".

v
. - s 5, B e L, 5 BV
i b L e ; .
—I—1—-1—1~1—1—-1—-I—1—-1T—1—=01—0—-1—01—~-01—-1T—1T—@1—01—01—1—-1—1—-1—-1=1"- =N =X — i~
o 2N =N SN BN K== B) B E9) ISy RO k) i) 15 1)) 1) 1Oy Uy B D) g BB RED DY BB REEY DY RO [y kS o R
s h :

= , =
= NIBBLES & BITS (=
= _ _ '
= THE COMPREHENSIVE MONTHLY NEWSLETTER FOR ADAM USERS iﬁ
Published by DIGYYAL RXPRESS, IHC. =
1203 Northvoods Drive, Rings Mtn, NC 28086
~(104) 739-9106
= . =
NS ESFHEFFF SRR EEEEE

JULY 1986
vol: 1, nmb: 1 ‘
SINGLE ISSUE: $£3.50

INSIDE THIS ISSUE: -

EDLTORISEANOTESL B .- o- o, o0 Wt o 2 D i R D
NEWS/UPDATES. . . .« « o v % o o o 0 « o o o o o o v o o o o 2
BIT BY BIT _ -
Common. Questions. « + . ¢« v ¢ ¢ . 0. . . A4
Programming Perspectives.« . . ¢« . « +« + . . . 4
Getting the most out of the PRINT command . . . 5 S
LIST paxameters & v + + « « ¢« &+ + « . &
BASIC line editing features and secrets 6

BYTE-SIZED BASIC
The ASCII code (PART T) ;.. s o i « s o « o « o » o« « 8
POKEs to play with (PART I): ¢ 10
Trigonometric graphies (PART I): 12

HACKER'S DELIGHT '
Z-80 instructions and registers. 14
What is assembly-language. 14
High and low order bytes 14
Instructions and registers revisited 15
The hexadecimal number system. 15
The video chip"¢ «17
Z-80 instructions in detail. 18
OS routines. 4.+ . . . 18
The VDP registers. « v +« « . . . 19
Assembly language notes. 22
Program LISTing explanations 22

WORD POWER.« ¢ ¢ ¢ & v & 4 o o o o o o o o o« o o+ 23

PRODUCT REVIEWS . e SNery 8 R) . 24
HACKER'S CONTEST. . + + w v v o v + . . . ve 425
SOFTWARE EXCHANGE . "~/ % o v w v v 4 o o « o o o o o o i525
ADAM ACCESS . . + e o T iy 26
DEI PRODUCT LIST. . i o o e’ s o 'stie o o o s ooy e 28
PRODUCT ORDER FORM. o et w28
SWIFT POLL BALLOT o o e atenE w e 28

This issue includes 9 SmartBASIC program EISTs, ‘G 'tables (chazts), and 3 assembly-language lists.

COLECOVISION, ADAN, SmartBAdIC, and $adetiriter ‘are registered trademarks of Coleco Industries, Inc.

NIBBLBS & RITS ls printed in ke uSl;_Copytiqht'(c) 1986 by DIGITAL BYPRESS, IHC. All rigﬁté-iesetved.'

I.-I v 8 anee
%

r

- -

’L\ e A

1 ag :

3 &
i -
{5 .
. g
.

Bl

v S SRS i S O N e

7 A

ATy e == = r l
WPl =i RA

t ' 5 ~
2l
i o Tt
- ¥ - -
v " = N i 1 A
- el v
'
o] =
i .
ok : = 1 :
) 4 'y - =y ~
lue Ly i -
PO 3 =
= et - a
" — &
et 3TN ! -
- Hi 5
i L
DRLE,
- i
i
" q ' - -
x 4t . s it
fist N
i3) I S ¢ &
s faes : i
.
- [
10
MRS =
e sy s

Aol - " e i
* i 2 .
: - T
15 . I
DSk
W at
: ¥y s Rary =t il
3. "
4
7500 3 o e
: - B0 RS i)
\ S O -
A ey . -
e 15 " '
5! \ rhypieing
iy P
* “h. 1
ey
1
O = ~2 ey =
- . — -I Taw -

NIDDLEDS & Dl IO

a
0
0
O
a
a
8]
0
a
O
O
O
a
O
8]
0
a
a
O
0
0
a
a
]
a
0
O
o
0
0
u]
]
0
a
a
a
a
8]
8]
o
O
0
a
]
O
a
O
O
O
a
0
a
a
a
O
0

O
a
a
0
a
]

EDITOR'S NOTE:

The response to NIBBLES & BITS has been far
greater than we expected! It is very
encouraging to see so many active ADAMites.

In editing NIBBLES & BITS, I have several
goals in mind. My first priority [s to do
everything that I can to help keep ADAM
alivell To accomplish this, our staff
works diligently for YOU to pack as much
ADAM info as possible into these 25 to 30
pages (every single month). If you have any
questions, comments, or suggestions,
please write to us. We sincerely vant this
newsletter to be what our readers want it to
be.

It's been just over a year and a half since
Coleco officially announced it was to drop
the ADAM. W¥e have Inside Information froma
reliable source that Coleco manufactured
in excess of a half million units. Indeed,
there are a LOT of us ADAMitesl!

Over the past two and half years there has
been a tremendous lmprovement in the
quality of software designed for ADAM. In
late 1903 there was only a handful of
programs available. Much of the early
third party (non-Coleco) software was of
poor quality. In fact, public domain
(non-copyrighted) software being released
today is vastly superior to the commericial
software of only two years agol

The problem back then was that, in effect,
Coleco refused to relinquish any technical
info regarding ADAM or SmartBASIC. It
seems to me that their plan was to be the
only software developer for ADAM. However,
thanks to the persevering research of many
devoted ADAM hackers a great deal of
progress has been made toward discovering
the 'secrets' of ADANM.

Commercial softvare developed within the
past year certainly reflects this new
technical knowledge. Every month new
titles are released for ADAM. In fact, much
of the latest third party software For ADAM
iswrittenentirely or (at least) partially
in machine language. The quality of ADAM
software has never been better!

page
DDUDDDUDDDDDDUUDDDUDDDDDDDDDDDDDDDDDDDDDDDUDDDDDDDDDQDDDDDDDDDDDDDDDD

This good news notwithstanding, several
developers of software for ADAM have
stopped releasing new titles because of a
lack of sales. If we ADAMites aren't
careful, this long-awaited availablity of
software will soon begin to taper off.

| The critical problem facing ADAN owners is

the rampant piracy by small groups of
wanton ADAM users. Piracy is prevalent
throughout the software industry. However,
with ADAM unlawful distribution of back-up
copies may very well precipitate a virtual
standstill in the development of new
software!|

Most software developers for ADAN are small
businesses that are VERY dependent on sales
to maintain growth. When sales decline,
these companies start reconsidering their
position in the industry. PLEASR ., . . if
you want to help keep ADAM alive, DO NOT
give in to the temptation to trade for or
purchase back-ups from unauthorized
distributors. If you have any doubts about
a distributor's authority with regard to a
particular software item, just write to the
copyright owner and ask for a list of their
authorized distributors.

Software PIRACY may well bring an end to
ADAM! Let's all work together to keep ADAM
alivelll Overall, things are looking up
for ADAM; let's keep it that wayl!

NEWS/UPDATES :

3 Until 12-1-86 NIBBLES & BITS will offer
the following discount to YOU for having a
friend subscribe to our newsletter. Por
each friend that you have subscribe, we
will extend your subscription by one issue
(limit 12), [If you get 12 friends to
subscribe, you'll get an entire extra year
(12 issues) of NIBBLES & BITS absolutely
FREE. Just have them send their check or

money order with a letter including your'

identification number (from your mailing
label) and your name.

3 DATA DOCTOR the developer of several
excellent software packages has discontin-
ued their operation. We have been asked not
to elaborate on their reasoning. However,
DIGITAL EXPRESS, INC. (our publisher) has

00

”

a

O

a
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
O
O
0
O
0
0
0
0
0
0
0
O
0
0
0
a
O
0
a
0
O
O
0
a
(8]
0
0
0
8]
0
O
0
O
0
0
0
a
0
0
0
O
O
a
a
0

=== l=l=l=l=]=l=l=l=l=l=l=l=l=]=lnl=l=l=i=l=lal=]=l=lsi=lslalslsl=lsi=i=inisl=ini=ieli=l=lsinlojcisial=l=l=lnl=] =l

ey e s
I T ¥

NIBBLES % BITS
00

(mm o

purchased the copyrights to all DATA DOCTOR
software (both marketed programs and
unreleased titles)! In a three tier
agreement DEI will eventually purchase the
reidinder of DATA DOCTOR. In good faith
DEI' will honor all of the other company's
varranties. If you have a matter of concern
for DATA DOCTOR, please address it to:

DIGITAL EXPRRSS, INC.
ATTN: 58

1203 Northwoods Drive
Kings Mountain, NC 28086

9 Several national department stores still
carry the ADAM Computer System. These
include: Circus World, Kabee Hobbies,
Lionel Leisures, Toys R Us, and ZAYRES.
Prices vary demographically ranging from
250 to 300 dollars.

9 American Design Components has a number
of electronic parts for ADAM in stock --
including digital data drives for $9.95.
To get their FREE catalog, call
1-800-524-0809. Some Radio Shacks also
cacrcy ADAN components.

9 We are currently working to gain
permission from Lazer Microsystems to
release SmartBASIC 2.0, At present, it is
available in the software underground.
This improved version of BASIC corrects
most of V1.0's bugs (including the DATA and
REM space bumps and the file handling
bugs). It also includes commands for
switching between standard memory and
extended memory (using a 64K expander) and
a MERGE command.

3 DIGITAL EXPRESS, INC. has released two
new software titles: Intel-BEST and
Intel-LOAD. Both of these are pure machine
code utilities. To maintain the integrity
of our staff reviews, we will not directly
review DEI products. However, we will
accept/print evaluations submitted by
NIBBLES & BITS subscribers.

9 Several companies are now developing
peripherals for ADAM. These include:
CAPITAL SOFTWARE, EVE Electronics, Jl's
Gourmet Hardware & Software Emporium, and
Orphanware. EVE Electronics is currently
vorking on a disk controller card that will

page 3

permit ADAM to be connected to non-Coleco
disk drives. The quality and price of
peripherals vary widely from one company to
another. PFor your own benefik, you should.
carefully compare before purchasing ADAM
hardwvare.

9 Coleco has fulfilled their contract
requirements for disk drives. It is
unlikely that they will ever again restart
manufacture of any ADAM product. Also,
they will repair out-of-warranty disk
drives for about $170.00. Obviously, this
exorbitant price is intended to discourage
repair requests (they are required by law
to provide repair service).

3 Beginning with the September issue of
NIPBLES & BITS we will start a new
department: ADAM USERS FORUM. In this
department, we will answer questions sent
in by our readers. So . . . send in your
questions. If you send a self-addressed,
stamped envelope with your questions,
ve'll also mail the answers to you
personally.

9 Please include your identification
nuzmber on all correspondence to us. When
you send in contributions (articles,
questions, comments, reviews, etc.),
please indicate whether or not you want us
to include your name and address.

