
New ColecoVision Programming

Programming a new ColecoVision
game using Windows and DOS

Step by Step

• Start with an idea
• Figure out how it can be done
• Graphics and sounds
• Program structure
• Algorithm
• Programming in C
• Compile and Test

Start with an idea

Which new Coleco project to do?

Start with an idea

• Use your imagination.
• Inspire yourself by

looking around you.
• Do something which

already exists to gain
experience.

Example: Smash game

• A ball
• A paddle
• A rebound effect
• Two sounds: rebound and lost
• A way to check if the ball is lost

Figure out how it could be done

Hardware possibilities

Approach

• Avoid using too much
RAM

• Limit of four (4)
sprites in the same
scanline

• Use screen mode 2 to
do colorful graphics
and a cool title screen

• No scrolling effects

If you’ve read the
ColecoVision
specifications, you
know the possibilities
of this great game
system.

Example: Smash game

• Ball: character graphics
• Paddle: character graphics
• Sounds: tone generator + noise

Graphics and sound

Basic information about graphics
and tools you can use

Graphics

• Mode 0: 32x24 characters, two colors per 8
characters, sprites active

• Mode 1: 40x24 characters (6x8), 2 colors
(forecolor and backcolor), sprites inactive

• Mode 2: 32x24 characters, 2 colors per 8 pixels,
sprites active

• Mode 3: 64x48 pixels (4x4), sprites active

There are four screen modes available:

Color Palette

• There are 15 colors plus a transparent color
in the color palette.

[image: image1.png]

Graphics

• Characters (tile graphics): They are useful to fill
up the screen and are used to do bitmap title
screens.

• Sprites (floating graphics): They can be anywhere
on the screen but they use only one color. We can
use more than one sprite (one per color) or a
combination of sprites and characters to simulate a
multicolor sprite.

There are two kinds of graphics:

Character Graphics

Characters are 8x8 pixel
graphics (except for
screen mode 1 and 3)

In screen mode 0 the
characters are
monochrome.

In screen mode 2 the
characters can be
multi-color.

0 0 0 1 1 0 0 0
1 0 0 1 1 0 0 1
1 0 0 1 1 0 0 1
1 0 1 1 1 1 0 1
1 1 1 0 0 1 1 1
1 1 1 0 0 1 1 1
1 0 1 1 1 1 0 1
0 0 1 1 1 1 0 0

0 0 0 1 1 0 0 0
1 0 0 1 1 0 0 1
1 0 0 1 1 0 0 1
1 0 1 1 1 1 0 1
1 1 1 0 0 1 1 1
1 1 1 0 0 1 1 1
1 0 1 1 1 1 0 1
0 0 1 1 1 1 0 0

		0

		0

		0

		1

		1

		0

		0

		0

		1

		0

		0

		1

		1

		0

		0

		1

		1

		0

		0

		1

		1

		0

		0

		1

		1

		0

		1

		1

		1

		1

		0

		1

		1

		1

		1

		0

		0

		1

		1

		1

		1

		1

		1

		0

		0

		1

		1

		1

		1

		0

		1

		1

		1

		1

		0

		1

		0

		0

		1

		1

		1

		1

		0

		0

		0

		0

		0

		1

		1

		0

		0

		0

		1

		0

		0

		1

		1

		0

		0

		1

		1

		0

		0

		1

		1

		0

		0

		1

		1

		0

		1

		1

		1

		1

		0

		1

		1

		1

		1

		0

		0

		1

		1

		1

		1

		1

		1

		0

		0

		1

		1

		1

		1

		0

		1

		1

		1

		1

		0

		1

		0

		0

		1

		1

		1

		1

		0

		0

Character Graphics

• The characters on screen are the result of three
tables: NAME, PATTERN and COLOR.

• NAME: characters on screen (where they are
placed on screen). A character can be duplicated
on screen.

• PATTERN: character pattern
• COLOR: character color(s)

Sprite Graphics

Sprites are 8x8 or 16x16
pixel graphics (except
for screen mode 1).

Sprites can be magnified
to look bigger (sprites
pixels 2x2).

+

Sprites Graphics

• The sprites on screen are the result of two tables:
PATTERN and TABLE.

• PATTERN: sprite pattern
• TABLE: Y, X coordinate plus sprite pattern

number and color. If the sprites are 16x16, the
sprite pattern number must be 4x the real pattern
number.

• Two sprites on screen can use the same
pattern but it is not necessary for them to be
the same color.

Example: Smash game

• We use transparent,
blue and cyan for the
ball.

Character graphic: Ball Color Pattern
0 0 1 1 1 1 0 0 40 3C
0 1 1 1 1 1 1 0 40 7E
1 0 0 1 1 1 1 1 47 9F
1 0 0 1 1 1 1 1 47 9F
1 1 1 1 1 1 1 1 40 FF
1 1 1 1 1 1 1 1 40 FF
0 1 1 1 1 1 1 0 40 7E
0 0 1 1 1 1 0 0 40 3C

		Character graphic: Ball

		Color

		Pattern

		0

		0

		1

		1

		1

		1

		0

		0

		40

		3C

		0

		1

		1

		1

		1

		1

		1

		0

		40

		7E

		1

		0

		0

		1

		1

		1

		1

		1

		47

		9F

		1

		0

		0

		1

		1

		1

		1

		1

		47

		9F

		1

		1

		1

		1

		1

		1

		1

		1

		40

		FF

		1

		1

		1

		1

		1

		1

		1

		1

		40

		FF

		0

		1

		1

		1

		1

		1

		1

		0

		40

		7E

		0

		0

		1

		1

		1

		1

		0

		0

		40

		3C

Example: Smash game

• We use pink and red
for the extreme left
and right of the
paddle.

• We use grey, white
and cyan for the
middle part of the
paddle.

Paddle graphic: left Color Pattern
0 1 1 1 1 1 1 1 80 7F
1 1 0 0 0 0 1 1 89 C3
1 0 0 1 1 1 1 1 89 9F
1 0 1 1 1 1 1 1 89 BF
1 1 1 1 1 1 0 1 86 FD
1 1 1 1 0 0 0 1 86 F1
1 1 0 0 0 0 0 1 86 C1
0 1 1 1 1 1 1 1 80 7F
Paddle graphic: block Color Pattern
1 1 1 1 1 1 1 1 E0 FF
0 0 0 0 0 0 0 1 EF 01
1 1 1 1 1 0 1 1 E7 FB
1 0 0 0 0 0 1 0 E7 82
1 1 0 1 1 0 0 0 E7 D8
0 0 0 0 1 0 1 0 E7 0A
1 1 0 1 1 1 1 1 E7 DF
1 1 1 1 1 1 1 1 E0 FF
Paddle graphic: right Color Pattern
1 1 1 1 1 1 1 0 80 FE
1 0 0 0 0 0 1 1 89 83
1 0 0 1 1 1 1 1 89 9F
1 0 1 1 1 1 1 1 89 BF
1 1 1 1 1 1 0 1 86 FD
1 1 1 1 0 0 0 1 86 F1
1 1 0 0 0 0 1 1 86 C3
1 1 1 1 1 1 1 0 80 FE

