSUB 770
230 GOSUS 820
240 m$ = "O=OFF=WHITE"
250 y = 22
260 x = 4
270 GOSUB 770
280 m$ = "1=ON=BLACK"
290 y = 23
300 GOSUB 770
310 FOR r = 1 TO 8
320 ur = 8+r: ul = 5: ub = 100: uc = 8: GOSUB 53000
330 NEXT r
335 REM Cursor control on 8 x 8 grid
340 FOR r = 1 TO 8
330 FOR c = 1 TO 8
360 ur = 8+r: ul = 4+c: ub = 30: uc = 1: GOSUB 5300 0
370 GET ka$: ke = ASC(ka$)
380 IF ke = 163 OR ke = 161 THEN 400
390 GOTO 420
400 GOSUB 870
410 GOTO 360
420 ke = ke-48
430 If (ke < 0) OR (ke > 1) THEN 370
440 b(r, c) = ke
450 ur = 8+r: ul = 4+c: ub = 100*ka: uc = 1: GOSUB 53000
460 NEXT c
470 NEXT r
475 REM Create shorthand definition
480 he$ = "0123456789ABCDEF"
490 m$ = ""

500 FOR r = 1 TO 8
510 lo = b(r, 5)*8+b(r, 6)*4+b(r, 7)*2+b(r, 8)+l
520 hi = b(r, 1)*8+b(r, 2)*4+b(r, 3)*2+b(r, 4)+1
530 m$ = m$+MID$(he$, hi, 1)+MID$ (he$, lo, 1).
540 NEXT r
545 REM Display new characters and shorthand code
550 us = 102: us$ = m$: GOSUB 54000
560 ur = 8: ul = 20: ub = 102: uc = 1: GOSUB 53000
570 FOR r = 0 TO 2
580 ur = 12+r: ul = 20: ub = 102: uc = 3: GOSUB 530 00
590 NEXT R
600 y = 16
610 x = 13
620 GOSUB 770
630 m$ = "PRESS q To QUIT"
640 y = 18
650 x = 12
660 GOSUB 770
670 m$ = "PRESS ANY OTHER"
680 y = 19
690 GOSUB 770
700 m$= "KEY TO CONTINUE"
710 y = 20
720 GOSUB 770
730 GET ka$: ke = ASC(ke$)
730 IF ke <> 113 THEN 140
760 TEXT: END
765 REM Horizontal string display routine
770 FOR i = 1 to LEN(m$)
780 co = ASC(MID$(m$, I 1))
790 ur = y: ul = x+i: ub = co: uc = 1: GOSUB 53000
800 NEXT I
810 RETURN
815 REM Vertical string display routine
820 FOR i = 1 To LEN(m$)
830 co = ASC(MID$(m$, i, 1))
840 ur = y+i: ul = x: ub = co: uc = 1: GOSUB 53000
830 NEXT i
860 RETURN
865 REM Arrow keys routine
870 ur = 8+r: ul = 4+c: ub = 100-b(r, c): uc = 1: G OSUB
53000
880 IF ke = 161 THEN 960

890 c = c-1
900 IF c <> 0 then 1020
910 c = 8
920 r = r-1
930 If r <> 0 then 1020
940 r = 8
950 GOTO 1020
960 c = c+1
970 IF c <> 9 then 1020
980 c = 1
990 r = r+1
1000 IF r <> 9 THEN 1020
1010 r = 1
1020 RETURN

MISCELLANEOUS TID-BITS

The purpose of this column is to inform you of
interesting little pieces of information that are n ot
big enough subjects to warrant an article on its ow n. It
may be a bug in the ADAM's software, or a 14
little-known feature of SmartBASIC, a useful system
routine that can be CALL'ed from your Basic program , or
a nifty little work-around for some nagging 'proble m
everyone seems to encounter. If you have a neat tr ick
would benefit others, that you think send it to us and
we'll make sure you got credit for it. Here's a cou ple I
bet you aren't aware of....