3 As you can see there is not a lot of new
news this month, Most software companies
curtail release of new products during the
summer, in anticipation of the
back-to-school business flurry. This
common practice coupled with the fact that
many ADAM software developers are hurt by
declining sales (due primarily to
widespread piracy) will no doubt insure a
slow summer for ADAM.

3 One of the most exciting events for ADAM

"this" summer will be the results of the
‘hardware 'price war'.

We should all
benefit both by having a larger selection

- of peripherals to choose from and by the

patent savings. But don't wait too long to

- expand your system, prices tend to rise
- sharply after these competitive battles

for customers.

‘An000

a

0
0
O
O
O
O
5]
a
0
a
|
O
0
0
0
a
O
0
0
O
O
O
0
a
0
a
0
O
O
0
a
a
0
O
O
0
O

0
]
O
|
0
a
O
0
O
O
O
O
O
a
a
0
d
a
a
a
0
a
a
a

NIBBLES % BITS

(BIT BY BIT)

psge 4

00

O

O
a
a
a
O
0
|
1]
a
0
a
a
0
a
O
0
]
a
0
a
O
a
0
a
0
a
0
]
a
a
a
a
o
ad
a
O
O
a
O
O
0
a
a
O
0
D
0
O
a
a0
O
ad
o
0
0
a
O
a
O
H

BIT BY BIT:

Common Questions:

3 What is a computer?

A computer is a machine that accepts
information, processes it according to
specific instructions, and can provide the
results as new Information. It can
store/retrieve large quantities of data at
very high speeds. And a computer can make
logical decisions and comparisons.

9 What is meant by hardware and software?

Hatdvare (peripherals) refers to the
computer itself and its physical devices:
data drives, disk drives, printers,
keyboards, etc. Software refers to the
programs (instructions) which are entered
into the computer's memory to make it
perEorm specific tasks. Ingeneral, if you
can touch it, it's hardware —- if youcan't,
it's softvare.

9 What is a program?

A program is a list of instructions which
direct the computer to perform its
operations. The computer never does its
own thinking; rather, it merely repeats the
operations stored in its memory. Aprogram
instructs the computer as to which
operations it will per formand the sequence
it will performthem in.

3 What are computer languages?

In order to program a computer, there must
be some way to give instructions to the
computer. Internally, all computers
understand only one language -- machine
code. Machine code is simply a set
specially coded numbers that the computer
understands. ADAM is primarily controlled
by a single microprocessor unit (MPU, the
brain of a computer). This primary 'brain’
is a 780 MPU. Each particular type of MPU
uses its own specific machine code.

Programming in machine lanquage requires
an in-depth understanding of a computer and
ameticulous attentiop to detail. For this
reason, a variety of high level lanquages
(languages which use words rather than
numbers) have been developed.

One of the most widespread of these

languages is BASIC (Beginners All-purpose -

Symbolic Instruction Code). ADAM's Smart-
BASIC is an enhanced version of BASIC.

SmartBASIC acts as an interpreter transla-
ting BASIC commands into machine code as
each command is reiad by ADAM. For this
reason, SmartBASIC MUST be loaded into
memory before a BASIC program can be
executed (RUN).

Programming
Perspectives:

SmartBASIC permits two programming modes.
In immediate mode all commands are executed
immediately, ie, as soon as (RETURN] is
pressed. This mode is sometimes called
calculator mode because it is frequently
used by BASIC programmers to do arithmetic
computations.

Programming or deferred execution mode
requires the use of line numbers. With ADAM
a line number may be any integer between 0
and 65535, inclusive. When a BASIC program
is executed (RUN), ADAM reads the
instructions in line number sequence. With
this feature, you may enter program lines
out of order -- ADAM will automatically
sequence them for you. It is common
practice among experienced BASIC program-
mers to use 100 as the fizst line number and
increment subsequent lines by 10, ie, 100,
110, 120, etc. Using this technique, it is
very easy to add program lines between
existing ones vhen editing. As you will no
doubt discover, editing can be a frequent
task in BASIC programming.

While programming, you should not confuse
the capital letter '0' with the number '0'
or the lower case 'l' with the number '1'.
ADAM recognizes each of these characters
differently. You'll get an error message
if you use them improperly.

EIEIEIEIEIEIDEIEIDEIDE]EIDEIEIEIEIEII.'.IDI.'.IDDEIDDEIEIEIDEIEIDE]DDDDDEIEIDDDEIDEIDEIEIDEIEIEIEIDEIDEIDEIEI_DEI_E:H‘]

eialel=l=l=l=l=l=l==l=]=l=]=]=i=i=i=lul=i=luli=ls]=l=ici=]lsl=in]=l=]=

a
g
a
4]
a
0
0
0
:0
0
O
a
.0
]
0
O
0
0

O
u
O

- O

50
O
H

"NIBBLES % BITS

0

a
a
a
a
0
0
0
O
0
0
0
O
O
O
0
a
O
O
0O
o
0
a
O
O
u|
O
O
O
a
d
- o
O
a
O
O
g
a
O
0
O
|
O
O
|
O
a
O
u]
a
u|
a
O
O
O
0
O
O
0
O
g
O

D0O000G000000000000A00000000000

(BIT BY BIT)

Vhen learning to program you'll probably
have many Erustrating moments. It may help
to remember that you are controlling ADAN,
but within the gquidelines of SmartBASIC.
Sure SmartBASIC has its bugs (program
errors), but most error messages are caused
by typos. When something doesn't wark the
way you expect it to, examine it. Chances
are that you accidently entered an
incorrect character. While programming,
you should also keep in mind that ADAM
doesn't read anything that you type until
you press [RETURN].

BASIC programming is very logical and
fairly easy, but it does take a lot of
effort on your part. Read, study,
EXPERIMENT, practicel

Getting the most
out of the PRINT
command :

PRINT is one of the most frequently used
commands in BASIC. It is used primarily to
display words and numbers on the video
screen. When BASIC was first developed by
John Kemeny and Tim Kurtz at Dartmouth
College in the early nineteen sixties,
computezs revealed data using the printer.
The PRINT command of today is carry-over
from that era (it is still PRINT; not
DISPLAY).

PRINT is an output command. Not only can it
display data on the screen; but, it canalso
be used to print characters using a printer
and to store data in text files. We'll
discuss these applications in a later
issue.

There are two types of information that a
computer can use: numbers and words. For
practical purposes, the difference between
these two is that numbers can be used in
mathematical calculations and words can
not. Simple, huh? The PRINT command can be
used to display both numbers and words.

The following simple program demonstrates
some of the features of the PRINT command:

page 3

00

10 PRINT "Asimple test.®
20 PRINT 8
30 PRINT 6%5

The data that follows the PRINT command is
called its 'argument’' or 'parameter'. When
the parameter is a word or string of words,
it must be enclosed in quotes. Line }30
will display the result of 6 times 5, ie,
30. As you develop your programming
skills, you'll find this to be a very
convenient feature.

ADAM automatically inserts a carriage
return at the end of a PRINT command's
parameter. You can bypass this by placinga
semi-colon at the end of the parameter. If
you include exactly 31 characters as a
PRINT parameter, BASICwill insert an extra
carriage return. To correct this bug,
simply follow the parameter with a
semi-colon.

The comma may also be used in a PRINT
statement. It's purpose is the segregate
data into two columns. There is a bug with
the comma feature. The first element in the
first column will not line up properly. For
instance, enter the following program
line:

10 BRINT 0,1,2,3,4,5

When executed, you'll see that the zero is
offset to the left by one space. To correct
this problem, simply insert a blank space
before the first element. To demonstrate:

10 BRINT " "; 0,1,2,3,4,5

PRINT is used so frequently that a shortcut
command for it has been implemented. When
programming, you may substitute a question
mark (2) for PRINT. When you LIST the
program, you'll see that BASIC has convert-
ed the punctuation to the actual PRINT
command. Also, if you enter the PRINT
command without a parameter, ADAM will
print a blank line.

(|

O
a
0
O
a
0
a
O
a
0
a
0
O
O
O
O
O
O
O
O
3]
0
0
a
O
a
O
O
d
]
a
a
O
O
a
O
0
]
a
O
a

O
a
a
O
O
a
O
O
N
O
0
0
0
a
a
a
0
d
O
O

NIBELES % BITS

oo

(BIT BY RBRIT)

LIST parameters:

The LIST command is used to display any or
all of the BASIC program lines currently
stored in memory. Without any parameters,
LIST will display the entire program in
numerical line number sequence. The
LISTing will be formatted from the left
margin and include numerous spaces that you
probably did not enter.

If your LIST contains more information than
one screen will display, you'll most likely
vant to slow down or pause the display. To
slow the LIST, use the SPEED command. For
example:

SPEED = 100 [RETURNI]
LIST [RETURN]

The value of the SPEED parameter may be any
integer between 0 and 255, inclusive. The
SPEED value is normally set to 255 (the
fastest setting).

To pause the LIST, use the CONTROL-S
feature. While the program is being
LISTed, hold down [CONTROL] and press the
'8! key. To resume the LIST, just press any
other key. To stop the LIST use CONTROL-C
in the same manner. To restart the LIST
after using CNTL-C (provided you haven't
typed anything else), enter CONT [RETURN].

You may want to use LIST for certatin parts
of your program. If you want to LIST just
one line, type that line number after LIST.
For example:

LIST 100 (RETURN]

To LIST all the program lines up to 100, do
this:

LIST , 100 [RETURN]) or,

LIST - 100 [RETURN]

Note that either the comma or the hyphen may
be used with the LIST command.

page &
00

To LIST all the program lines beyond 100, do
this:

LIST 100 - [RETURN]

To LIST a specific range of program lines,
do this:

LIST 100 - 150 [RETURN]

This vital command will only LIST program
lines in numerical sequence. Therefore,
when LISTing a range of lines, the second
number must be greater than the first
number.

BASTIC line editing
features and
secrets:

There are numerous ways to edit BASIC
program lines. The simplist method is to
just retype your program line using the
same line number -- the new line will
replace the old one.

You can use a similar technique to delete a
programline. Just type the line number and
press [RETURN]. Let's cancel the following
programline.

10 PRINT (5%2)+16

All you need to do is this:

10 [RETURN]

When you press [RETURN], ADAM reads your
program line., BASIC will search Eor errors
in punctuation and spelling of BASIC words
alerting you to the mistake with.error
messages. It is your responsability, as a
programmer, to determine and correct other
errors. If you notice a mistake before you
press [RETURN], just use the left arrow key
or [BACKSPACE] to move the cursor back to
the error and begin retyping from there.

oG

I]DI]DEIDEIEIEIEIDDElEIEIDDEIEIEIEIDEIEIEIDDI]EIEIDEIDDDEIEIEII]EIEIDEIEIEIDDDDEIEIDEIDDDEIDEIDDEIEII_JEIDIjEI

O

O
a
O
a
u|
d
ad
O
a
a
0
O
O
0
]
O
O
0
0
O
a
ad
O
]
a
O
0
0
a
a
a
g
O
a
O
0
O
O
a
a
a
0
O
a
a0
a
O
O
O
O
O
O
ad
O
B
]
a
0
]

NLBDLED ¥ Bllo

O
a
0
0
0
0
O
O
a
0
0
0
0
0
0
0
0
0
]
0
O
0
a
0
O
0
a
0
]
0
d
3|
a
0
0
0
0

]
0
O
O
0
a
0
0
0
8]
O
0
0
0
o
0
0
0
0
a
8]
E
d

(BlT BY BIT)

Another method of line editing is to move
the cursor across the entire program line
making corrections as you go. However,
with line numbers qreater than 9999,
another SmartBASIC bug is encountered. The
cursor will not move to the left of the
prompt (the right bracket). To overcome
this problem, just press (ESCAPE] first (or
any of the special functionkeys).