		Paddle graphic: left

		Color

		Pattern

		0

		1

		1

		1

		1

		1

		1

		1

		80

		7F

		1

		1

		0

		0

		0

		0

		1

		1

		89

		C3

		1

		0

		0

		1

		1

		1

		1

		1

		89

		9F

		1

		0

		1

		1

		1

		1

		1

		1

		89

		BF

		1

		1

		1

		1

		1

		1

		0

		1

		86

		FD

		1

		1

		1

		1

		0

		0

		0

		1

		86

		F1

		1

		1

		0

		0

		0

		0

		0

		1

		86

		C1

		0

		1

		1

		1

		1

		1

		1

		1

		80

		7F

		Paddle graphic: block

		Color

		Pattern

		1

		1

		1

		1

		1

		1

		1

		1

		E0

		FF

		0

		0

		0

		0

		0

		0

		0

		1

		EF

		01

		1

		1

		1

		1

		1

		0

		1

		1

		E7

		FB

		1

		0

		0

		0

		0

		0

		1

		0

		E7

		82

		1

		1

		0

		1

		1

		0

		0

		0

		E7

		D8

		0

		0

		0

		0

		1

		0

		1

		0

		E7

		0A

		1

		1

		0

		1

		1

		1

		1

		1

		E7

		DF

		1

		1

		1

		1

		1

		1

		1

		1

		E0

		FF

		Paddle graphic: right

		Color

		Pattern

		1

		1

		1

		1

		1

		1

		1

		0

		80

		FE

		1

		0

		0

		0

		0

		0

		1

		1

		89

		83

		1

		0

		0

		1

		1

		1

		1

		1

		89

		9F

		1

		0

		1

		1

		1

		1

		1

		1

		89

		BF

		1

		1

		1

		1

		1

		1

		0

		1

		86

		FD

		1

		1

		1

		1

		0

		0

		0

		1

		86

		F1

		1

		1

		0

		0

		0

		0

		1

		1

		86

		C3

		1

		1

		1

		1

		1

		1

		1

		0

		80

		FE

Graphics tools

BMP2PP
by Marcel de Kogel
• Convert BMP files

into PP (PowerPaint)
files.

• Can use clipboard.

[image: image1.png]Bitmap image:

TITLE SCREEN

oo

Colours
Palett:

Gamma:

I~ Stetch

I™ Convertto greyscale

™ Creats monachiome picture

Miscellaneaus

Centing
Filer:

[Vamsa COLECOVISION 7]
100 3] Biighiness: [50 3]
Do not cente image. |
=3 =l

S

PowerPaint inage:

TITLE SCREEN

& Fuwindow

Ditheiing
Methad:

Mainum erar

Noise level:

Weights:

Seaing
Methad:

I~ Stetch
Both passes |
32 3
E=
[07,05.03.01
Do ot scale bimap |

2 Use nearinterpolation

Graphics tools

PP2C
by Daniel Bienvenu
• Convert PP files into

an array of HEX codes
with compression
(RLE).

• Generate a C file.

[image: image1.png]=

| ETATE BN ER
3220

[image: image1.png]Export to C f

ERET 2 (=T
e EE
evanc

ounds o

i

Name: [iec | Submit

[image: image1.png]table name

=

fiod

Graphics tools

I.C.V.G.M.
by Daniel Bienvenu
• Create and edit a

character set and
sprites.

[image: image1.png]. ICVGM [-[CIx]

32 (0x20)

Sprite Pattern # 0

Graphics tools

CVPAINT (beta)
by Daniel Bienvenu
• Load & Save PP files.
• Import ZX Spectrum

pictures.
• Edit pixels within the

limits of screen mode 2.
• Generate a C file.

[image: image1.png]C:\Program Fi

Sounds

• 3 tone channels: frequency + attenuation
• 1 noise channel: control + attenuation

There are four sound channels

Sounds

• The frequency is encoded in two bytes with the
control registers

• Frenquency (in Hz) = 3 579 545 Hz / n
• n is the encoded value in two bytes
• The attenuation is encoded in 4 bits:
• (0000) = loud, (1111) = silence

Tone channels

Sounds

• There are only three frequencies available.
• To play more frequencies, the noise channel can

use the tone channel 3 output.
• There are two modes to play noise: white and

periodic.
• The attenuation works the same as the one for the

tone channels (in 4 bits).

Noise channel

Sound tools

WAV2CV
by Daniel Bienvenu
• Convert mono WAV

files into hex codes for
the sound routines in
the Coleco library.

• This tool uses the Fast
Fourrier Transform

[image: image1.png]WAV > OV v3.04

[_[C1x]

S e [TRAVAIL] et
stoout way
superb wav
superbo.wa

/AV-CV defby Daniel Bienvenu

Step lenght 2

Tmall «f |

| 6t

Clvice € 2vices & 3voices

HiF
w4

I~ PAL speed rendering

Freguency Hz:

Lower ¢
Haher |

110

as00

] Hih
Velume

[

=

|
|

Sound tools

WAV2CVDS
by Daniel Bienvenu
• Convert mono WAV

files into digital sound
to be used with
DSound library.

• Generate a C file.

[image: image1.png]AV file analyzed

Sound Sie L [1e3

Steplengh 5
5 o
Aplfcaton 125%
100z 4| |] 0%
GeneraleWavFie | ComvettioCoea |

Destinaton Fie Format G o asM

Program Structure

How to organize your program

How to organise your program:

• Before starting to write your code, you can
use paper to write and to draw what your
game project will be.

• To help you, the following slides will show
you a few things you can do to organize
your idea on paper.

Storyboard

• Necessary for big videogame projects, a
storyboard is a set of pictures you draw on
paper to get an idea of what your game will
be.

• For simple videogames, a storyboard might
be only one picture to represent the authors ’
vision of the game.

Videogame parts

• A videogame is divided into three (3) parts:
opening, game engine, ending.

• Sometimes, a videogame has a story or a
small animation to introduce the game.

• Sometimes, a game can show different
endings.

Screens

• A videogame project is divided into many
screens: company logo(s), opening, title
screen, menu, options, game screen(s),
ending(s) and credits.

• The most important screens are: title screen,
menu and game screen(s).

Important Screens

• The title screen is the main entrance of the
game: it should be professional.

• The menu screen is the best way to let the
player modify the game parameters. It must
be simple to use and undertstand.

• The game screens are what the gamer will
use and remember most. To make a good
impression, make them attractive.