If you have ever tried to POKE a value into a memor y
above 53630, you know that it doesn't work. First
thought that it was Read-Only memory. Actually, it 's
only because SmartBASIC just won't do it for your
protection. The limit is stored in 16149 and 16150. It
you poke a value a 255 into both locations, you wil l be
able to do a POKE anywhere you like!

Did you ever notice that every time you save a Basi c
program, all the REM and DATA statements grow by on e
character? SmartBASIC will always add a space after the
words REM and DATA. YOU must be very careful with o ur
Utilities since the assembly language routines are

contained in DATA statements and are very long. Sav e it
a few times you will first lose the 201 which is th e
machine code for RETURN. To fix this situation, li st
the-line on the screen, run the cursor over the lin e
number, space over the DATA (or REM) until you can
retype the word in front of the original data, then run
the cursor over the rest of the line.

CLOSING REMARKS

SERENDIPITY hopes you found this issue enjoyable an d
educational. we would appreciate your comments rega rding
any aspect of this publication. if you would like t o see
specific topics covered, please let us know and we' ll
try to discuss them in future issues. lastly, if yo u
have any information about the ADAM system you woul d
like to share with our readers, please feel free to send
it to us.

Listing #2

PROGRAM POKEVM

DATE December 27, 1984

PURPOSE Pokes a character into VDP memory as many t imes
as desired. The destination address, character coun t and
ASCII character code must be poked into this routin e
before execution.

Byte Decimal Op Argument
 Comments
Count Values Code

=== =====
=== ==
1 245 PUSH AF
 Store registers that
2 197 PUSH BC
 we will be using
3 1 0 0 LD BC, $00

 Character count
6 62 0 LD A, $00
 Low byte of destination
8 211 191 OUT $BF,A
 Send it to VDP
10 62 0 LD A, $00
 High byte of destination
12 211 191 OUT $BF, A
 Send it to VDP
14 227 EX (SP), HL
 Time delay required by
15 227 EX (SP), HL
 by VDP for address
16 227 EX (SP), HL
 set up.
17 227 EX (SP), HL
18 227 EX (SP), HL
19 227 EX (SP), HL
20 62 0 LD A, $00
 Ascii code to be printed
22 211 190 OUT $BE, A
 Send data to VDP
24 121 DEC BC
 Decrement the count
25 120 LD A, B
 Load "B" into "A" for compare
26 177 OR C
 If count isn't zero then
27 32 247 JR NZ,$F7
 go back through loop
29 193 POP BC
 Else restore registers
30 241 POP AF
 and return to BASIC
31 201 RET

Listing 03

PROGRAM PEEKV

DATE December 27, 1984

PURPOSE PEEKS a character from VDP memory. The
destination address must be poked into this routine
before execution.

Byte Decimal Op Argument
 Comments
Count Values Code

=== =====
==
1 245 PUSH AF
 Store registers
2 62 0 LD A, $00
 Low byte of destination
4 211 191 OUT $BF, A
 Send it to VDP
6 62 0 LD A, $00
 High byte of destination
8 211 191 OUT $BF, A
 Send it to VDP
10 227 EX (SP), HL
 Time delay required by
11 227 EX (SP), HL
 set up.
12 227 EX (SP), HL
13 227 EX (SP), HL
14 227 EX (SP), HL
15 227 EX (SP), HL
16 219 190 IN A, $BE
 Get data to VDP
18 50 0 0 LD($0000),A
 Basic rtn. will supply this
21 241 POP AF
 Restore register and
22 201 RET
 return to Basic

The ADAM TECHNICAL JOURNAL is published bi-monthly by
Serendipity Productions. Subscription rates are $15 .00
per year in the U.S. and Canada, $20.00 per year in any
other country, payable by check or money order only .
Single issues are available for $3.00. All inquirie s and

payments should be made to Serendipity Productions, P.C.
Box 07592t Milwaukee, WX 53207.

Preview of the next issue:
==========================

Making the most out of hi-res graphics.

Defining and moving graphics Sprites for animation.

Using the joysticks for graphics motion control

The second installation of the Basic Utility Librar y
containing all the sprite control utilities

All concepts are demonstrated in an example program
which does free-hand screen painting with the joyst ick.

More useful Tid-Bits of information.