Some of the special [CONTROL] functions may
also be of use to you in editing your
programs. To implement any of these
features, hold down [CONTROL) and press the
appropriate key,

The CNTL-0 function will delete the
character directly above the cursor. It
will also pull any characters to the right
of the cursor left, thus inserting a blank
space at the end of the screen line.

Th CNTL-N function is the opposite of
CNTL-0. It inserts a blank space directly
above the cursor. Doing so, it pushes the
characters to the right of the cursor to the
right deleting characters which are pushed
beyond the right margin.

The CNTL-X function deletes the program
line currently being typed. You will need
to press [RETURN) after using this feature.

One of the more interesting editing
features of SmartBASIC is the use of
[CONTROL] with the arrow keys. Suppose you
enter the following line:

10 PRINT " This is a test.”

You decide after pressing (RETURN] that you
want the line to print 'This is a simple
test.'. Let's use the [CONTROL]-arrow key
functions to insert the word 'simple':

Move the cursor underneath the first digit
of the line number. Then move it to the
right until you get to the first letter of
'test'. Now press CNTL-down arrow.
Continue moving the cursor downward until
you reach a clear part of the screen. Now
release [CONTROL] and the arrow key. Next,
type the word 'simple’ plus a blank space.

Now use CNTL-left arrow to move the cursor
back to the first letter of 'simple’. Then

page 7
0O000

use CNTL-up arrow to move the cursor back to
where you started from -- underneath the
first letter of the word 'test'. Release
the [CONTROL] and up arrow keys. Pinally,
move the cursor to the end of the line using
only the right arrow key. When finished,
press [RETURN].

List line ¥ 10. If you've done everything
correctly, you'll see the word is inserted.
Obviously, this technique of insertion is
more vital when editing long program lines.
Also, you may use CNTL-right arrow to pass
over unwanted characters whenediting.

SmartBASIC will permit you to enter 128
characters on one program line, ie, four
screen lines plus four characters. Itisa
good practice, however, to limit your
program lines to three screen lines. This
is because BASIC adds many extra spaces. If
you enter a program line that is 128
characters long, it may LIST to 180
characters with the added spaces. You
should always leave room for editing.

Postscript:

When writing articles for the BIT BY BIT
department, we assume that you have at
least made some programming effort on your
own. These articles will be benefit you
most if you study them in conjunction with
'PROGRAMMING WITH ADAM' which came with
your computer. Remember programming takes
effort on your part: read, study,
EXPERIMENT, and practice.

HAPPY PROGRAMMING . . .

0000000000000000000000000000000000000C00000C000000000000000000000000

O

0
0
0
0
)
0
O
O
0
O
O
0
0
a
0
O
O
a
O
a
0
0
a
O
0
a
0
]
O
0
0
0
B
0
0
(R
0
0
0
0
0
O
O
a
]
O
O
a
0
a
a
]
0
O
0
]
a
ﬁ
o

NIBBLES % BRITS (BYTE-SIZED BASIC) page 8
000000D00O00

O

O
a
B
O
a
O
a
a
0
a
0
a
O
a
O
]
0
O
a
0
O
O
a
O
a
a
a
O
0
O
0
a
]
d
a
]
0
a
a
O
a
a
0
O
0
a
a
]
o
a

a
]
a
d
a
]
a
E

BYTE-SIZED BASIC:

The ASCII code (PART I):

The ASCII code (American Standard Code for Information Interchange) is a system for using numbers
to represent various characters. The code is standardized so that it may be used on any computer.

ASCII (pronounced 'as-key') represents all the letters of the alphabet, the special symbols, and
control functions as numbers ranging from 0 to 255, inclusive. Page C-12 of 'PROGRAMMING WITH
ADAM' 1ists the first 128 of these values and their corresponding characters. Below isa listing
of some of the more esoteric ASCII values,

Understanding the arrangement of the values may be of some use to you. CNTL-A has an ASCII value
of 1. The upper case letter 'A' has a value of 65 (1 + 64). The inverse letter 'A' has a value of
193 (14192 or 65 +128).

Test your understanding:

Using only your reasoning ability, determine the ASCII values of CNTL-E, capital letter 'B', and
inverse capital letter 'E'.

When working with ASCIT values, you will most likely use these BASIC commands: ASC, CHR$, GET and
PEEK (64885). As an intermediate level BASIC programmer you have no doubt used these commands
many times. On the next page are two simple demonstration programs using ASCIT values.

<ASCII> <KEYPRESS) (ASCII> <KEYPRESS)

127 CNTL - DELETE 154 SHIFT - MOVE/COPY
128 HOME 155 SHIFT - STORE/GET
129 I 156 SHIFT - INSERT

130 I1 157 SHIFT - PRINT

131 IlI 158 SHIFT - CLEAR

132 A" 159 SHIFT - DELETE

133 v 160 UP ARROW

134) 161 RIGHT ARROW

137 SHIFT - I 162 DOWN ARROW

138 SHIFT - II 163 LEFT ARROV

139 SHIFT - III 164 CNTL - UP ARROW
140 SHIFT - IV 165 CNTL - RIGHT ARROW
141 SHIFT - V 166 CNTL - DOWN ARROW
142 SHIFT - VI 167 CNTL - LEPT ARROW
144 VILD CARD 168 RIGHT ARROW - UP
145 UNDO 169 RIGHT ARROW - DOWN
146 MOVE/COPY 170 LEPT ARROW - DOWN
147 STORE/GET 17 LEFT ARROV - UP
148 INSERT 172 HOME - UP ARROW
149 PRINT 173 HOME - RIGHT ARROW
150 CLEAR 1N HOME - DOWN ARROW
151 DELETE 175 HOME - LEFT ARROW
152 SHIFT - WILDCARD 184 SHIFT - BACKSPACE
153 SHIFT - UNDQ - 185 SHIFT - TAR

00

|

0
O
o
]
a
a
a
a
]
O
O
a
O
a
0
O
O
a
0
0
a
a
0
a
O
0
O
O
0
a
O
O
0
0
O
]
0
a
a
O
a
O
a
O
O
]
0
]
O
0
]
0
0
U]
O
O
a
E_K

NIEELES % BITS (BYTE-SIZED BASIC) page 9
004

O
O

a
a
O 10 REM ASCII demo

O 20 PRINT " Press the space bar to end."

O 30 PRINT " Press any other key and its"

O 40 PRINT " ASCII value will be displayed.": PRINT

O 50 GET key$:

] 60 IF key$ = CHRS$(32) THEN PRINT " THAT'S ALL!I": END
O 70 PRINT " The value is: ";ASC(key$)

O 80 PRINT: PRINT: GOTO 20

a

a

d

a

a

0

0

O 10 REM SmartKEY referencing

O 20 DATA I,II,III,IV,V,IV

O 30 DATA option #1,option #2,option #3

O 40 DATA option #4,option #5,option #6

O 50 FOR x = 1 TO 6: READ sk$(x): NEXT

] 60 FOR x 1 TO 6: READ choice$(x): NEXT

0 70 flag$ "off": lower(l) = 129: lower(2) = 137

O 1000 TEXT: PRINT: PRINT " Which do you prefer?"

O 1010 FOR x = 1 TO 6: le% = LEN(sk$(x)): VTAB 2*x+4: HTAB 2
O 1020 PRINT sk$(x);SPC(5-1le%);choice$(x): NEXT

u} 1030 VTAB 23: HTAB 1l: GET key$

O 1040 upper(l) 134: sk% = ASC(key$): GOSUB 20000

g 1050 IF flag$ "on" THEN GOSUB 20500: GOTO 1070

O 1060 GOTO 1030

O 1070 ON sk% GOTO 2000,3000,4000,5000,6000,7000

O 2000 HOME: PRINT "SmartKEY I": END

O 3000 HOME: PRINT "SmartKEY II": END

O 4000 HOME: PRINT "SmartKEY III": END

O 5000 HOME: PRINT "SmartKEY IV": END

O 6000 HOME: PRINT "SmartKEY V": END

O 7000 HOME: PRINT "SmartKEY VI": END
O
a
O
O
a
a
O
0
O
O
a
O
a
0
a
O
0
0
0
E

O

0

O

O

O

0

O

0

O

O

O

d

a

O

O

O

0

O

19999 END O
20000 upper(2) = upper(1l)+8 O
20010 IF sk% < lower(l) OR sk% > upper(2) THEN RETURN O
20020 flags = "on" u}
20030 IF sk% >= lower(l) AND sk% <= upper(l) THEN RETURN O
20040 sk% = sk%-8: RETURN O
20500 flags = "off": sk% = sk%-128: RETURN a
O

a

O

O

0

O

O

O

a

O

O

O

E

00

MIERLES % BITS

O

O
0
O
0
O
O
]
O
0
0
O
O
O
a
0
O
a
O
O

O
O
O
O
O
O
0
0
O
0
0
a
O
0
O
a
0
]
a
O
]
o
0
O
O
a
O
O
]
0
O
O
O
8]
O
]
O
O
Ei

Bach of the two preceding programs
demonstrate applications of the ASCII
code. The first program is very simple and
straightforvard. You may want to use it to
experiment with various ASCII values.

Many ADAMites are interested in making use
of the SmartKEYs in their own programs. The
second program demonstrates this
application. Line numbers 10 through 70
initialize the various values. Line
numbers 1000 through 1070 make use of the
SmartKEY routine. Line numbers 2000
through 7000 are set aside for user
options. Line numbers 20000 through 20500
contain the actual SmartKEY routine.

As you'll notice, ADAM recognizes both
unSHIFTed and SHIFTed SmartKEY inputs. The
SHIFTed ASCII value is eight higher than
the corresponding unSHIFTed value. The
variables are:

choice§(dim) = menu choices

flag$ = indicates SmartKEY input
leg = length of menu choice
lower (1) = lower unSHIFTed limit
lower (2) = lower SHIFTed limit
upper (1) = upper unSHIFTed limit
upper(2) = upper SHIFTed limit
sk$(dim) = Roman numerals

sk$ = ASCII value of input

X = work variable

POKEs to play
with (PART I):

In this section of NIBBLES & BITS, we'll
reveal many of BASIC's interesting POKEs.
Using these POKEs, you'll be able to
customize BASIC after it's LOADed. Some of
the most useful POKEs are those that change
the various screen colors. This month
we'll concentrate primarily on these.