Modules

• A module is only a term I personally use to
designate « a section of code » to do « a
particular job » in the program.

• A module may need external data.
• A module can be in another C file.
• Generaly, a module is coded in a single

routine.

Modules Sample Diagram

Coleco VideoGame Modules

Title Menu

Game Parameters Game Screen

Initialize

Player Moves Coleco Moves

Game Engine Game Over

Game Credits

Main

Flow Charts

• A flow chart is a diagram which represents
the normal execution of (a part of) your
code.

• This particular diagram uses a specific
formalism with symbols like rectangles,
rounded rectangles, circles and more.

• Using flow charts to represent the modules
of your code is a good idea.

Flow Charts

In the past, we used this kind of stencil to facilitate
drawing flow charts on paper.

Now, with the computers, we use software to do
exactly the same thing.

Flow Charts

These symbols are the
most common ones.

They are simple
geometric graphics
with text.

To see the execution
path, the convention is
to use arrows between
symbols.

START

INIT
GRAPHICS

LIFE = 5

PRINT
"HI!"

LIFE=0

1

Flow Chart Symbols

• This symbol is used to
specify where your
code starts and
finishes.

START/END

Flow Chart Symbols

• This symbol is used to
do a mathematical
operation or to
initialize a variable.

LIFE = 5

Flow Chart symbols

• This symbol is used to
avoid using too many
symbols in your
diagram. It can
represent a module
you call.

INIT
GRAPHICS

Flow Chart Symbols

• This symbol is used
for the output
instructions. It may
represent one or more
lines of code in your
program.

PRINT
"HI!"

Flow Chart Symbols

• This symbol is used
for conditions. After
this symbol, two
arrows most be added:
one for « YES », the
other for « NO ».

LIFE=0
YES

NO

Flow Chart Symbols

• And this little symbol
represents a label. You
can use labels to mark
where a jump is
possible.

1 1

Label Go to Label

List of variables

• Before doing a detailed flow chart, you
must do a list of variables the game needs.

• Example: the variables for a bouncing ball
on screen could be its coordinate and its
orientation + speed (simply the
incrementation in X and Y axes).

• A list of variables helps you to not omit
important variables.

Algorithm

Between the idea and the code

What is an algorithm?

• It ’s a representation of your code in a
natural language.

• It uses keywords called « pseudo-code » to
refer to the instructions you will need to
write in the code.

• A flow chart is a graphical version of an
algorithm.

Algorithm

• An algorithm is a series of orders you give
to the computer to be executed.

• To help your imagination, this is a sample
algorithm to order a robot to buy apples at
the market.

« Go outside. Turn Left. Walk to next corner.
Turn left again. Walk 10 feet. Open door.
Walk 3 feet. Buy apples. Come back. »

Pseudo-Code

• There is no convention for pseudo-code but
it must be something in natural language
which represents instructions.

Ex.: « for each y position from 0 to 10 »
• When the time comes to write your code

based on the algorithm, converting
keywords to instructions is easy.

Ex.: « for (y=0;y<=10;y++) »

Programming in C

General information about the
C programming language

Warning!

• First of all, I need to specify that the C
language I ’m talking here is not the C++ or
C# language but the standard ANSI C.

• The following slides are only a very small
introduction to the C programming. For
more information, read books about C
language.

C programming

• A C file structure is simple if you understand this:
what you need must be previously given. That is
to say, no forward declarations

• At the top, you have the libraries, the constants,
the headers of external routines, tables and global
variables.

• At the bottom, you have routines and then routines
who need others routines to run.

C programming

• Libraries are included
in your C file with the
instruction
« #include »

• The constants are
defined in your C file
with the instruction
« #define »

#include<coleco.h>

#define potatoes 10

extern byte title[];

byte numbers[]={1,2,3};

byte numbers[3];

C programming

• The tables which are
in another C file are
included with the
instruction « extern »

#include<coleco.h>

#define potatoes 10

extern byte title[];

byte numbers[]={1,2,3};

byte numbers[3];

C programming

• The first array of bytes
named ‘numbers’ here,
is a typical example of
a ROM table.

• The second array of
bytes named
‘numbers’ here is a
typical example of a
RAM table.

#include<coleco.h>

#define potatoes 10

extern byte title[];

byte numbers[]={1,2,3};

byte numbers[3];

Data types

• char : character or signed short integer in
one byte.

• byte : unsigned short integer in one byte.
• int : signed integer in two bytes.
• unsigned : unsigned integer in two bytes.
• [] : array
• char [] : array of char or string

Operators

• Arithmetic operators: +, -, *, /, % (modulus)
• Increment ++ and Decrement --
• Bitewise operators: << (shift left), >> (shift

right), & (and), | (or), ^ (x-or), ! (not)
• Combined operators: <variable> =

<variable><operator><expression> become
<variable><operator>=<expression>. Ex.:
a=a+2 become a+=2

Operators

• Relational operators: > (greater than), <
(less than), == (equal), >= (greater than or
equal), <= (less than or equal), != (not
equal)

• Logical operators: && (and), || (or), ! (not)

If Statement

• Simple if
if (value) statement1;
• if... else
if (value) statement1;
else statement2;
• A statement can be inside brakets: { and }

Loops

There are many kinds of loops.
• for loop
for (x=0;x<10;x++)
• while loop
while (x<10) {}
• do... while loop
do {} while (x<10)

Functions

• A function may return a value or not (void).
• A function may need parameters to execute.
• A function header syntax is:
<return type> function_name (<data type>

parameter#1, <data type> parameter#2, ...)
int substract (int a, int b)
void main(void)

Functions

• A function core is written in braces: { and }
• At the top we have the temporary variables

used within the scope of a particular
function.

• After the temporary variables, we add
instructions (operations and command lines)

• When needed, we use braces again to group
many instructions together.

Function Sample

• This routine needs a
byte value and returns
a byte value.

• The temporary
variables j and k are
declared at the top of
the routine.

• And finally, the
operations.

byte sum(byte l)
{
 byte j;
 byte k;

 k=0;
 for(j=1;j<=l;j++)
 {
 k += j;
 }
 return k;
}

I know…

It ’s not enough information to start
programming in C. You ’ll have to read
books to learn C language.

Now, let ’s talk about Coleco programming

Coleco programming in C

What you need to do a new Coleco project:
• the coleco library
• an nmi routine (empty or not)
• a main routine
• and a lot of routines for your own purposes
• You can use more libraries
• You can use more than one C file

Coleco programming in C

The execution steps must be something like:
• Initialize the video display (VDP registers

and Video memory)
• Initialize global variables
• Start doing operations and commands
• Use a loop for the game engine
• Use variables to output things on screen
• Use a delay to slowdown the execution

Libraries

The Coleco library by Marcel de Kogel is the SDK
to program new Coleco projects in C.