Internally ADAM recognizes only one set of
color codes. The GR and HGR codes are an
arbitrary convention of SmartBASIC. Later
in this article, we'll explain how to
CORRECT the GR and HGR color tables so that
you'll only need to memorize (or refer to)
one list of 16 color values.

(BYTE-SIZED EBASIC)

page 10
00

Unless otherwise mentioned, all POKEs are
in reference to SmartBASIC V1.0 (version
79). PEEK (260) discloses your version of
v1.0.

ADAM is controlled by several microchips.
One of these is a 16K video chip. The
information programmed on this chip
controls everything that you see on your
monitor (or TV) screen. This chip is
capable of 15 independent colors. This is
ADAM's master color code. It's the only one
that you really need to know.

Numerical sequence:

0 = transparent
1 = black
2 = pedium green
3 = light green
4 = dark blue
5 = medium blue
6 = dark red
T = aqua/cyan
0 = medium red
9 = light red
10 = dark yellow
11 = light yellow
12 = dark green
13 = magenta
14 = gray
15 = white
Color sequence:
3 RED:
dark red = 6 .
med red = @
Ight red = 9
magenta = 13
5 BLUE:
dark blue = 4
med blue = 5
aqua/cyan = 1
3 GREEN:
dark grn = 12
med gtn = 2
1ght grn = 3
3 YELLOW:
dark ylw =10
1ght ylw =11
9 MISCELLANEOUS:
black =1
white =15
qray =14
trnsprnt = 0

DDDDDDDDDDDDDDDDDDDDDGDD

O

O
O
O
0
a
O
O
O
0
0

O
O
0
O
0
O
a
]
O
0
a
a
]
0
a
]
a
O
a
O
0
O
0
0
a
a
0
0
0
O
O
O
O
a
O
g
a
0
O
ad
O
0
0
a
O
a
0
Ei

NLOOSLED & BLIlo

0
a
O
a
a
0
O
O
0
a
0
]
a
0
0
a
O
]
g
a
0
0
0
a
O
0
a
0
a
a
a
a
a
0
0
O
O
]
a
0
a
a
a
a
a
a
]
a
0

d
a
a
O
O
O -
O-
O-
a
|
g
]
O

SmartBASIC V1.0 has nine addresses that
control screen color. These are:

17059 = TEXT background
17115 = TEXT NORMAL
17126 = TEXT INVERSE
18607 = GR background
18633 = GR window

18711 = GR TEXT

25431 = HGR background
25471 = HGR window
25568 = HGR TEXT

Changing the background colors is very
easy. Just select your color preference
and POKE it's color code into the
appropriate address.

POKE 17059, value
POKE 18607, value or,
POKE 25431, value

Suppose you want the TEXT background to be
dark red. The code for that color is
six. All you need to do is:

POKE 17059, 6: TEXT [RETURN]

Changing the remaining colors is a little
more complex. Let's use variables to

" facilitate the explanation. The variables

dare:

nl = normal letters
ns = normal screen

il = inverse letters
is = inverse screen
gw = graphics window

Just substitute your color code
preferences for the variable names in the
following equations. You may use these
equations in immediate or programming
mode.

LBY -0l ED BAKLLL)

page 11
00

TEXT NORMAL:
POKE 17115, (nl * 16) + ns

TEXT INVERSE:
POKE 17126, (il * 16) + is

GR window:
POKE 18633, (gw * 16) + gw

GR TEXT:
PORE 16711, (nl * 16) + ns

HGR window:
POKE 25471, (qw * 16) + gw

HGR TEXT:
PORE 25568, (nl * 16) + nl

Suppose you want the NORMAL TEXT letters to
be black and the NORMAL TEXT screen to be
aqua. You would just do this:

POKE 17115, (1%16)+7:TEXT (RETURN]

Points to consider:

3 You have to enter the corresponding
graphics mode command (TEXT, GR, or HGR)
after using the POKEs in order to implement
the color changes.

9 Transparent is colored with respect to
the current background color.

9 PLASH, in the TEXT mode, is the result of
alternating between NORMAL and INVERSE
colors.

3 You should not set corresponding letter
and screen colors to the same value -- you
will not be able to read anything.

9 You may want to PEEK these addresses to
determine their original values befoze
POKEing in new values.

From this point forward, we shall refer to
the original value (when SmartBASIC is
LOADed) as its 'default' value. This is
common terminology among experienced
programmers.

ljDDDEIDDDI]EIDEIDEIEIDEIEIEIEI[]EIEIEIDDEIDEIDDDDEIEIEIDDEIEIDDEIEIEIEIEI[]DEIUEIEIEIDDEI[]EIEIEIDDEIEIEIDEI

O

O
|
a
a
O
O
0
O
a
O
0
0
0
O
a
a
0
]
a
|
|
0
0
a
a
a
O
]
O
0
O
]
O
a
O
a
O
a
]
]
a
]
a
a
a
a
a
]
0
a
O
O
0
a
O
O
a
0
a
a
a

NIBELES % BITS

oo

0
0
a
O
0
0
0
0
0
B
0
O
a
0
o
0
]
0
O
O
a
a
0
a
0
0
]
0
O
a
a
0
0
a
0
O
O
O
0
a
O
a
a
8]
o
N
0
0

a
0
O
0
]
8]
0
a
B

The value of the current GR COLOR is at
address 16776. The value of the current HGR
HCOLOR is at address 16777. These color
values use ADAN's master color code listed
on page 10 of this issue. One technique to
use just one color table (not three) is to
simply POKE your color code preferences
into these addresses rather than using the
COLOR and HCOLOR commands.

However, there is a superior technique for
accomplishing this convenience: CORRECT
the GR and HGR color tables. Todo this, use
the following lines at the beginning of
your program. As an added bonus, this
procedure even corrects the SCRN color
table. Now you only need to learn one color
table when working with SmartBASIC!!!

10 FOR x = 0 to 15
20 POKE 18765 + x, x
30 POKE 18781 + x, X
40 NEXT x

There are even more benefits when employing
this technique. You can use transparent as
acolor. And you even have a wider range of
colors to choose from as the default color
tables omit some of the possible colors.

How would you like to be able to 'merge’
BASIC programs directly from SmartBASIC?
Sure SmartWriter provides a facility for
this, but it takes a lot of unnecessary time
switching between SmartWriter and
SmartBASIC.

The BASIC LOAD command does four tasks. It
executes NEW, CLEAR, searches for the
filename, and then LOADs it. To merge
programs in BASIC, all you have to do is
disable the NEW function,

The machine lanquage execution routine for
NEW begins at address 6356. The default
value at that address is 205 (280 machine
code for CALL). Todisable NEW, just POKE a
201 into 6356. This value is Z80 machine
code for RETURN. As soon as ADAM tries to
execute the NEW function, it thinks its
finished without doing anything at all.

Now you can use the LOAD command to merge
subprograms and routines directly from
SmartBASIC. Be sure to POKE 205 back into
6356 when you're done.

(BYTE-SIZED BASIC)

page 12

00

8martBASIC includes several undocumented
commands. Two of these are BREAK and
NOBREAK, They were intended to disable and
enable the CNTL-C function. However,
SmartBASIC doesn't make use of them.

Asimple POKE, on the other hand, can permit
these features. The ASCII value of CNTL-C
Is 3. Address 16134 contains the ASCII
value that enables the CNTL-C function.
You can change it to any ASCII value that
youdesire.

If you POKE a 255 into 16134, you'll
effectively disable CNTL-C because there
is no keypress that corresponds to ASCII
value 255. Youmay find it very convenient,
while programming, to change the BREAK
value to 27, ie, [ESCAPE].

Trigonometric
graphics (PART I):

By HPLOTing the gqraphs of trigonometric
equations you can create an almost infinite
variety of interesting graphics
displays. You don't have to a whiz at
trigonometry to make use of these
principles, but it helps. The three
programs on the next page illustrate some
techniques that you can use in your own
progranms.

ADAM uses radians rather than degrees for
trigonometric functions. One radian is
'pi' divided by 180 or 0.0174532925
degrees. You can let ADAM calculate the
value of 'pi' with this equation: pi =
ATN(1) % 4.

The first program draws a 3-dimensional
bowl. Line numbers 100 through 130 cause
the apparent simultaneous drawing in
different directions. Experiment with
different values and you can create quite a
variety of designs with just this one
algorithm (program module).

The next two programs draw circles, empty
and filled, respectively. By transposing
the trig functions in lines 110 and 120 and
changing the parities in line number 130,
you can alter the direction and starting
point of the HPLOTing.

00

(|

0
0
O
]
0
0
0
O
O
0
0
0
0
8]
0
0
O
0
(
a
]
g
a
0
0
a
O
0
0
0
O
0
0
0
0
0
0
0
0
0
O
a
O
O
O
O
B
0
0
0
O
0
8|
0
0
a
0.

NIBRLES

RITS CBYTE-SIZED BRASID)

page 13

00

10
20
30
40
50
60
100
110
120
130
140

10
20
30
40
50
100
110
120
130

10
20
30
40
50
100
110
120
130
140

REM 3-D HPLOTing #1

HGR: PRINT: PRINT " Press CNTL-C to stop .

HCOLOR = T7: pi = ATN(1l)*4

FOR w = 0 TO 15: FOR x = 1 TO 60: y = x/2
zZ = Yy 2+(w*2)"2

z = SIN(pi*SQR(z)/15)*25

HPLOT (128+x), (80+Z+w)

HPLOT (128+x),(80+z-w)

HPLOT (128-x),(80+z+w)

HPLOT (128-x),(80+z-w)

NEXT x: NEXT w

REM draw empty circle

HOME: INPUT " Enter radius (5-75): ";rds%
hl = 128: v(1) = 80

HGR: HCOLOR = 7

pi = ATN(1l)*4: radian = pi/180

FOR point = 0 TO 2*pi STEP radian

h2 = rds%*SIN(point)

v(2) = rds%*COS(point)

HPLOT hl+h2,v(1)-v(2): NEXT point

REM draw filled circle

HOME: INPUT " Enter radius (5-75): ";rds%
hl = 128: v(1l) = 80

HGR: HCOLOR = 7

pi = ATN(1)*4: radian = pi/1l60

FOR point = 0 TO 2%pi STEP radian

h2 = rds%*SIN(point)

v(2) = rds%*COS(point)

HPLOT hl,v(1l) TO hl+h2,v(1)-v(2)

NEXT point

00

O

a
a
a
O
0
O
0
O
0
]
0
O
O
O
0
a
O
0
O
O
]
0
]
0
D)
a
a
a
O
O
]
0
a
O
0
O
O
o
O
O
O
a
a
a
a
0
O
O
O
a
a
O
O
O
O
O
O
E

NIBBLES % BITS

oo

0
0
a
O
0
a
]
0
a
a
O
a
O
O
]
ad
a
D
O
d
0
a
O
O
a
0
a
0
a
a
a
a
a
d
a
a
0
a
a
d
a
0
O
O
a
a
O
0
0
a
0
O

O
O
O
O
O
0
H

HACKER'S DELIGHT:

Z—-80 instructions
and registers:

SmartBASIC is a collection of useful
machine language routines. These routines
are executed by dint of symbolic words (the
BASIC keywords). As an extension of
machine code, BASIC is obviously much more
limited in its capabilities. Serious BASIC
programmers eventually delve into machine
code programming due to these
restrictions.