Getput1 library is a toolbox with a lot of useful
routines. This library uses coleco library routines.

But, because we have no time, I suggest to read the
Coleco programming documentation to find more
information about these libraries.

Compile and Test

How to use CCI software in the
Coleco development kit?

Step by step

• Create a project directory as a sub-directory
of the compiler.

• Save all your C files in your project
directory.

• Copy CCI software in your project
directory.

• Run CCI to compile and link your project.

Example

We will do now a new Coleco project
together.

Follow the instructions in the next slides to
experience the joy of compiling a new
Coleco project.

I hope you have un-archived the Coleco
development kit on your PC.

Open Notepad. Good luck!

Sample code: « Hello World »

• This code is the
starting point for all
new ColecoVision
projects in C.

• #include <coleco.h> is
the command to
include the Coleco
library by Marcel de
Kogel in your project.

The nmi routine is needed to
use the Coleco library…
even if you don’t use it.

The main routine is the
starting point of the program.

#include <coleco.h>

/* EMPTY NMI ROUTINE */
void nmi(void) {
}

/* EMPTY MAIN ROUTINE*/
void main(void) {
}

Sample code: « Hello World »

• Getput1 library is a
toolkit with a lot of
graphic routines and
more.

• This library helps you
to simplify code by
grouping commonly
used functions.

• You must use it.

#include <coleco.h>
#include <getput1.h>

/* EMPTY NMI ROUTINE */
void nmi(void) {
}

/* EMPTY MAIN ROUTINE*/
void main(void) {
}

Sample code: « Hello World »

• You need to initialize
the VDP registers to
setup the screen.

• Fortunately, Getput1
helps us. This library
contains a routine
named
screen_mode_2_text.

#include <coleco.h>
#include <getput1.h>

/* EMPTY NMI ROUTINE */
void nmi(void) {
}

/* MAIN ROUTINE*/
void main(void) {
 screen_mode_2_text();
}

Sample code: « Hello World »

• Now, you need to
initialize the
characters set in video
memory.

• Again, the Getput1
library helps with
another routine named
upload_default_ascii.

#include <coleco.h>
#include <getput1.h>

/* EMPTY NMI ROUTINE */
void nmi(void) {
}

/* MAIN ROUTINE*/
void main(void) {
 screen_mode_2_text();
 upload_default_ascii(BOLD);
}

Sample code: « Hello World »

• Now, you are ready to
print on screen.

• Use cls to clear screen
• Use center_string to

center a string on
screen.

• Use print_at to print
on screen at a
particular coordinate.

#include <coleco.h>
#include <getput1.h>

/* EMPTY NMI ROUTINE */
void nmi(void) {
}

/* MAIN ROUTINE*/
void main(void) {
 screen_mode_2_text();
 upload_default_ascii(BOLD);
 cls();
 center_string(3,"HELLO WORLD");
 print_at(27,23,"2003");
}

Sample code: « Hello World »

• Finaly, you must suspend
normal execution to let
the user see the messages.

• Use delay to suspend
normal execution for a
specified amount of time.

• Use pause to wait for a
fire button.

• Use an infinite loop

#include <coleco.h>
#include <getput1.h>

/* EMPTY NMI ROUTINE */
void nmi(void) {
}

/* MAIN ROUTINE*/
void main(void) {
 screen_mode_2_text();
 upload_default_ascii(BOLD);
 cls();
 center_string(3,"HELLO WORLD");
 print_at(27,23,"2003");
infiniteloop:
 goto infiniteloop;
}

Sample code: « Hello World »

• Create a sub-directory
in the compiler
directory. This new
directory is your
project directory.

• Save your code as a C
file in your project
directory and add the
CCI software.

Sample code: « Hello World »

• Check Getput1
checkbox to let CCI
use this library.

• Select your C file in
the filelist box and
click on Compile.

Sample code: « Hello World »

• A popup DOS window
appear with 22NICE
running.

• After pressing space
bar, the compiler will
start.

• After compiling your
code, the DOS
window waits. Close
this window.

Sample code: « Hello World »

• CCI created a batch
file named « c.bat »

• The compiler
generated an object
file named
« hello.obj »

Sample code: « Hello World »

• Before using the
linker, you must verify
the filesize of the
objets files.

• 512 bytes… it ’s very
small but it ’s not zero.

Sample code: « Hello World »

• Now, it ’s time to use
the linker.

• Click on the Link
button of the CCI
software.

Sample code: « Hello World »

• 22NICE starts again.
• The linker is waiting

for instructions.
• CCI will have copied

the instructions to the
clipboard.

• Do a « paste » in the
DOS window.

Sample code: « Hello World »

• CCI created a batch
file named « l.bat »

• The linker generated
two files: « map.txt »
with the memory map
information, and
« result.rom » which is
the rom file we wanted
to create.

Sample code: « Hello World »

• If Windows closed
your DOS window,
you may not see if the
linker was able to link
right the object files
together with the
libraries.

• To be sure, check the
filesize of the rom file.

Sample code: « Hello World »

• If you didn ’t close the
DOS windows, do it
now.

• Click on the « Run »
button to start
VirtualColeco.

• Well, it looks like you
did it! :)

It ’s working! :)

• Now, you know how
to use CCI. It ’s time
for you to program a
bigger project.

• Note: A good way to
do a project is to
compile and link your
code each time you
update it.

To be continued

Be prepared for the next:
New ColecoVision Programming

presentation

New ColecoVision Programming

Programming a new ColecoVision
game using Windows and DOS

Step by Step

• Start with an idea
• Figure out how it can be done
• Graphics and sounds
• Program structure
• Algorithm
• Programming in C
• Compile and Test

Start with an idea

Which new Coleco project to do?

Start with an idea

• Use your imagination.
• Inspire yourself by

looking around you.
• Do something which

already exists to gain
experience.

Example: Smash game

• A ball
• A paddle
• A rebound effect
• Two sounds: rebound and lost
• A way to check if the ball is lost

Figure out how it could be done

Hardware possibilities

Approach

• Avoid using too much
RAM

• Limit of four (4)
sprites in the same
scanline

• Use screen mode 2 to
do colorful graphics
and a cool title screen

• No scrolling effects

If you’ve read the
ColecoVision
specifications, you
know the possibilities
of this great game
system.

Example: Smash game

• Ball: character graphics
• Paddle: character graphics
• Sounds: tone generator + noise

Graphics and sound

Basic information about graphics
and tools you can use

Graphics

• Mode 0: 32x24 characters, two colors per 8
characters, sprites active

• Mode 1: 40x24 characters (6x8), 2 colors
(forecolor and backcolor), sprites inactive

• Mode 2: 32x24 characters, 2 colors per 8 pixels,
sprites active

• Mode 3: 64x48 pixels (4x4), sprites active

There are four screen modes available:

Color Palette

• There are 15 colors plus a transparent color
in the color palette.

[image: image1.png]

Graphics

• Characters (tile graphics): They are useful to fill
up the screen and are used to do bitmap title
screens.

• Sprites (floating graphics): They can be anywhere
on the screen but they use only one color. We can
use more than one sprite (one per color) or a
combination of sprites and characters to simulate a
multicolor sprite.

There are two kinds of graphics:

Character Graphics

Characters are 8x8 pixel
graphics (except for
screen mode 1 and 3)

In screen mode 0 the
characters are
monochrome.

In screen mode 2 the
characters can be
multi-color.

0 0 0 1 1 0 0 0
1 0 0 1 1 0 0 1
1 0 0 1 1 0 0 1
1 0 1 1 1 1 0 1
1 1 1 0 0 1 1 1
1 1 1 0 0 1 1 1
1 0 1 1 1 1 0 1
0 0 1 1 1 1 0 0

0 0 0 1 1 0 0 0
1 0 0 1 1 0 0 1
1 0 0 1 1 0 0 1
1 0 1 1 1 1 0 1
1 1 1 0 0 1 1 1
1 1 1 0 0 1 1 1
1 0 1 1 1 1 0 1
0 0 1 1 1 1 0 0

		0

		0

		0

		1

		1

		0

		0

		0

		1

		0

		0

		1

		1

		0

		0

		1

		1

		0

		0

		1

		1

		0

		0

		1

		1

		0

		1

		1

		1

		1

		0

		1

		1

		1

		1

		0

		0

		1

		1

		1

		1

		1

		1

		0

		0

		1

		1

		1

		1

		0

		1

		1

		1

		1

		0

		1

		0

		0

		1

		1

		1

		1

		0

		0

		0

		0

		0

		1

		1

		0

		0

		0

		1

		0

		0

		1

		1

		0

		0

		1

		1

		0

		0

		1

		1

		0

		0

		1

		1

		0

		1

		1

		1

		1

		0

		1

		1

		1

		1

		0

		0

		1

		1

		1

		1

		1

		1

		0

		0

		1

		1

		1

		1

		0

		1

		1

		1

		1

		0

		1

		0

		0

		1

		1

		1

		1

		0

		0

Character Graphics

• The characters on screen are the result of three
tables: NAME, PATTERN and COLOR.

• NAME: characters on screen (where they are
placed on screen). A character can be duplicated
on screen.

• PATTERN: character pattern
• COLOR: character color(s)

Sprite Graphics

Sprites are 8x8 or 16x16
pixel graphics (except
for screen mode 1).

Sprites can be magnified
to look bigger (sprites
pixels 2x2).

+

Sprites Graphics

• The sprites on screen are the result of two tables:
PATTERN and TABLE.

• PATTERN: sprite pattern
• TABLE: Y, X coordinate plus sprite pattern

number and color. If the sprites are 16x16, the
sprite pattern number must be 4x the real pattern
number.

• Two sprites on screen can use the same
pattern but it is not necessary for them to be
the same color.

Example: Smash game

• We use transparent,
blue and cyan for the
ball.

Character graphic: Ball Color Pattern
0 0 1 1 1 1 0 0 40 3C
0 1 1 1 1 1 1 0 40 7E
1 0 0 1 1 1 1 1 47 9F
1 0 0 1 1 1 1 1 47 9F
1 1 1 1 1 1 1 1 40 FF
1 1 1 1 1 1 1 1 40 FF
0 1 1 1 1 1 1 0 40 7E
0 0 1 1 1 1 0 0 40 3C

		Character graphic: Ball

		Color

		Pattern

		0

		0

		1

		1

		1

		1

		0

		0

		40

		3C

		0

		1

		1

		1

		1

		1

		1

		0

		40

		7E

		1

		0

		0

		1

		1

		1

		1

		1

		47

		9F

		1

		0

		0

		1

		1

		1

		1

		1

		47

		9F

		1

		1

		1

		1

		1

		1

		1

		1

		40

		FF

		1

		1

		1

		1

		1

		1

		1

		1

		40

		FF

		0

		1

		1

		1

		1

		1

		1

		0

		40

		7E

		0

		0

		1

		1

		1

		1

		0

		0

		40

		3C

Example: Smash game

• We use pink and red
for the extreme left
and right of the
paddle.

• We use grey, white
and cyan for the
middle part of the
paddle.

Paddle graphic: left Color Pattern
0 1 1 1 1 1 1 1 80 7F
1 1 0 0 0 0 1 1 89 C3
1 0 0 1 1 1 1 1 89 9F
1 0 1 1 1 1 1 1 89 BF
1 1 1 1 1 1 0 1 86 FD
1 1 1 1 0 0 0 1 86 F1
1 1 0 0 0 0 0 1 86 C1
0 1 1 1 1 1 1 1 80 7F
Paddle graphic: block Color Pattern
1 1 1 1 1 1 1 1 E0 FF
0 0 0 0 0 0 0 1 EF 01
1 1 1 1 1 0 1 1 E7 FB
1 0 0 0 0 0 1 0 E7 82
1 1 0 1 1 0 0 0 E7 D8
0 0 0 0 1 0 1 0 E7 0A
1 1 0 1 1 1 1 1 E7 DF
1 1 1 1 1 1 1 1 E0 FF
Paddle graphic: right Color Pattern
1 1 1 1 1 1 1 0 80 FE
1 0 0 0 0 0 1 1 89 83
1 0 0 1 1 1 1 1 89 9F
1 0 1 1 1 1 1 1 89 BF
1 1 1 1 1 1 0 1 86 FD
1 1 1 1 0 0 0 1 86 F1
1 1 0 0 0 0 1 1 86 C3
1 1 1 1 1 1 1 0 80 FE