You should find it relatively easy to make
the transition to 'ml' programming if you
start by creating machine code
enhancements to BASIC. For this reason,
we'll begin our study of ADAM's 280 code by
creating simple routines. Once we've
mastered the fundamentals, we'll develop
entire programs in machine code.

BASIC is essentially a 'sloppy' lanquage.
Machine code programming, on the other
hand, requires elaborate precission and a
thorough understanding of the computer.
Furthermore, as an extension of a game
system, ADAM is much more complex than most
home computers.

ADAM's 780 MPU directs the activities of
the computer by interpreting a set of
instructions called 'operation codes' or
'op codes'. These 'op codes' are
permanently stored in the main memory of
the 280. This MPU contains a set of
'registers' which are internal wmemory
locations used for data storage and
manipulation. All machine lanquage
programming is accomplished by using these
registers in various wvays. Registersare
completely independent of the 64K standard
RAM and the 16K video RAM. However, the
registers are used to store data on these
two RAM chips.

It may augment your understanding if you
consider each address of the 64K RAM as a
post office box. Extending this analogy,
registers would be the postal carriers
delivering majl (data) and you, as a

(HACKER'S DELIGHT)
000

page 14

programmer, would be the postmaster
general directing all -of the various
activities. When you've eperimented with
machine code a little, reread this analogy
and you'll see howapplicable it really is.

It is very convenient (almost mandatory) in
'ml' programming to use an operating
system. An '08' is a wide range of 'ml'
routines which control the various
peripherals connected to the system. ADAM
is already equipped with an EOS (Elementary
Operating Systyem) ROM. We will use the
routines fromthis chip frequently.

What is assembly-
language:

Assembly-language is not a true language as
BASIC is; rather it isa pseudo-language.
Assembly-language uses mnemonics (a system
of symbols to assist the memory) to
represent the various machine code values.
For example: LD DE,nnnn is the mnemonic
equivalent of 17,0,0 in machine code. The
'LD' stands for 'LOAD'. The DE is a pair of
registers. Each pair of "n's" represents
an integer in the range of 0 through 255.
The comma indicates that the value of
'nnnn' will be LoaDed into the DE register
pair. If you're still a little confused,
don't worry. As we progress, it will make
more sense to you.

High and low
order bytes:

The highest value that a single address or
register can contain is 255. Because of
this limitation, a technique is commonly
used that allows the Z80 to recognize
values greater than 255. This method is
referred to as using high and low order
bytes. The principle is fairly simple.

Any number between '0' and '65535' can be
represented as two integers between '0' and
'255', The high byte value is multiplied by
256 and added to the low byte value. Let's
demonstrate.

00

ooao

(|

a
0
0
0
0
0
0
0
O
0
0
0
O
O
O
]
]
O
0
O
g
0
O
O
a
0
a
O
0
0
0
8]
O
0
0
0
0
O
a
0
a
O
a
a
0
0
0
0
O
0
O
0
O
0
0
8]
a
a
O
g

NIBBLES % EITS

o Y o I o Y I Y o o e o o e O e o e e e o I o e O s o e e O e o O o O o e O o I

BﬁﬂﬂDDDDDEDDDEDDDDDDDDDDDDD

Suppose we are given 100 as the high byte
value and 16 as the low byte value. The
result of these two is (100%256) +
16. This can be simplified to 25600 + 16
or 25616.

Suppose we are asked to convert 17115 to
high and low byte values. We, simply, use
the reverse of the previous principle. The
high byte value equals INT(17115/256).
This can be simplified to INT(66.86). Thus
the high byte value for 17115 is 66, The low
byte value equals 17115 - (66%256). This
can be simplified to 17115 - 16896. Thus
the low byte value of 17115 is 219.

Now we have determined that the high byte of
17115 is 66 and its low byte is 219. Let's
verify these results.

(66%256)+219 = 16896+219 = 17115

Understanding the concept of high and low
order bytes is ESSENTIAL to learning
machine code or assembly-language program-
ming. Listed beloware a few more examples
of high and low bytes. Practice with them
until you have thoroughly mastered this
concept.

high byte = 175
low byte = 87
the value = 44007
high byte = 255
low byte = 255
the value = 65535
high byte = 0

low byte = 117
the value = 117
high byte = 211
low byte =10

the value = 54016
high byte = 87
low byte = 214
the value = 22486

(HACEER'S DELIGHT?

page 15

00

Instructions and
registers revisited:

The 2-80 is an updated version of the 8080
MPU. The 2-80 includes 158 instruction
types that give a very large number of total
commands (op codes) with all the
variations. The 2-80 includes 22
registers. In the next few issues we'll
concentrate on eight of these, the general-
purpose registers.

These general-purpose registers are
labeled: A,F,B,C,D,E,H, and L. Each of
these is an 8-bit register. However, they
may be combined in pairs to form 16-bit
pseudo-reqisters: AF, BC, DE, and HL.

The 2-80 also includes eight alternate
general-purpose registers: A', F', B', C',
D', B', H', and L', This alternate set can
not be used at the same time as the standard
set. The alternate set is used primarily
for interrupt processing -- we'll discuss
this concept in a later issue.

The remaining registers include: the
16-bit stack pointer (SP), the 16-bit
program counter (PC), a 16-bit index
register (IX), another 16-bit index
register (IY), the B-bit interrupt
register (I), and the 8-bit refresh
register (R).

If you are new to machine lanquage
programming, some of this information may
seem confusing -- just stay with it.

Remember, BASIC seemed a 1ittle complex at
Eirst too. If you've been alert to what
you've read thus far, you should have
inferred a vital fact: 16-bit registers
are used for high and low order bytes!

The hexadecimal
number system:

The 'hex' code is used primarily by
assembly-lanquage ‘programmers. It is a
base 16 number system. It's digitsare: 0,
1,2,...8,9,A,8,C, D, E, F. Letters
are used to represent the digits ten
through Eifteen.

|

0
O
O
O
O
O
O
]
0
O
O
O
a
a
0]
a
A
O

O
O
O
0
0
O
a
O
d
a
a
0
O
O
a
ad
a
0
O
a
d
O
a
a
a
]
0
O
a
a
O
a
0
O
a
O
a
0
a
]
0

NIBELES % BRITS (HACKFER’S DELIGHT?) page 1€
00

O

0
O
O
0
O
O
O
O
a
O
O
a
]
0
O
0
a
0
0
0
a
a
O
]
O
a
a
a
a
0
O
O
O
0
D)
g
]
a
O
a
0
O
a
a
O
a
a

a
a
0
0
]
O
O
a
|
a
O
:

10 REM hex to deciaml chart
20 hex$ = "0123456789ABCDEF": dec = 0
30 FOR x 1l TO 2: space$(2) = space$(2)+" ": NEXT
40 FOR x 1l TO 3: space$(3) = space$(3)+" ": NEXT
50 PR #1: PRINT: PRINT space$(2);space$(3);space$(3);
60 FOR x = 1 TO 16: PRINT MIDS(hex$,x,1);space$(3);
70 NEXT: PRINT: PRINT
100 FOR x = 1 TO 16: PRINT space$(3);MIDS$(hex$,x,1);" ";
110 FOR y = 1 TO 16: PRINT " ";
120 IF INT(dec/100) = 0 THEN PRINT " ";
130 IF INT(dec/10) = 0 THEN PRINT " ";
140 PRINT dec;: dec = dec+l
150 NEXT y: PRINT: NEXT x: PR #0

HEX /DECIMAIL CHART
06t 2 3 4 5 6 7 8 9 A B CDEF

0 1L 2 3 4 5 6 7 B 9 10 11 12 13 14 1§
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3f
32 33 34 35 36 37 3B 39 40 41 42 43 44 43 46 47
48 49 90 51 52 53 34 53 56 37 9@ 59 &0 Gl 62 B3
b4 65 66 67 6@ B9 70 T1 72 73 74 7376 771 1B T9
B0 81 82 83 84 85 66 67 6@ B9 90 91 92 93 94 95
9 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

112 113 114 113 116 117 118 119 120 121 122 123 124 125 126 127
128 129 130 131 132 133 134 135 136 137 138 139 140 {41 142 143
144 145 146 147 148 149 150 151 152 133 154 155 156 157 158 139
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
176 177 174 179 180 164 182 183 184 (85 186 187 188 189 190 191
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
208 209 210 201 212 213 214 215 216 217 218 219 220 221 222 228
224 223 226 227 228 229 230 231 232 233 234 235 236 237 238 233
240 241 242 243 244 243 246 247 248 249 250 251 252 253 254 253

TIM O O W@ o ~doOIn & N o

The simple program at the top of this page will generate the 'HEX/DECIMAL CHART'. The chart is a
convenient utility for converting betwveen the hex and decimal number systems.

You can easily determine the decimal equivalent of a 2-digit hex number by cross-referencing the
lefthand column with the rowon top. You can calulate the decimal value of a 4-digit hex number by
multiplying the decimal equivalent of the left two digits by '256' and adding this result to the
decimal equivalent of the right two digits.

00

O

O
O
0
g
a
0
0
0
O
0
0
a
O
0
2
0
O
0
a
0
0
0
O]
0
a
0
O
0
a
0
0
O
0
0
0
0
0
0
0
O
0
0
o
a
a
0
a
0
O
0
a
0
0
o
0
0
0
0
Ei

NIBBLES % RITS

O
a

O
0
O
O
O
O
]
0
u]
ad
0
0
]
a
O
0
O
ad
]
O
0
O
O
]
0
0
a
0
a
N
O
a
a
d
a
0
]
0
0
0
0
0
0
0
a
0
]
O
O
(8]
a
0
0
O
]
a
E

To insure that you understand the technique
of converting between the hex and decimal
systems, let's trya fewexamples.

Suppose we are given the hex number 'A8' to
convert to its decimal equivalent. Locate
the 'A' in the lefthand column. Next,
locate the '8' in the rowon top. Follow the
two lines of numbers to their intersection.
Here you'll find the decimal number '168°'.
Thus, 'A8' in hex equals '168' in decimal.

Now suppose we want to convert the decimal
number '250' to its hex eguivalent. Just
locate '250' inside the chart. The value in
the leEthand column from '250' is 'F'. The
value at the rowon top is 'A'. Thus the hex
equivalent of the decimal number '250' is
FA'.

Understanding the hex system is critical to
assembly-lanquge programming. Please
examine the following examples.

1D (hex) equals
27 (decimal)

DD (hex) equals
221 (decimal)

104 (decimal) equals
68 (hex)

80 (decimal) equals
50 (hex)

FFFF (hex) equals
65535 (decimal)

61CB (hex) equals
25035 (decimal)

17115 (decimal) equals
42DB (hex)

The video chip:

Of ADAM's standard BOK of Random Access
Memory only 64K is directlyaccessible from
SmartBASIC and the 2-80. The remaining 16K
is an indirect memory. It is this 16K video
chip that controls all of ADAN's video
output.

CHACKER'’S DELIGEHT)

page 17
00

Machine code within the execution routines
of the TEXT, GR, and HGR commands set up a
variety of tables on the VDP (Video Display
Processor). The tables established by the
GR and HGR commands are similar. However,
the information from these tables are used
differently.

Initially we'll concentrate on the TEXT
tables and how to modify them. The TEXT
command only uses about half of the VDP RAM.
In later issues we'll reveal how to employ
this free RAM in your BASIC programs so that
you'll have access to 34K rather than 27K,

In BASIC TEXT mode ADAM uses four VDP
tables. The character definition table is
a bit-mapped (an 'ml' technique for
drawing) table which defines the shapes of
each font (displayable character). Each
font is defined by eight bytes. This table
is set up for 256 fonts., Thus it uses 2048
bytes. On the VDP it uses addresses '0'
through '2047'.

Two tables are used to store the screen
image (everything that appears on the
screen). Except for the cursor and any
FLASHing characters, the tables are
identical. The screen image alternates
continuously between the two tables. FLASH
works by storing NORMAL letters in one
table and their INVERSE equivalents in the
other table. Each table is 768 bytes in
length (32 & 24). The first table uses
addresses '2048' through '2815'. The
second table uses addresses '6144' through
T6911',

The character color table uses addresses
'8192" through '8223' (32 bytes). Each
byte controls the color of eight
characters. This is the simplist table to
modify. Let's take a look at how it's
mapped (arranged).

00

(-

NIBELES % BITS

oo

BASIC TEXT mode
VDP color table:

DISP VDP ADDR ASCII code
0 8192 0-17
1 8193 8 -15
2 8194 16 - 23
3 0195 24 - 31
4 0196 32-139
5 8197 40 - 47
6 1948 48 - 55
7 0199 56 - 63
a 8200 64 -7
9 8201 2-17
10 8202 60 - 87
11 8203 80 - 95
12 8204 96 - 103
13 8205 104 - 111
14 8206 112 - 119
15 8207 120 - 127
16 8208 128 - 135
17 8209 136 - 143
18 0210 144 - 151
19 8211 152 - 159
20 8212 160 - 167
21 8213 168 - 175
22 0214 176 - 103
23 8215 184 - 191
24 8216 192 - 199
25 8217 200 - 207
26 8218 208 - 215
21 8219 216 - 223
28 8220 224 - 231
29 8221 232 - 239
30 8222 240 - 247
k)i 8223 248 - 255

In the table above the first column
represents the displacement which is added
to 8192. 8192 is the starting address of
the BASIC TEXT mode color table in VRAM
(Video Random Access Memory). We'll use
this displacement value in our machine
language routines to change the color of
various TEXT mode fonts.

(HACFER'S DELIGHT)

page 18
00

Z—-80 instructions
in detail:

You may wonder how an 'ml' programmer
learns all the various 2-80 op codes. With
all the variations of the 158 instruction
types, there are over 700 documented op
codes for this MPU. In reality, you will
eventually memorize many of them simply by
repeated use. In the beginning though,
you'll need to refer toa listing of all the
op codes. Most Z-80 instruction manuals
include such a list. Two of the best 2-80
tutorials are: '8080/280 Assembly
Lanquage' by Alan R. Miller and
'Programming the Z80' by Rodnay Z2aks.

Ve have compiled two lists of the 280 op
codes. Each list includes over 700
instuctions with the decimal and hex values
and the assembly-lanquage mnemonics. One
list is numeric and the other is
alphabetic. Eachlist is Four double-sided
pages in length. We will sell each list for
one dollar (to cover processing expenses).
Please include a business-size
self-addressed, stamped envelope with your
order.

OS routines:

Accessing the video chip requires precise
timing. Of course, you can write an 'ml'
routine 'from scratch' that will account
for the time element (in microseconds).
However, it is generally more practical to
use the '08' routines provided by Coleco on
the EOS ROM.

In BASIC, addresses 64560 (FC30) through
64860 (FD5C) constitute the EOS jump table.
The table is consists of several dozen
3-byte jumps to the various 0S routines.
Thirteen routines are included for VDP
access.,

0O00

m

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
0
0
O
O
0
0
O
O
O
O
0
0
O
O
O
0
0
O
O
O
O
O
O
O
O
0
O
O
O
0
O
O
O
0
O
0
O
0
O
0
O
0
H

NIBBLES # HlIDS

VRAM 08 table:

64791 (23,253) (FD17)
put ASCII to VDP

64794 (26,253) (FDIA)
wvrite to VRAM

64797 (29,253) (PD1D)
read from VRAM

64800 (32,253) (FD20)
write to VDP register

64603 (35,253) (FD23)
read from VDP register

64806 (39,253) (FD26)
write one byte to VRAM

64609 (41,253) (FD29)
init VRAM table

64812 (44,253) (FD2C)
put VRAM

64615 (47,253) (FD2F)
get VRAM

64818 (50,253) (FD32)
calculate offset

64821 (53,253) (FD35)
point to pattern position

64824 (56,253) (FD38)
load ASCII to VDP

64027 (59,253) (FD3RB)
write to sprite attribute table

The table above lists the thirteen '03' VDP
controls. The format is: RAM address, low
and high byte equivalent, hex equivalent,
and routine function. Note that in decimal
the low byte precedes the high byte, but in
hex the high byte precedes the low byte.
This difference is VERY important.

When using these routines, specific
registers must contain certain values.
We'll show you how to use each routine. But
for now let's take a look at the VDP
reqgisters.

(HACKER'S DELIEHT)

page 19
00

The VDP registers:

The 16K video chip contains nine registers
of its own. As with the 2-80 registers,
these are essentially independent of RAM.
Hovever, the VDP registers are used in a
different manner. Each of these registers
is wused to store certain screen
controls. Several of the registers are
pointers to the various VRAM tables.

Register seven controls the background
screen color. In SmartBASIC you can change
the background color with a particular POKE
followed by Ehe corresponding graphics
mode command (refer to page 11 of this
issue). Using these POKEs has one
drawback: you have to clear the screen to
implement a color change.

Let's create an 'ml' routine that will
instantly change the background (without
clearing the screen). SmartBASIC includes
a lot of unused RAM below 27407, but many
enhancements to BASIC use this space. For
this reason we recommend that you store
your 'ml' routines between 27600 and 28000.
First you'll need to set LOMEM tn 28000 and
then you'll need to POKE the routine into
this reserved RAM.

The routine at address 64800 controls a
vrite to VDP register function. This
routine requires that the Z-80 register 'B’
contain the number of the VDP register to be
written to. The routine also requires that
the 2-80 register 'C' contain the value
that is to be transferred. In
assembly-lanquage the set up looks like
this:

LD B, VDP register

LD C, value to transfer
CALL $FD20

RET

In machine code it looks like this:

6, 1,

14, value to transfer,
205, 32, 253,

201

00

O

0
O
O
O
O
0
]
O
a
O
a
0
0
0
g
a
d
a
g
O
8]
0
a
0
a
a
o
a
O
0
O
a
a
0
O
0
a
a
a
O
a
O
a
O
O
ad
O
0
a
O
O
0
a
a
O
a
ad
a
:

NIEBEBLES %
00

0

a
3|
8]
0
O
0
a
O
O
O
0
0
a
0
O
0
a
0
a
O
a
O
a
a
a
a
a
1]
]
O
O
o
O
a
O
0
O
0
a
a
o
a
O
0
o

0
a
O
O
a
O
0
]
U]
a
0
O
E

10
20
30
40
50
60
70
80
100
110

10
20
30
40
50
100
110
120
130
140
150
160
170
180
1000
1010
1020

10
20
30
40
50
60
100
110
1000

BITS (HACKER?’S DELIGHT?

REM instant background color

REM works in TEXT, GR, or HGR mode

REM any graphics mode command will reset:
LOMEM :28000

DATA 6,7,14,0,205,32,253,201

FOR x = 27600 TO 27607: READ code: POKE x,code: NEXT
PRINT: PRINT " press CNTL-C to exit.": PRINT: PRINT
INPUT " enter color code (1-15): ";cr%

POKE 27603,cr%: CALL 27600

PRINT: GOTO 70

REM instant TEXT font color change

REM any graphics mode command will reset

LOMEM :28000

DATA 62,0,17,0,0,33,0,32,205,38,253,201

FOR x = 27608 TO 27619: READ code: POKE x,code: NEXT
HOME: PRINT: PRINT " Press CNTL-C to stop.”": PRINT
PRINT: INPUT " enter letter color: ";lc$%

PRINT: INPUT " enter screen color: ";sc%

PRINT: PRINT " enter the displacement for the";
INPUT " first set to change: (0-31): ";£i%

PRINT: PRINT " enter the displacement for the";
PRINT " last set to change (";£i%;"-31):";

INPUT " ";1t%

col% = lc%*16+sc%: repeat% = 1t%-fi%+1

POKE 27609,col%: POKE 27611, repeat$%

POKE 27614,fi%: CALL 27608

GOTO 100

REM so0lid colored INVERSE blocks

REM any graphics mode command will reset

LOMEM :28000: POKE 17115,241: TEXT

DATA 62,0,17,1,0,33,0,32,205,38,253,201

FOR x = 27620 TO 27631: READ code

POKE x,code: NEXT

FOR x = 0 TO 15: POKE 27621,x*16+x

POKE 27626,x+16: CALL 27620: NEXT

FOR x = 0 TO 15: PRINT x;" ";CHR$(x*8+133): NEXT

00

20

O

0
O
a
0
O
]
O
]
O
O
0
O
|
0
a
O
0
a
O
O
0
0
d
0
a
a
0
]
A
O
0
a
O
o
0
O
O
O
O
O
0
0
a
0]
O
d
a
a
a
a
O
O
O
O
]
a
O
E

NIEBBLED % BlTo
00

0
0
a
0
a
0
O
0
O
0
0
O
0
a
0
a
O
O
0
O
0
0
o
0
0
0
O
O
0
0
0
0
0
a
0
O
O
0
O
a
0
a
O
0
0
O
O
O
O
O
0
0
0
0
0
a
0
E;

(HALKER™S DELIGHT)

TITLE (asmb#l):

INSTANT BACKGROUND COLOR

Decimal
value:

6 T,

u, o,
205, 132, 253,
201

Op-code:

LD B, $07
LD C, nmn
CALL $FD20
RET

TITLE (asmb#2):
INSTANT TEXT FONT COLOR

Decimal

value:
62, 0,
17, 0, 0O,
33, 0, 0O,

205, 38, 253,
201

Op-code:

LD A, m
LD DE, nnnn
LD HL, nnnn
CALL $FD26
RE?