		Paddle graphic: left

		Color

		Pattern

		0

		1

		1

		1

		1

		1

		1

		1

		80

		7F

		1

		1

		0

		0

		0

		0

		1

		1

		89

		C3

		1

		0

		0

		1

		1

		1

		1

		1

		89

		9F

		1

		0

		1

		1

		1

		1

		1

		1

		89

		BF

		1

		1

		1

		1

		1

		1

		0

		1

		86

		FD

		1

		1

		1

		1

		0

		0

		0

		1

		86

		F1

		1

		1

		0

		0

		0

		0

		0

		1

		86

		C1

		0

		1

		1

		1

		1

		1

		1

		1

		80

		7F

		Paddle graphic: block

		Color

		Pattern

		1

		1

		1

		1

		1

		1

		1

		1

		E0

		FF

		0

		0

		0

		0

		0

		0

		0

		1

		EF

		01

		1

		1

		1

		1

		1

		0

		1

		1

		E7

		FB

		1

		0

		0

		0

		0

		0

		1

		0

		E7

		82

		1

		1

		0

		1

		1

		0

		0

		0

		E7

		D8

		0

		0

		0

		0

		1

		0

		1

		0

		E7

		0A

		1

		1

		0

		1

		1

		1

		1

		1

		E7

		DF

		1

		1

		1

		1

		1

		1

		1

		1

		E0

		FF

		Paddle graphic: right

		Color

		Pattern

		1

		1

		1

		1

		1

		1

		1

		0

		80

		FE

		1

		0

		0

		0

		0

		0

		1

		1

		89

		83

		1

		0

		0

		1

		1

		1

		1

		1

		89

		9F

		1

		0

		1

		1

		1

		1

		1

		1

		89

		BF

		1

		1

		1

		1

		1

		1

		0

		1

		86

		FD

		1

		1

		1

		1

		0

		0

		0

		1

		86

		F1

		1

		1

		0

		0

		0

		0

		1

		1

		86

		C3

		1

		1

		1

		1

		1

		1

		1

		0

		80

		FE

Graphics tools

BMP2PP
by Marcel de Kogel
• Convert BMP files

into PP (PowerPaint)
files.

• Can use clipboard.

[image: image1.png]Bitmap image:

TITLE SCREEN

oo

Colours
Palett:

Gamma:

I~ Stetch

I™ Convertto greyscale

™ Creats monachiome picture

Miscellaneaus

Centing
Filer:

[Vamsa COLECOVISION 7]
100 3] Biighiness: [50 3]
Do not cente image. |
=3 =l

S

PowerPaint inage:

TITLE SCREEN

& Fuwindow

Ditheiing
Methad:

Mainum erar

Noise level:

Weights:

Seaing
Methad:

I~ Stetch
Both passes |
32 3
E=
[07,05.03.01
Do ot scale bimap |

2 Use nearinterpolation

Graphics tools

PP2C
by Daniel Bienvenu
• Convert PP files into

an array of HEX codes
with compression
(RLE).

• Generate a C file.

[image: image1.png]=

| ETATE BN ER
3220

[image: image1.png]Export to C f

ERET 2 (=T
e EE
evanc

ounds o

i

Name: [iec | Submit

[image: image1.png]table name

=

fiod

Graphics tools

I.C.V.G.M.
by Daniel Bienvenu
• Create and edit a

character set and
sprites.

[image: image1.png]. ICVGM [-[CIx]

32 (0x20)

Sprite Pattern # 0

Graphics tools

CVPAINT (beta)
by Daniel Bienvenu
• Load & Save PP files.
• Import ZX Spectrum

pictures.
• Edit pixels within the

limits of screen mode 2.
• Generate a C file.

[image: image1.png]C:\Program Fi

Sounds

• 3 tone channels: frequency + attenuation
• 1 noise channel: control + attenuation

There are four sound channels

Sounds

• The frequency is encoded in two bytes with the
control registers

• Frenquency (in Hz) = 3 579 545 Hz / n
• n is the encoded value in two bytes
• The attenuation is encoded in 4 bits:
• (0000) = loud, (1111) = silence

Tone channels

Sounds

• There are only three frequencies available.
• To play more frequencies, the noise channel can

use the tone channel 3 output.
• There are two modes to play noise: white and

periodic.
• The attenuation works the same as the one for the

tone channels (in 4 bits).

Noise channel

Sound tools

WAV2CV
by Daniel Bienvenu
• Convert mono WAV

files into hex codes for
the sound routines in
the Coleco library.

• This tool uses the Fast
Fourrier Transform

[image: image1.png]WAV > OV v3.04

[_[C1x]

S e [TRAVAIL] et
stoout way
superb wav
superbo.wa

/AV-CV defby Daniel Bienvenu

Step lenght 2

Tmall «f |

| 6t

Clvice € 2vices & 3voices

HiF
w4

I~ PAL speed rendering

Freguency Hz:

Lower ¢
Haher |

110

as00

] Hih
Velume

[

=

|
|

Sound tools

WAV2CVDS
by Daniel Bienvenu
• Convert mono WAV

files into digital sound
to be used with
DSound library.

• Generate a C file.

[image: image1.png]AV file analyzed

Sound Sie L [1e3

Steplengh 5
5 o
Aplfcaton 125%
100z 4| |] 0%
GeneraleWavFie | ComvettioCoea |

Destinaton Fie Format G o asM

Program Structure

How to organize your program

How to organise your program:

• Before starting to write your code, you can
use paper to write and to draw what your
game project will be.

• To help you, the following slides will show
you a few things you can do to organize
your idea on paper.

Storyboard

• Necessary for big videogame projects, a
storyboard is a set of pictures you draw on
paper to get an idea of what your game will
be.

• For simple videogames, a storyboard might
be only one picture to represent the authors ’
vision of the game.

Videogame parts

• A videogame is divided into three (3) parts:
opening, game engine, ending.

• Sometimes, a videogame has a story or a
small animation to introduce the game.

• Sometimes, a game can show different
endings.

Screens

• A videogame project is divided into many
screens: company logo(s), opening, title
screen, menu, options, game screen(s),
ending(s) and credits.

• The most important screens are: title screen,
menu and game screen(s).

Important Screens

• The title screen is the main entrance of the
game: it should be professional.

• The menu screen is the best way to let the
player modify the game parameters. It must
be simple to use and undertstand.

• The game screens are what the gamer will
use and remember most. To make a good
impression, make them attractive.

Modules

• A module is only a term I personally use to
designate « a section of code » to do « a
particular job » in the program.

• A module may need external data.
• A module can be in another C file.
• Generaly, a module is coded in a single

routine.

Modules Sample Diagram

Coleco VideoGame Modules

Title Menu

Game Parameters Game Screen

Initialize

Player Moves Coleco Moves

Game Engine Game Over

Game Credits

Main

Flow Charts

• A flow chart is a diagram which represents
the normal execution of (a part of) your
code.

• This particular diagram uses a specific
formalism with symbols like rectangles,
rounded rectangles, circles and more.

• Using flow charts to represent the modules
of your code is a good idea.

Flow Charts

In the past, we used this kind of stencil to facilitate
drawing flow charts on paper.

Now, with the computers, we use software to do
exactly the same thing.

Flow Charts

These symbols are the
most common ones.

They are simple
geometric graphics
with text.

To see the execution
path, the convention is
to use arrows between
symbols.

START

INIT
GRAPHICS

LIFE = 5

PRINT
"HI!"

LIFE=0

1

Flow Chart Symbols

• This symbol is used to
specify where your
code starts and
finishes.

START/END

Flow Chart Symbols

• This symbol is used to
do a mathematical
operation or to
initialize a variable.

LIFE = 5

Flow Chart symbols

• This symbol is used to
avoid using too many
symbols in your
diagram. It can
represent a module
you call.