TITLE (asmb#3):
SOLID COLORED INVERSE BILOCKS

Decimal
value:

14, 16,
62, 0,
185,
200,
13,
121,
135,
135,
135,
135,
129,
6, 0,
33, 16, 32,
9,
17, 1, o,
197,
205, 38, 253,
193,
M, 229

Op-code:

D C
W A
e
RET I
DEC C
LD A,
ADD A,
ADD A,
ADD A,
ADD A,
ADD A,
b B, $00
LD HL, $2010
ADD HL, BC
LD DB, $0001
PUSH BC

CALL $FD26

POP BC

JR $BS

Q> D> > > Q

page X1

Comment:

; load VDP register

; load color code value

; CALL 08 write to VDP register
; RETurn to BASIC

CHANGE

Comment :

; load color code value

; load byte count

; load VRAM start address

7 CALL 08 write one byte to VRAM
; RETurn to BASIC

Comment :

load repeat counter

restore accumulator to zero

check if repeat counter is zero yet
if zero, RETurn to BASIC

decrement repeat counter by one

set original color value = rpt cntr
double color value

double color value

double color value

double color value

obtain final color value (x*16+x)
set up for 'BC' addend

establish VRAM base address

get VRAM address to put color value in
load byte count of 'one' for routine
save repeat counter

CALL 0S write one byte to VRAM
retrieve repeat counter

jump back to LD 3, $00

Wy e We We Wme Wwa Wa My We Wa Wwe We Wy Wa we wa W Wo we

00

O

0
0
O
O
O
O
0
0
O
o
0
O
O
O
O
0

]
|
O
O
0
0
d
0
0
8]
0
0
O
0
0
0
a
0
8]
8]
0
0
O
0
a
a
g
0
a
0
0
]
0
0
0
0
0
0
a
a
0
Ei

NIRELES & BITS

(HAZKER'S DELIGEHT)

pag

et

rud

00

O

0
O
0
a
0
]
O
a
]
g
a
0
O
a
a
O
O
]
a
O
O
a
O
O
O
a
g
0
a
0
a
a
]
a
0
0
O
O
|
O
a
a
0
a
c
a
0
a
O
a
d
a
a

a
O
0
a
]
0
0
a

Assembly language
notes:

9 In assembly-language, hex values are
preceded by a dollar sign ($).

9 In the hex system, the high byte value

- precedes the lowbyte value.

) When creating machine code routines, it
helps to think in termas of
assembly-language mnemonics. Then convert
the mnemonic op-code and the operand (value
following the op-code) to their machine
lanquage values.

9 In assembly-language 1istings, three
variable names may be used as operands (to
be replaced with the correct values when
the program is ready to run). An 8-bit
operand will replace 'mn'. A 16-bit
operand will replace 'nnnn'. An 8-bit
signed displacement will replace 'dd’.

5 An operand for an assembly-language
instruction may consist of a value that is
used directly, or it may refer toa location
that contains the value. I it refers toa
location that contains the value, then the
portion of the operand following the comma
vill be enclosed in parentheses.

Program LISTing
explanations:

The first program on page 20 demonstrates
how to set up and use the instant background
color change routine. This program is an
extension of the discussion on VDP
registers.

The second BASIC LIST on page 20
demonstates how to use the displacement
values from the table on page 18. As you can
see, it is possible to have 32 different
font colors in BASIC TEXT mode!
Displacements 16 through 31 are set up by
SmartBASIC to be the inverse characters.

The third BASIC program on page 20 presents
an interesting extrapolation from the
previos one. It eliminates the INVERSE
characters supplanting them with solid
colored blocks.

Each of the assembly-lanquage lists on page
21 correspond respectively to the BASIC
programs on page 20. The first one is very
simple.

The second one uses the VDP routine at
64806, Por this routine, register 'A'
(called the accumulator) contains the
value that is to be transferred to VRAM (the
color code value). The register pair 'DE'
contains the number of times to transfer
the value in 'A'. The register pair 'HL'
contains the £irst VRAM address to transfer
the value to. The routine at 64806 POKEs
the value in 'A' into the specified VRAM
address, thenbegins a repetitive process.
It decrements 'DE' by one and increments
'HL' by one and POKEs the value in 'A' into
this next VRAM address. The routine
continues in this manner until 'DR' is
decremented to zero.

The third assembly-language list on page 21
creates solid colored INVERSE blocks. This
'ml' routine is the exact equivalent of
lines 40 through 110 in the third BASIC
programon page 20. This correspondence of
BASIC to machine language exemplifies
three common factors. Machine coding uses
many more instructions than its BASIC
counterpart. However, the 'ml' routine
actually occupies much less RAM. And the
'ml' routine is almost 200 times faster
than the same routine in BASIC!

This particular 'ml' routine is much more
complex than the other two. With the load
(LD) instructions, the value following the
comma is stored in the specified register
or register pair.

Compare (CP) instructions compare the
value in the specified register with the
value in the accumulator (A). In BASIC the
'IF . . . THEN' command is used to make
decisions. In machine code the CP
instuction with a conditional return (RET)
or a conditional jump (JP or JR) is used to
make decisions (there are also
unconditiondl RETs, JPs, and JRs). The 'F!

00

|

0
0
0
0
O
0
a
0
0
0
0
0
O
0
a
0
0
a
O
0
0
0
0
0
0
0
0
0
0
0
0
0
O
0
g
0
0
o
]
0
0
O
a
O
0
]
g
i
0
0
a
0
0
0
N
O
g
0
O
0
O

NIBEBLES &% RITS

(HACEER'S DELIGHT)

page

e
gt

00

0

a

0
{
0
O
0
0
a
0
O
0
8]
a
0
0
O
0
0
0
0
a
0
a
0
0
g
O
O
O
O
0
0
O
0
0
O
|
a
0
0
a
a
0
a
0
0
g
0
0
0
o
0
O
O
0
0
0
0
Eﬁ

register (the flags register) contains six
flags, ie, bits that are set to 'l' when
certain conditions exist. These are C
(carry), % (zero), 8§ (sign), B/V
(parity/overflovw), N (subtract), and H
(half carry). The 'C' and 'I' flags are
typically used more frequently by
programmers. Ina comparison (CP), the 'Z'
flag is set if the values are equal and the
'C' flag is set if the accumulator is
smaller than the other register.

The 2-80 provides no direct instruction for
multiplication or division. These
operations are accomplished through
repeated addition or subtraction
respectively. The third 'ml' routine
doubles the accumulator four times, ie, it
multiplies the accumulator times two to the
forth power (16).

The routine at 64806 uses the 'BC' reqister
pair. Therefore we need to save it on the
stack (PUSH) beEore using the routine and
retrieve it when done (POP).

Jumps (JP or JR) are essentially the
equivalent of the BASIC GOTO command.
Relative jumps (JR) are used so that a
routine is independent of its RAM address.

This is very convenient when you want to use
a particular routine at different
locations in various programs. The operand
of a relative jump is a signed displacement
of a specific number of bytes. Without
getting into a complicated explanation of
signed displacements at this point, here's
a simple way to calculate the displacement
value. A positive (or forvard)
displacement is the actual byte count --
not to exceed 129 bytes. A negative (or
backward) displacement can be determined
by subtracting the actual byte count (not
to exceed 126) from 256. We'll experiment
more with displacements, decisions, and
jumps in later issues.

WORD POWER:

Here are: five words that we encounter
everyday in magazines and newspapers. Asa
matter of fact, every one of these words was
used at least once in this very newsletter.
See how well you fair. The answers are
listed below the quiz.

(1) abstruse:

to push forward

hard to understand
lacking in intellect
to refrain voluntarily

o QDo Y

(2) concatenate:

to speak freely
to gain entry to
an official agreement
to connect in a series

O Q>

(3) facilitate:

to make or manufacture
an exact copy

to make easy

marked by flippant humor

O Q w>»

(4) meticulous:

precise about details
performed in systematic order
infested with ticks
completely untruthful

S QoW

(5) simultaneous:

occurring at the same place
having similarity

marked by simplicity
occurring at the same time

o QW

The answers are: (1) B, (2) D, (3) C, (4) A,
and (5) D.

O000

O

O
O
O
0
O
O
0
0
0
0
0
0
a
0
0
O
0
0
a
o
O
0
0
O
0
0
o
O
a
a
0
O
0
0
0
a
8]
8|
0
a
0
g
0
O
0
0
o
0
0
O
a
O
0
0
0
8]
0
B
Ei

NIBELES % RITS
00

ono

PRODUCT REVIEWS:

Product: The Coleco ADAM Entertainer
Manufacturer: Osborne/McGraw-Hill
Media Types: book

Graphics rating: 97

Value for money: 95

Instructions: 95

Overall rating: highly recommended
Price: $12.95

Rated by: staff

This is an excellent collection of ready to
type in SmartBASIC programs. The book
includes over two dozen programs which make
use of the GR and HGR modes. Many of the
programs are games. Each program is fully
explained. You can learn a lot about BASIC
programming and graphics applications by
studying these programs.

Product: JRL Utilities
Manufacturer: Overpriced Software
Media Types: disk or DDP

Graphics rating: 93

Value for money: 175

Instructions: 90

Overall rating: recommended
Price: 949.95
Rated by: staff

This is a very useful assortment of
utilities. It is self-booting and written
entirely in machine code. This program
should be of great benefit to advanced
programmers. It includes several
functions: media editor, recover deleted
files, remove deleted files from
directory, copy utility, disassembler,
change file attributes, change volume and
file names, plus other advanced
applications. It also includes a help
screen which lists all the controls.

At nearly FIFTY dollars the listed price is
very high. However, this is an outstanding
package.

page 24

Product: SMART GAMES PACK
Manufacturer: NIAD
Media Types: disk or DDP
Graphics rating: 95
Value for money: 98

Instructions: 93

Overall rating: highly recommended
Price: $9.95 or $11.95
Rated by: staff

This is an excellent package of three
graphics games: SPACE CHASE, TREASURE
SEARCH, and MAZE ESCAPE. The programs are
all controlled from a central menu. All
inputs are made with the game controllers
(supports one or two players). All of the
games are nicely done and fun to play.

Product: PaintMASTER
Manufacturer: Strategic Software
Media Type: DDP

Graphics rating: 99

Value for money: 99

Instructions: 95

Overall rating: HIGHLY RECOMMENDED!!
Price: $24.95

Rated by: staff

This 1s the best graphics design program
ever developed for ADAM. With this program
you can create, edit, and save hi-res
dravings. It also includes a program that
will print your creations on the ADAM
printer.

You can change paint brushes, paint colors,
screen colors, and drawing thickness. You
can erase and relocate parts of the
draving. You can also print words inside
the graphics window.

The various options are selected with the
joystick by moving a pointer to the desired
icon (a technique of using pictures rather
than words for menu selections). Por
instance, if you want to access a storage
drive, you would move the pointer to the
picture of a disk.

00

O

O

O

O

O

O

O

o
0
]
a
O
a
O
|
B
B
0
g
o
a
a
a
a
O
|
O
O
0
A
]
0
0
a
a
O
O
a
a
O
O
O
a
g
O
O
0
0
O
g
a
d
]
a
O
a
O
a
O
0
|
D)

NIBBLES % ERITS _
00

O

a
0
a
O
0
]
O
O
B
O
a
0
a
0
O
|
O
a
a
d
d
O
0
0
O
O
a
0
O
0
d
a
a
a
a
a
O
a
O
a
O
O
a
d
]
0
O
g
a
0
0
0
a
a

—

a
O
a
a
0
|
0

Product: Charts & Graph Assembler
Manufacturer: Extended Software Company
Media Types: disk or DDP

Graphics rating: 93

Value for money: 65

Instructions: 93

Overall rating: not recommended
Price: $24.95

Rated by: staff

This is a BASIC program that you can use to
create bar graphs, line graphs, and pie
charts. Youcan graphup to ten inputs. You
can print bar graphs on the ADAM printer.

This is a well written program and the
graphics are nicely done. All inputs must
be typed in -- it provides no save/load
feature. I Eeel that at the listed price,
most ADAM users would be very disappointed
with this software.

Review notes:

Our staff makes every effort to write
OBJECTIVE reviews. If you disagree with a
particular review, please submit your own.

The greatest compliment that you can give a
software developer is to recommend their
products to others. When submitting a
review, please try to use our format. Also,
include your name and subscription ID
number (from your mailing label).

HACKER'S CONTEST:

The NIBBLES & BITS Hacker's Contest is a
monthly competition. The winner of each
contest is randomly selected from the
correct responses postmarked within the
specified dates. WMo individual shall be
named the winner in three consecutive
contests. The wvinner of each contest shall
be awarded ten dollars and a free three
month extension to his/her NIBBLES & BITS
subscription term. Decisions of the judges
are final.

page 29

Responses for this month's contest will be
considered valid if, and only if, they are
postmarked after June 30, 1986 and prior to
August 1, 1966, The winner shall be
announced in the September issue of NIBBLES
& BITS.

Vrite a SmartBASIC program (it may include
machine code in DATA statements), which
vill do the following on a GR or HGR screen:
display the letters 'A', 'B', and 'C' each
withdifferent font and screen colors.

SOFTWARE EXCHANGE:

Our first two public domain software
packages will be released August 1, 1966.
Each PD library contains at least 70K of
programs. These first two libraries will
be SmartBASIC programs. We may begin PD
libraries for other processor programs
(CP/M, ADAMCALC, SmartL0GO, etc.) if
enough readers request same.

All the programs in our BASIC libraries are
speed-LOADed with a machine lanquage
central menu. To get a free copy of a
specific library: (1) contribute a public
domain program (not already in one of our
libraries), (2) send a signed statement
that the program is public domain and not
copyrighted material, (3) send the program
on a datapak, (4) request the specific
library that you want in return.

Bach library is also available on datapak
for §7.95.

000r00

0

a
O
o
0
|
0
O
a
O
O

a
O
O
0
O
O
O
]
a
|
a
0
0
0
a
a
a
O
a
O
0
a
O
O
O
a
O
O
O
O
a
0
O
]
o
1]
O
0
]
0
a
a
a
0
a
0
a
a
O

NIBELES & BITS page ZE
00

oo

LOCAL USER GROUPS:

ALABAMA:
James E. Gilbert, 4608 Lakeview Drive, Huntsville, AL 35810

Victor L. Watford, P.O. Box 777, Russellville, AL 35653

ALASKA:

Richard Baines, 7210 Bulen Drive, Anchorage, AK 99507

ARKANSAS :
Danny Levitt, 4525 South White Pine, Tucson, AZ 85730

Robert R. Marentes, 9425 North 38th Avenue, Phoenix, AZ 85021

CALIFORNIA:

Harlod Alexander, 37 Catspaw Cape, Coronado, CA 92118
Sue Askew, 868 North 2nd Street - #242, E1 Cajon, CA 92021
Frank Fleich, 13381-19 Magnolia Avenue, Corona, CA 91719
George Havach, 550 27th Street - #202,. San Francisco, CA 94131

Ann Quetel, 1154 North Mayfield Avenue, San Bernardino, CA

-92410

Brian Stranahan, 8580 Buggy Whip Road, Alta Loma, CA 91701

James Turner, Jr., 20110 Avenue 19, Madera, CA 936317

COLORADO:

Jesse Thornhill, II, 1416 Lipan Street, Denver, CO 80204

jojulofofololofololoiofufofolooloofofolofolofofofofofolo D ofofol ool b Dol b ofofolol ool ofof:o

Intel-BEST 3.3 by DIGITAL EXPRESS, INC.

In the fall of 1985 DATA DOCTOR developed SmartBEST V1.0. SmartBEST adds 27 enhancements to
BASIC: sound, graphics, etc. SmartBEST was DATA DOCTOR's fastest selling software. It isa
great program!

Having purchased the copyrights to all DATA DOCTOR software, DIGITAL EXPRESS, INC. has improved
the programdramatically. Intel-BEST 3.3 makes over three dozen changes to SmartBASIC.

Nearly all BASICs permit the question mark as a shortcut for the PRINT command. Intel-BEST 3.3
includes five similar shortcuts: 'P' for FLASH, 'H' for HOME, 'I' for INVERSE, 'N' for NORMAL,
and 'T' for TEXT. With these added shortcuts, it's a lot easier and faster to enter BASIC
programs.

Intel-BEST even corrects the DATA and REM spacebump bug!!! It also corrects the COLOR, HCOLOR,
and SCRN color tables so that you only have to use ONE color code chart. Intel-BEST permits you to
enter up to 216 characters per program line (BASIC limits input to 128). Intel-BEST eliminates

many of the unnecessary spaces added with the LIST command. And Intel-BEST resets the POKE limit
to 65535.

Intel-BEST also includes several ready-to-use nmachine code routines. Included are a block read
and a block write routine. Also included is a routine that will read the catalog (block one)
without interrupting a RUNning program. Routines are also included that will instantly change
the background color and the NORMAL and INVERSE colors without clearing the screen. Intel-BEST
even includes a routine that will instantly change the graphics window color in GR or HGR mode
without clearing the screen.

Intel-BEST includes a relative RESTORE command (LINE) that will let you RESTORE to any line
number that you specify. Using this command gives you powerful control over your DATA. Also
included is a new command (Ln8) that will increase the TEXT window in either graphics mode to
eight lines instead of four.

Intel-BEST 3.3 also includes some powerful audio enhancements. ADAM will permit four
simultaneous sounds (three voices and a noise). Intel-BEST makes it very easy for you to get the
maximum benefit from ADAM's sound capabilities. With each voice you can use any of 1024 possible
sounds. The noise generator is equipped with 8 built-in sound effects. Of the 1024 sounds
possible with each voice only 48 correspond exactly to musical notes. Intel-BEST provides you
with direct access to these musical notes so that: you can easily enter nusic fromsongsheets. The
extensive instruction manual fully explains how to enter these notes and how to create special
noises and sound effects. To enter a 'C' note in the lovest octave (of the four standard octaves)
in the first voice all you need todo is: T1 = 3 [RETURN]. Changing the volume is equally simple;
just enter the volume setting (0 through 15). Intel-BEST includes nine easy-to-use music
commands.

Intel-BEST 3.3 is the most elaborate enhancement to SmartBASIC ever developed for ADAM and it's
also the least expensive. Intel-BEST will also RUN just about ALL SmartBASIC pragrams. Once
you've tried Intel-BEST 3.3, you'll NEVER want to go back to SmartBASIC V1.0. Intel-BEST is a
pure machine code program (1742 bytes) and it sets LOMEM to 27600,

ADDED BONUS: As a special introductory offer, we'll give youa 25% discount off Intel-BEST 3.J as
a NIBBLES & BITS subscriber provided your order is postmarked prior to September 1, 1986. Cet
Intel-BEST 3.3 NOV and SAVE!!!

(B E5) B)))) 5 Sl B N) 6 Bl) S S Bl B A i B 9 B i S) S B B

Olofoolofofoolafulolofojojoloololofofofololofolofofofofofofolofofofololofofolofofofofolofofofofolofofofofolofofofulo

NIBELES & EITS page 2B

00

oo

O
O
0
O
a
O
a
0
0
a
]
a
a
a
a
]
O
O
a
0
a
]
O
O
0
O
a
0
|
O
a
a
a
O
O
a
O
a
o
O
a
0
0
0
0
O
0
O
O
a
a
0

O
O
a
a

DEI PRODUCT LIST:

Software:

Intel-BEST 3.3 (dynamic enhancement to SmartBASIC V1.0)
$16.95 (introductory special: §14.21) -- datapak only

Intel-LOAD (converts BASIC programs to LOAD up to 12 times faster)
§11.95 -- datapak only

HARDWARE:

DEI datapaks (DBI manufactured datapaks are as reliable as Coleco's datapaks)
$2.75 each
$24.95 (for ten)

ACCESSORIES:

adhesive labels (tractor-feed, fan-fold, 3 1/2 x 15/16)
$2.50 (500 labels)
$4.75 (1000 labels)

2-80 instuction lists (over 700 instructions, decimal, hex, op-codes, and operands)
$1.00 (numerical -- SASE: no shipping charge)
§1.00 (alphabetical -- SASE: no shipping charge)

blank white paper (tractor-feed, fan-fold, 9 1/2 x 11, 20F wt., 250 sheets)
$5.95

NIBBLES & BITS SUBSCRIPTIONS:

$18.00 (one year -- 12 issues)
$12.00 (six months -- 6 issues)

SPECIAL NOTICE: All DRI datapaks are warrantied to be free from defects in material and
workmanship. If the storage media proves defective, return it to DEI for a replacement. This
warranty applies to datapaks purchased 'blank' and to those purchased with DEI program(s) stored
on them. DEIshall,undernocircunstances,beliableforconsequentialdamaqes,ifany.

00

00000000000000000000

O

a
0
a
0
a
]
a
ad
)
O
a
0
a
O
O
O
a
0
d
a
a
O
0
0
0
a
]
a
O
a
a
O
0
O
d
O
a
]
a
O
O
a
O
]
O
a
a
]
a
O
a
a
0
0
0
a
a

YOUR NAME:

ADDRESS:

CITY:

PRODUCT ORDER FORM:

STATE:

PHONE NUMBER:

___ LIP:

SUBSCRIPTION ID NUMBER:

< ITEM/QUANTITY/MEDIA >

<

< PRICE >

$< D

<

%< D

14 D)

&« D

I N

SURTOTAL:

SHIPPING:

TAX:

OTHER:

TOTAL:

2.50

send check or money order to:

DIGITAL EXPRESS, INC.
1203 Northwoods Drive
Kings Mtn., NC 28086

(NC residents only -- 4.5%)

SWIFT POLL BALLOT:

As a NIBBLES & BITS subscriber, you are invited to submit one SWIFT POLL ballot per month. This
ballot must be cut out (not duplicated) and postmarked prior to August 1, 1986 in order to he
verified as valid. The results for the current poll shall be tallied and made public in the
October issue of NIBBLES & BITS. Please list your top ten software preferences for the month of
JULY, 1986 in the order that you like them (best €irst, next best second, etc.).

YOUR NAME:

W 2 U1
- . - - -

SUBSCRIPTION ID NUMBER:

O DA N
. e = . -