INIT
GRAPHICS

Flow Chart Symbols

• This symbol is used
for the output
instructions. It may
represent one or more
lines of code in your
program.

PRINT
"HI!"

Flow Chart Symbols

• This symbol is used
for conditions. After
this symbol, two
arrows most be added:
one for « YES », the
other for « NO ».

LIFE=0
YES

NO

Flow Chart Symbols

• And this little symbol
represents a label. You
can use labels to mark
where a jump is
possible.

1 1

Label Go to Label

List of variables

• Before doing a detailed flow chart, you
must do a list of variables the game needs.

• Example: the variables for a bouncing ball
on screen could be its coordinate and its
orientation + speed (simply the
incrementation in X and Y axes).

• A list of variables helps you to not omit
important variables.

Algorithm

Between the idea and the code

What is an algorithm?

• It ’s a representation of your code in a
natural language.

• It uses keywords called « pseudo-code » to
refer to the instructions you will need to
write in the code.

• A flow chart is a graphical version of an
algorithm.

Algorithm

• An algorithm is a series of orders you give
to the computer to be executed.

• To help your imagination, this is a sample
algorithm to order a robot to buy apples at
the market.

« Go outside. Turn Left. Walk to next corner.
Turn left again. Walk 10 feet. Open door.
Walk 3 feet. Buy apples. Come back. »

Pseudo-Code

• There is no convention for pseudo-code but
it must be something in natural language
which represents instructions.

Ex.: « for each y position from 0 to 10 »
• When the time comes to write your code

based on the algorithm, converting
keywords to instructions is easy.

Ex.: « for (y=0;y<=10;y++) »

Programming in C

General information about the
C programming language

Warning!

• First of all, I need to specify that the C
language I ’m talking here is not the C++ or
C# language but the standard ANSI C.

• The following slides are only a very small
introduction to the C programming. For
more information, read books about C
language.

C programming

• A C file structure is simple if you understand this:
what you need must be previously given. That is
to say, no forward declarations

• At the top, you have the libraries, the constants,
the headers of external routines, tables and global
variables.

• At the bottom, you have routines and then routines
who need others routines to run.

C programming

• Libraries are included
in your C file with the
instruction
« #include »

• The constants are
defined in your C file
with the instruction
« #define »

#include<coleco.h>

#define potatoes 10

extern byte title[];

byte numbers[]={1,2,3};

byte numbers[3];

C programming

• The tables which are
in another C file are
included with the
instruction « extern »

#include<coleco.h>

#define potatoes 10

extern byte title[];

byte numbers[]={1,2,3};

byte numbers[3];

C programming

• The first array of bytes
named ‘numbers’ here,
is a typical example of
a ROM table.

• The second array of
bytes named
‘numbers’ here is a
typical example of a
RAM table.

#include<coleco.h>

#define potatoes 10

extern byte title[];

byte numbers[]={1,2,3};

byte numbers[3];

Data types

• char : character or signed short integer in
one byte.

• byte : unsigned short integer in one byte.
• int : signed integer in two bytes.
• unsigned : unsigned integer in two bytes.
• [] : array
• char [] : array of char or string

Operators

• Arithmetic operators: +, -, *, /, % (modulus)
• Increment ++ and Decrement --
• Bitewise operators: << (shift left), >> (shift

right), & (and), | (or), ^ (x-or), ! (not)
• Combined operators: <variable> =

<variable><operator><expression> become
<variable><operator>=<expression>. Ex.:
a=a+2 become a+=2

Operators

• Relational operators: > (greater than), <
(less than), == (equal), >= (greater than or
equal), <= (less than or equal), != (not
equal)

• Logical operators: && (and), || (or), ! (not)

If Statement

• Simple if
if (value) statement1;
• if... else
if (value) statement1;
else statement2;
• A statement can be inside brakets: { and }

Loops

There are many kinds of loops.
• for loop
for (x=0;x<10;x++)
• while loop
while (x<10) {}
• do... while loop
do {} while (x<10)

Functions

• A function may return a value or not (void).
• A function may need parameters to execute.
• A function header syntax is:
<return type> function_name (<data type>

parameter#1, <data type> parameter#2, ...)
int substract (int a, int b)
void main(void)

Functions

• A function core is written in braces: { and }
• At the top we have the temporary variables

used within the scope of a particular
function.

• After the temporary variables, we add
instructions (operations and command lines)

• When needed, we use braces again to group
many instructions together.

Function Sample

• This routine needs a
byte value and returns
a byte value.

• The temporary
variables j and k are
declared at the top of
the routine.

• And finally, the
operations.

byte sum(byte l)
{
 byte j;
 byte k;

 k=0;
 for(j=1;j<=l;j++)
 {
 k += j;
 }
 return k;
}

I know…

It ’s not enough information to start
programming in C. You ’ll have to read
books to learn C language.

Now, let ’s talk about Coleco programming

Coleco programming in C

What you need to do a new Coleco project:
• the coleco library
• an nmi routine (empty or not)
• a main routine
• and a lot of routines for your own purposes
• You can use more libraries
• You can use more than one C file

Coleco programming in C

The execution steps must be something like:
• Initialize the video display (VDP registers

and Video memory)
• Initialize global variables
• Start doing operations and commands
• Use a loop for the game engine
• Use variables to output things on screen
• Use a delay to slowdown the execution

Libraries

The Coleco library by Marcel de Kogel is the SDK
to program new Coleco projects in C.

Getput1 library is a toolbox with a lot of useful
routines. This library uses coleco library routines.

But, because we have no time, I suggest to read the
Coleco programming documentation to find more
information about these libraries.

Compile and Test

How to use CCI software in the
Coleco development kit?

Step by step

• Create a project directory as a sub-directory
of the compiler.

• Save all your C files in your project
directory.

• Copy CCI software in your project
directory.

• Run CCI to compile and link your project.

Example

We will do now a new Coleco project
together.

Follow the instructions in the next slides to
experience the joy of compiling a new
Coleco project.

I hope you have un-archived the Coleco
development kit on your PC.

Open Notepad. Good luck!

Sample code: « Hello World »

• This code is the
starting point for all
new ColecoVision
projects in C.

• #include <coleco.h> is
the command to
include the Coleco
library by Marcel de
Kogel in your project.

The nmi routine is needed to
use the Coleco library…
even if you don’t use it.

The main routine is the
starting point of the program.

#include <coleco.h>

/* EMPTY NMI ROUTINE */
void nmi(void) {
}

/* EMPTY MAIN ROUTINE*/
void main(void) {
}

Sample code: « Hello World »

• Getput1 library is a
toolkit with a lot of
graphic routines and
more.

• This library helps you
to simplify code by
grouping commonly
used functions.

• You must use it.

#include <coleco.h>
#include <getput1.h>

/* EMPTY NMI ROUTINE */
void nmi(void) {
}

/* EMPTY MAIN ROUTINE*/
void main(void) {
}

Sample code: « Hello World »

• You need to initialize
the VDP registers to
setup the screen.

• Fortunately, Getput1
helps us. This library
contains a routine
named
screen_mode_2_text.

#include <coleco.h>
#include <getput1.h>

/* EMPTY NMI ROUTINE */
void nmi(void) {
}

/* MAIN ROUTINE*/
void main(void) {
 screen_mode_2_text();
}

Sample code: « Hello World »

• Now, you need to
initialize the
characters set in video
memory.

• Again, the Getput1
library helps with
another routine named
upload_default_ascii.

#include <coleco.h>
#include <getput1.h>

/* EMPTY NMI ROUTINE */
void nmi(void) {
}

/* MAIN ROUTINE*/
void main(void) {
 screen_mode_2_text();
 upload_default_ascii(BOLD);
}

Sample code: « Hello World »

• Now, you are ready to
print on screen.

• Use cls to clear screen
• Use center_string to

center a string on
screen.

• Use print_at to print
on screen at a
particular coordinate.

#include <coleco.h>
#include <getput1.h>

/* EMPTY NMI ROUTINE */
void nmi(void) {
}

/* MAIN ROUTINE*/
void main(void) {
 screen_mode_2_text();
 upload_default_ascii(BOLD);
 cls();
 center_string(3,"HELLO WORLD");
 print_at(27,23,"2003");
}

Sample code: « Hello World »

• Finaly, you must suspend
normal execution to let
the user see the messages.

• Use delay to suspend
normal execution for a
specified amount of time.

• Use pause to wait for a
fire button.

• Use an infinite loop

#include <coleco.h>
#include <getput1.h>

/* EMPTY NMI ROUTINE */
void nmi(void) {
}

/* MAIN ROUTINE*/
void main(void) {
 screen_mode_2_text();
 upload_default_ascii(BOLD);
 cls();
 center_string(3,"HELLO WORLD");
 print_at(27,23,"2003");
infiniteloop:
 goto infiniteloop;
}

Sample code: « Hello World »

• Create a sub-directory
in the compiler
directory. This new
directory is your
project directory.

• Save your code as a C
file in your project
directory and add the
CCI software.

Sample code: « Hello World »

• Check Getput1
checkbox to let CCI
use this library.

• Select your C file in
the filelist box and
click on Compile.

Sample code: « Hello World »

• A popup DOS window
appear with 22NICE
running.

• After pressing space
bar, the compiler will
start.

• After compiling your
code, the DOS
window waits. Close
this window.

Sample code: « Hello World »

• CCI created a batch
file named « c.bat »

• The compiler
generated an object
file named
« hello.obj »

Sample code: « Hello World »

• Before using the
linker, you must verify
the filesize of the
objets files.

• 512 bytes… it ’s very
small but it ’s not zero.

Sample code: « Hello World »

• Now, it ’s time to use
the linker.

• Click on the Link
button of the CCI
software.

Sample code: « Hello World »

• 22NICE starts again.
• The linker is waiting

for instructions.
• CCI will have copied

the instructions to the
clipboard.

• Do a « paste » in the
DOS window.

Sample code: « Hello World »

• CCI created a batch
file named « l.bat »

• The linker generated
two files: « map.txt »
with the memory map
information, and
« result.rom » which is
the rom file we wanted
to create.

Sample code: « Hello World »

• If Windows closed
your DOS window,
you may not see if the
linker was able to link
right the object files
together with the
libraries.

• To be sure, check the
filesize of the rom file.

Sample code: « Hello World »

• If you didn ’t close the
DOS windows, do it
now.

• Click on the « Run »
button to start
VirtualColeco.

• Well, it looks like you
did it! :)

It ’s working! :)

• Now, you know how
to use CCI. It ’s time
for you to program a
bigger project.

• Note: A good way to
do a project is to
compile and link your
code each time you
update it.

To be continued

Be prepared for the next:
New ColecoVision Programming

presentation

	CVPROG-English-part1
	New ColecoVision Programming
	Step by Step
	Start with an idea
	Start with an idea
	Example: Smash game
	Figure out how it could be done
	Approach
	Example: Smash game
	Graphics and sound
	Graphics
	Color Palette
	Graphics
	Character Graphics
	Character Graphics
	Sprite Graphics
	Sprites Graphics
	Example: Smash game
	Example: Smash game
	Graphics tools
	Graphics tools
	Graphics tools
	Graphics tools
	Sounds
	Sounds
	Sounds
	Sound tools
	Sound tools
	Program Structure
	How to organise your program:
	Storyboard
	Videogame parts
	Screens
	Important Screens
	Modules
	Modules Sample Diagram
	Flow Charts
	Flow Charts
	Flow Charts
	Flow Chart Symbols
	Flow Chart Symbols
	Flow Chart symbols
	Flow Chart Symbols
	Flow Chart Symbols
	Flow Chart Symbols
	List of variables
	Algorithm
	What is an algorithm?
	Algorithm
	Pseudo-Code
	Programming in C
	Warning!
	C programming
	C programming
	C programming
	C programming
	Data types
	Operators
	Operators
	If Statement
	Loops
	Functions
	Functions
	Function Sample
	I know…
	Coleco programming in C
	Coleco programming in C
	Libraries
	Compile and Test
	Step by step
	Example
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	It ’s working! :)
	To be continued

	CVPROG-English-part2
	New ColecoVision Programming
	Step by Step
	Start with an idea
	Start with an idea
	Example: Smash game
	Figure out how it could be done
	Approach
	Example: Smash game
	Graphics and sound
	Graphics
	Color Palette
	Graphics
	Character Graphics
	Character Graphics
	Sprite Graphics
	Sprites Graphics
	Example: Smash game
	Example: Smash game
	Graphics tools
	Graphics tools
	Graphics tools
	Graphics tools
	Sounds
	Sounds
	Sounds
	Sound tools
	Sound tools
	Program Structure
	How to organise your program:
	Storyboard
	Videogame parts
	Screens
	Important Screens
	Modules
	Modules Sample Diagram
	Flow Charts
	Flow Charts
	Flow Charts
	Flow Chart Symbols
	Flow Chart Symbols
	Flow Chart symbols
	Flow Chart Symbols
	Flow Chart Symbols
	Flow Chart Symbols
	List of variables
	Algorithm
	What is an algorithm?
	Algorithm
	Pseudo-Code
	Programming in C
	Warning!
	C programming
	C programming
	C programming
	C programming
	Data types
	Operators
	Operators
	If Statement
	Loops
	Functions
	Functions
	Function Sample
	I know…
	Coleco programming in C
	Coleco programming in C
	Libraries
	Compile and Test
	Step by step
	Example
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	Sample code: « Hello World »
	It ’s working! :)
	To be continued

